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Abstract. In the present paper we study switching state space models from a
Bayesian point of view. We discuss various MCMC methods for Bayesian estimation,
among them unconstrained Gibbs sampling, constrained sampling and permutation
sampling. We address in detail the problem of unidentifiability, and discuss potential
information available from an unidentified model. Furthermore the paper discusses
issues in model selection such as selecting the number of states or testing for the
presence of Markov switching heterogeneity. The model likelihoods of all possible
hypotheses are estimated by using the method of bridge sampling. We conclude the
paper with applications to simulated data as well as to modelling the U.S./U.K. real
exchange rate.
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1. Introduction

State space models are a well-studied tool to analyse time series ¥V = (y1,...,yn),
where the distribution of y, depends on a latent continuous state process zN =
(o, ...,ZN). A switching state space model is obtained if we assume that in addi-
tion to the latent, continuous process zV a discrete latent switching variable I; taking
values in {1,...,K} influences the distribution of y;. Such models have been studied
by various authors (e.g. Harrison and Stevens (1976); Shumway and Stoffer (1991); Kim
(1993, 1994); Carter and Kohn (1994, 1996); Shephard (1994)). Kim and Nelson (1999)
present an excellent review of the current state of art.

A typical way of including a switching mechanism into a Gaussian state space model
is to assume that one of the variances, e.g. the variance appearing in the observation
equation, is heteroskedastic and switches between various values 6{, ..., 6% depending
on the state of the latent process I; (Pefia and Guttman (1988)):

2y = Fyxe_y +up + Gows,  wy ~ N(0, Diag(o?,. .., 03)),

ye = Hizy +vy, vy ~ N(O, ‘95,)-

Alternatively, one or all of the variances 0%, ..., 03 of the transition equation may
be Markov switching heteroskedastic (Kim (1993); Engle and Kim (1999)). Another
way of including a switching mechanism is to assume that a drift term is present in
the transition equation which switches between various values 61, ..., 0% (Kim (1994)).
For an application of the related switching dynamic factor model to modelling business
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cycles see Kim and Nelson (1998) and Kaufmann (2000); an interesting application of a
state space model with two switching mechanisms to audio signal processing appears in
Godsill (1997).

Estimation of a switching state space model is far from trivial. The classical max-
imum likelihood approach cannot be applied directly as the marginal likelihood, where
both latent processes ™V and I are integrated out, is not available in a closed form.
Approximate filters which lead to an unknown approximation error have been used e.g.
in Kim (1993, 1994). Alternatively, a Bayesian approach can be applied by means of
Markov chain Monte Carlo (MCMC) methods (see e.g. Smith and Roberts (1993) for a
general introduction to MCMC methods). The design of suitable MCMC methods to
estimate a Gaussian state space model with switching has been studied in various papers.
A general discussion may be found in Carter and Kohn (1994, 1996), Shephard (1994),
and Kim and Nelson (1999). MCMC sampling for specific Gaussian state space models
with switching appear e.g. in Godsill (1997), Kim and Nelson (1998), Engle and Kim
(1999), and Kaufmann (2000). In Section 2 of the present paper we address once more
the issue of Bayesian estimation of switching Gaussian state space models via MCMC
methods. Emphasis will lie on the unidentifiability of switching state space models and
its implication for MCMC estimation. We will discuss the problem of label switching,
the importance of finding a sensible identifiability constraint, and the fact that impor-
tant information such as smoothed estimates of the latent state process zV or estimates
of time varying parameters will be available without the need to identify the model.

In Section 3 we head for a fully Bayesian analysis of switching Gaussian state space
models discussing issues in model selection such as selecting the number of states and
testing for the presence of a hidden Markov switching process. We will apply the method
of bridge sampling to compute the model likelihood for a switching Gaussian state space
model.

Applications to simulated data appear in Section 4. The paper is concluded with
an application of a switching state space model to the analysis of the U.S./U.K. real
exchange rate in Section 5.

2. Bayesian estimation of a Gaussian state space model with switching

Unknown parameters which have to be estimated from the data are the fixed pa-
rameters §€, which are common to all states, the state specific parameters 8{,..., 0k,
and the parameter 7 appearing in the definition of the distribution of IV = (Iy,..., In).
These parameters will be summarized by ¢: ¢ = (6, 6{,...,6%,n). Within the Bayesian
approach both the discrete, latent process IV as well as the continuous, latent process
zV are viewed as missing data and estimated along with the model parameter ¢. In
what follows we are going to estimate the augmented parameter vector ¥ = (¢, IV, zV)
by sampling from the posterior density m(v | ¥"¥) by means of MCMC methods.

2.1 Model structure and choice of the priors
Bayesian estimation of the model is based on the hierarchical structure of the model:
1. Conditionally on known realisations ™ and IV of the continuous state process
and the switching process, respectively, and on a known model parameter ¢ the
observations are independent with the distribution of y; depending on z; and I,
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only. The “complete data likelihood” f(y"V | zV, IV, ¢) given 2V, I and ¢ reads

N
F@N 12N, 1N, ¢) = [ fwloe | 21,67,,6),

t=1

where fy(y; | -) is the density of a normal distribution.
2. Conditionally on a known realisation IV of the switching process and on a known
model parameter ¢, the density of the (prior) distribution of the continuous latent

rocess 2N = (z9,21,...,ZnN) is given by:
P 0, ) )

N
n(@ | IV, ¢) =[] fn(@e | ©e-1,61,,6%)m(z0 | ).

t=1

3. Conditionally on a known model parameter ¢, the density of the (prior) distribution
of the latent switching process IV depends on 1, only: 7(IN | ¢) = n(IN | n).
4. Finally, ¢ has a prior distribution 7(¢).

Note that the “prior” on IV and z™ appearing in the second and the third level
are not subjective priors, but part of the model. One possible prior structure on IV is
the ezchangeable prior, where I; is assumed to be an iid process with Pr{l; = j} = n,,
j=1,...,K. This prior has been used in combination with Gaussian state space models
e.g. in Shumway and Stoffer (1991). An alternative choice is the Markovian switching
prior where I, is assumed to be a stationary Markov process with discrete state space
{1,...,K} and Pr{l; = j | I,_1 = i} = m;;. This structure has been introduced by
Hamilton (1989). It is combined with Gaussian state space models e.g. in Kim (1994),
Engle and Kim (1999) and Kim and Nelson (1998, 1999).

Only the prior on ¢ appearing on the fourth level has a subjective flavour. We
assume that n = (91.,...,nk.), where n;. = (Mi1,...,7mik), is independent from the re-
maining parameters of ¢ and that all conditional transition distributions n;., 7 = 1,. .., K,
are independent a priori from each other. A “natural” prior distribution 7 (n;.) for »;. is
the Dirichlet prior which is the conjugate prior in the complete data setting, where IV is
assumed to be known. Concerning the state specific parameters 61, ..., 6%, we assume
that they are independent a priori and that each 031 has the same prior distribution
depending on hyperparameters which are not state specific. This allows different pa-
rameters for the various states, however with a slight restriction expressed by the prior.
Furthermore this prior is invariant to relabeling the states.

2.2 Bayesian posterior analysis and the problem of label switching
From the hierarchical structure of the model we obtain that the (unconstrained)

posterior density 7 (1 | yV) is given by:
w(p | yN) o SN |2V, IV, Q)m(aN | IV, )n(IV | ¢y (9).

For models including a latent, discrete structure such as IV the unconstrained poste-
rior has some characteristic properties (see Stephens (1997); Celeux (1998); Frithwirth-
Schnatter (2001)). The unconstrained parameter space contains K! subspaces, each one
corresponding to a different way of labeling the states. The “complete data likelihood”
fN | 2V, IV ¢), and the “priors” w(z™V | IV, $) and 7(IV | ¢) are invariant to relabel-
ing the states. Therefore, if the prior 7(¢), is invariant, too, the unconstrained posterior
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typically is multimodal and invariant to relabeling the states. This special structure of
the posterior has a lot of consequences for estimation. The unconstrained model is not
identified in a strict sense. When sampling from the unconstrained posterior via MCMC
methods, we do not know to which of the labeling subspaces the sampled value belongs.
Therefore, we do not know to which state a sampled parameter belongs as label switch-
ing (jumping between the various labeling subspaces) might have occured. Thus we are
not allowed to estimate functionals f(1) of ¢ which are not invariant to relabeling the
states from MCMC simulations from the unconstrained posterior.

Note, that important information is available from MCMC simulations from the un-
constrained posterior without introducing unique labeling, as we are allowed to estimate
functionals f(v) of 1 which are invariant to relabeling the states of I;. This is important
especially for applied time series modelling, as “smoothing” in terms of estimating the
latent continuous process £V from the posterior 7(z™ | y"V) is possible without caring
about identifiability. Smoothed estimates Z;n of x:, for instance, are simply given by
Eyn = a7 er\r/le (™)), where (zV)D ... (zV)M) are MCMC simulations from the
unconstrained posterior. This estimate is unaffected by label switching, because the
marginal posterior 7(z"V | yV) is invariant to relabeling the states of IV.

Another important application is estimation of time varying parameters. In practice,
the discrete values 0{ y eees Of( often will be just an approximation to modelling time
varying model parameters &; of the state space model (Harrison and Stevens (1976))
& = 0} , if I; = j. From rewriting this functional in the form & = Zszl 0} St(J ), where
for each j, St(’ ) = 1, iff I, = 7 and zero otherwise, invariance to relabeling the states of I;
is obvious. Therefore it is possible to obtain individual estimates of £; for each ¢ from the
MCMC output of an unconstrained model by averaging (8]){™), where s = It(m), over
all m = 1,...,M. Finally, estimation of state independent parameters # is possible
without caring about identifiability.

In order to estimate functionals f(i) of ¥ which are not invariant to relabel-
ing the states such as the state specific parameters 6{,...,0%, n or the probability
Pr(I; = j | ¥"¥) of being in a certain state j at time t we have to identify the model in
the sense that we allow for MCMC simulations from a unique labeling subspace, only. A
common way to do this is to include an identifiability constraint. However, the problem
with identifiability constraints is that they don’t necessarily induce a unique labeling if
the geometry of the unconstrained posterior density is ignored (see Frithwirth-Schnatter
(2001)). Only a carefully selected constraint will separate the labeling subspaces and
induce unique labeling. We will demonstrate in our case studies how suitable identifi-
ability constraints may be found by exploring MCMC simulations from unconstrained
posterior densities.

2.3 MCMC Methods

The design of suitable MCMC methods to generate a (dependent) sample ),
@ .. from the posterior m(x | y") of a dynamic linear model with switching has
been studied in various papers (Carter and Kohn (1994, 1996); Shephard (1994); Godsill
(1997); Kim and Nelson (1998); Engle and Kim (1999)). MCMC techniques for sampling
from a complicated posterior density split the joint unknown parameter into blocks and
sample then from the conditional posterior densities of each block given the fixed values
for the other blocks. Sampling 1 from the posterior of a switching Gaussian state space
model is possible within the following four blocks:
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(i) Sample IN from w(IV | z/V,n, 0,6, y")

(it) Sample 7 from 7 (n | IN)
(iii) Sample (6f,...,6%, 0°) from = (6{,...,0%,0C | N, IV, yM).
(iv) Sample 2V from w(z™ | IV, 601,..., 0k, yN)

Step (i) and (ii) are standard steps occuring in MCMC estimation of any model
including a latent Markov switching variable. Step (i) may be carried out in a multimove
manner as in Carter and Kohn (1994, 1996), Shephard (1994}, or Chib (1996). Sampling
n is completely standard, as the conditional posterior 7(n | ¢, IV, z",y") depends only
on IN and each conditional distribution 7y.,...,nk. follows a Dirichlet distribution.
The precise procedure applied within step (iii) depends on the specific Gaussian state
space model under consideration. For many important examples of state space models
such as the basic structural model, the dynamic trend model (Harvey (1989)) or for
regression models with random coefficients, Hy, F;, Gy and u; are predetermined, and
the variances are the only model parameters. For such a conditionally heteroscedastic
Gaussian state space model the variances are conditionally independent inverted gamma
random variables and easy to sample. Further blocking is necessary if F; or H; depend
on unknown model parameters. Finally, step (iv) may be carried out by one of the
multimove methods discussed in Carter and Kohn (1994), Frithwirth-Schnatter (1994)
and DeJong and Shephard (1995).

There exist various ways to run through this scheme and the reader is referred to
Friihwirth-Schnatter (2001) for a detailed discussion of this issue. An unconstrained
model may be estimated by unconstrained Gibbs sampling running through step (i)-(iv)
without any constraint on the state specific parameters. Unconstrained Gibbs sampling,
however, does not explore the whole unrestricted parameter space, but tends to stick at
the current labeling subspace with occasionally switching to other labeling subspaces,
while others will never be visited. An alternative method of estimating an unconstrained
model is random permutation sampling (Frithwirth-Schnatter (2001)). This method is
simply an unconstrained Gibbs sampler concluded by a randomly selected permutation
p(1),...,p(K) of the current labeling 1,..., K. After sampling ¥ by an unconstrained
Gibbs sampler, state dependent parameters are permuted in the following way:

(2‘1) (0;{7$0§() = (0,5(1)’--'70{7(1())’
(nih - 7772K) = (np(i),p(l)v s anp(i),p(K))) t=1,.. -)Ka
(Ily"wIN) = (p(Il)aap(IN))>

whereas the state independent parameters § and z”V remain unchanged. The permuted
parameters are the starting point for the next Gibbs step. This sampler delivers a sample
from the unconstrained posterior where balanced label switching occurs as all labeling
subspaces are visited with the same probability.

To estimate a constrained model, an identifiability constraint may be introduced into
the sampling scheme. One way of forcing the identifiability constraint is to introduce
some truncation or rejection method into step (iii} in order to obtain simulations which
fulfill the constraint. This constrained Gibbs sampling is the standard method applied
so far (see e.g. Engle and Kim (1999)). As mentioned before, identifiability constraints
do not necessarily induce a unique labeling, and therefore, constrained sampling may
introduce a bias towards a poor constraint. The poorness of the constraint may go
undetected if we use constrained Gibbs sampling and the sampler sticks at the current

labeling subspace.
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An alternative method for constrained sampling is permutation sampling under an
identifiability constraint (Frithwirth-Schnatter (2001)). Unconstrained Gibbs sampling
is concluded by a permutation as in (2.1), but this time the permutation is selected in
such a way that the identifiability constraint is fulfilled. This method delivers a sample
from the constrained posterior. If the constraint is poor in the sense that it does not
induce a unique labeling, the permutation sampler will indicate this fact and exhibit
label switching. In this case more suitable identifiability constraint may be found by
exploring the MCMC output of random permutation sampling.

3. lssues in model selection

3.1 The Bayesian approach to model selection

In practical time series analysis we may end up with various dynamic linear models
My, ..., My —with or without switching— as possible explanation of our observations,
and we have to address some issues in model selection such as selecting the number K
of states or testing for the presence of Markov switching heterogeneity. Both testing
problems are not easily solved within the classical framework of maximum likelihood.
Although a non-switching state space model could be viewed as that special case of a
switching state space model where K = 1, the regularity conditions for justifying the
x2-approximation to the likelihood ratio statistic do not hold, as the state dependent
parameters are unidentified under the hypothesis that there is really one state.

Bayesian approaches to selecting the number of states are the jump diffusion ap-
proach (Richardson and Green (1997)) which to our knowledge has not been applied
to switching state space models and the variable selection approach of Carlin and Chib
(1995) which has been applied to dynamic factor models with switching by Kim and
Nelson (2001). In the present paper we pursue the classical Bayesian approach of compar-
ing all possible models under consideration through their model likelihoods L(y™ | M)
which are obtained by integrating the complete data likelihood f(y" | 1) with respect
to the prior of all unknown quantities including the latent processes:

(3.1) LN | M) = / F@N | 9)a(w)v(dy).

Within state space modelling this approach has been applied to non-switching state
space models in Frithwirth-Schnatter (1995), to stochastic volatility models in Kim et
al. (1998) and to dynamic factor models with switching in Kaufmann (2000).

The computation of the model likelihood, which by definition is the normalizing
constant of the non-normalized posterior f(y™ | ¥)m(¢)) has, however, proven to be
extremely challenging. Model likelihoods have been estimated from the MCMC output
using methods such as the candidate’s formula (Chib (1995)), importance sampling based
on mixture approximations (Frithwirth-Schnatter (1995)), combining MCMC simulations
and asymptotic approximations (Gelfand and Dey (1994); DiCiccio et al. (1997)) and
bridge sampling (Meng and Wong (1996)). Computing the model likelihood from the
MCMC output of a switching model without a latent continuous state process z™ has
been discussed in detail in Friihwirth-Schnatter (1999) with the following main results.
First, estimation of the model likelihood turns out to be sensitive to the problem of
label switching. Especially the candidate’s formula (Chib (1995)) should not be applied
if label switching is present. Second, the best result with the lowest standard error is
obtained by using the method of bridge sampling (Meng and Wong (1996)). In the
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present paper we extend this method to Gaussian state space models with switching.
We will give details in the next subsection.

3.2 Computing the model likelihood from the MCMC output
For switching state space models it is possible to reduce the dimension of the inte-
gration in (3.1) by integrating out the switching process I'V:

(3.2) L) = / LY |2V, (e | 9)n(d)d(z™, ),

where closed formulae for the marginal likelihood L(y" | 2V, ¢) and the marginal prior
m(z™ | ¢) are available. Subsequently, we will discuss evaluation of integral (3.2) using
the bridge sampling technique (Meng and Wong (1996}). Bridge sampling is a method
for computing ratios of normalising constants from MCMC simulations of the posterior
and has been applied to the problem of computing the model likelihood by DiCiccio et
al. (1997). It is obvious from (3.2) that the model likelihood is equal to the normalising
constant of the posterior density 7(z, ¢ | y"V) given by:

(3.3) (@, ¢ | yV) o (@, ¢ | yV) = LN | 2V, ) (aN | )7 ().

Let q(z, ¢) be a density with known normalising constant, which is some simple ap-
proximation to the posterior 7(z™V, ¢ | V). Let a(z", $) be an arbitrary function such
that [a(zV,¢)m(zV,¢ | yV)g(zV,$)d(z",$) > 0. Bridge sampling is based on the
following result:

L = Jo@V, o), ¢ |yV)e(z", 9)d(z", ¢)
Sz, ¢)a(zN, ¢)w(zN, ¢ | yN)d(zN, ¢)
__ JoaN, 9)r* (=N, 6 | yV)a(zV, ¢)d(z", ¢)
-~ L@N) [alaV, ¢)a(zN, ¢)m(aN, ¢ | yN)d(aN, ¢)

which yields the key identity:

_E (a(@V,¢)m*(zN, ¢ | yV))
(3.4) L") = = 5 alaV @V 9]

where Ey is the expectation with respect to a density f(-). If —dependent or indepen-
dent— samples (zV, )™ m=1,...,M, and (¥,¢)® 1 =1,..., L from the posterior
m(zV,¢ | y"V) and the approximate density g(z”,®), respectively, are available, then
both expectations are substituted by the appropriate averages and we obtain the bridge
sampling estimator Lpzg(y™)
o —1y~L AN YD Yx (2N DN | N
55 beslyV) = Br 2 LT al@ DO (DO 1y
Er M7 o(aN,9)m)e((zV, 4)(™)

There are two functions for tuning: the function a(z”,¢) and the importance density
q(z™N, ¢). If one uses a(zV,¢) = 1/q(z™, ¢), then we obtain the following importance

sampling estimator of the model likelihood:

L /=N T
1 & (@9 1)
L= @V, 9)0)

(3.6) Lis(y™) =
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This estimator is an extension of the importance sampling estimator of Frithwirth-
Schnatter (1995) to Gaussian state space models with switching. If one uses a(z", ¢) =
1/m*(zN,¢ | yV), the basic identity for reciprocal importance sampling (Gelfand and
Dey (1994)) results leading to the following reciprocal importance sampling estimator:

: . Ng)m) |
(3.7 LRI(yN) = { Z W*((:EN ) | yN)}

Meng and Wong (1996) discuss an asymptotically optimal choice of a(z™, $), which
minimizes the expected relative error of the estimator Lpg(y™) for iid draws from

m(z™,¢ | yV) and ¢(zV, ¢):

1
L-q(zN,¢)+ M -n(zN,¢ | yN)

(3.8) a(z, ¢) x

We will refer to the corresponding bridge sampling estimator as the “optimal” bridge
sampling estimator. As the optimal choice depends on the normalized posterior, we apply
the following iterative procedure: based on a previous estimate L(lt 2 (y") of the normal-
izing constant, the posterior is normalized, #(z™,¢ | yV) = 7*(z, ¢ | y™)/LE5V (),

and a new estimate i(Btzg (y") is computed by (3.5). This leads to the following recursion:

= ) N
Lt (&Y, )Y | yV)

3.9) LYY =LV M) ;L a((ZN,)0) + M - #((ZN,$)® | yN)
M1 Y q((m )(m))

24 T q(@, §)) + M - (¥, ) | yV)
Either the importance sampling estimator or the reciprocal importance sampling esti-
mator may serve as starting value ﬁ(gg(y” ). Whereas importance sampling as well as
reciprocal importance sampling are known to be sensitive to the tail behaviour of the
importance density g(-), it has been shown in Frithwirth-Schnatter (1999) that the “opti-
mal” bridge sampling estimator is much more robust in this respect. This is of particular
importance for switching state space models, where an importance density in the space
of the unobserved, latent process z¥ has to be constructed. The choice of an impor-
tance density which has only fat or only thin tails in all directions of the parameter space
appears unattainable and robustness to the tail behaviour will be of great importance.

Now we turn to the choice of g(z™,¢) for switching state space models. For much
simpler models, DiCiccio et al. (1997) suggested to construct a normal importance den-
sity from the MCMC output. For an unconstrained switching state space model, how-
ever, the posterior usually is multimodal and a normal importance density might be an
extremely bad choice. Therefore we construct the importance density in an unsuper-
vised manner from MCMC simulations @, ... ML) from the unconstrained posterior
7(y | y"V) in a similar way as in Frithwirth-Schnatter (1995, 1999):

(3.10) ¢(zV,¢)
Mg

= ML Zﬂ.(n | (IN)("))’R'(:L'N | 9("),(IN)("),yN)K9(9 | (IIY’zN,g)(n)’yN)’
L

n=1
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where Ky(8 | IV, 2V, g ,yN ) is the density of the transition kernel appearing in the un-
constrained Gibbs sampler. The mixture importance density (3.10) is based on averaging
over the conditional densities, where the argument (2, ¢) is fixed and the conditioning
indicator process I'N is sampled from the unconstrained posterior switching between the
different ways of labeling. Therefore the mixture importance density (3.10) will be mul-
timodal, too. In order to reproduce all modes of the posterior, however, it is essential to
base the mixture approximation (3.10) on a MCMC method which forces balanced label
switching such as the random permutation sampler.

Construction of ¢(-) and sampling from ¢(-) is possible during MCMC sampling.
Typically, My, is smaller than M as there is no need to use the whole MCMC sample to
construct the importance density. We select the M mixture indices randomly from the
possible indices 1, ..., M prior to MCMC sampling. By sampling L times randomly from
the selected indices we decide how many simulations are necessary from each conditional
density in (3.10). Sampling from a conditional density takes place whenever we reach
the corresponding mixture index during MCMC sampling. As these conditional densities
are the same as those used for MCMC sampling, this is especially easy to implement. In
order to evaluate ¢(-) later on, we store the moments of these conditional densities.

To compute the model likelihood from (3.9) it is necessary to evaluate the functions
m* (2, ¢ | yV) given by (3.3) and ¢(-) given by (3.10) with the argument taking all values
from the MCMC sample as well as from the g(-)-sample. The first function could be
evaluted during sampling as L(y" | zV, ¢)m(zV | ¢) in (3.3) results as a by-product when
sampling from 7(IV | 2V, $,y"). The evaluation of ¢(-) is possible only after having
finished sampling. Finally, we compute the importance sampling estimator (3.6) and the
reciprocal importance sampling estimator (3.7) as starting value for the recursion (3.9)
and compare the final estimators for convergence diagnostics. During recursion the non-
normalized posterior is only divided by the last estimate of the normalising constant,
and no additional function evalutions are necessary.

4. Application to simulated data

4.1 Data simulated from a model with switching
First, we apply the methods of the previous sections to a time series of length
N = 400 simulated from a local level model with switching observation variance:

Ty =21+ we,  w~N(0,Qy),
Y =T+ v, v~ N(0, Ry),

where @, is constant (Q; = 0.001), R, is a switching variance, and I, is simulated as a
2-state Markov chain with transition matrix #:

001, I; =1, 0.95 0.05
Rt = 77 = .
01, I, =2, 0.05 0.95
We test the “true” model against the following alternatives:
e alocal level model with jointly Markov switching variances (“switching model 17):

- (QII])R“])a I, = 1,
(Qu Fe) = { Q2 R, I, = 2;
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(c) Switching model 2 (K; = K2 =2). (d) Switching model 2 (K1 = 2, K2 = 3).

Fig. 1. Explorative Bayesian analysis for simulated data set 1.

Table 1. Formal model selection for simulated data set 1 (standard errors given in parenthesis).

Model log L(y™ | Model)
True Model (K1 = 1, K3 = 2) 57.3052 (0.0819)
Switching Model 1 (K = 2) 49.6716 (0.0665)

Switching Model 2 (K1 = 2, K» = 2)  45.8414 (0.0845)
Switching Model 2 (K1 = 2, Ko = 3)  33.9585 (0.0928)
No switching —6.2878 (0.0427)

e a local level model with independently Markov switching variances (“switching
model 27):

QU 1t =1, RM, 12 =1,
R FCR SR
an extension of this model, where R; switches between three states;
e and a local level model without switching variances.

In Fig. 1 we perform explorative Bayesian analysis of the MCMC output obtained
from random permutation sampling of these models. We have used M = 1000 simu-
lations after a burn-in of 1500 iterations. For a model with a single switching variable
all simulations (QU!, RUNW | = 1,...,L, are projected onto the (@, R)-plane for all
states j = 1,..., K. Similarly, for all models with two switching variables all simulations
QU RUTYD 1 = 1,..., L, are projected onto the (Q, R)-plane for all combinations of
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states j € {1,...,K1} of the first and states j* € {1,..., Ko} of the second switching
variable.

There are a lot of interesting hints in these figures concerning the model selection
issues discussed earlier. For “switching model 1”7 there are two groups, as expected,
and although the model is the wrong one, the simulations show that there is practically
no difference between @ in the first and the second state. This finding would lead to
hypothesize the correct model. If we carry out formal model selection between “switching
model 1”7 and the true model (Table 1), we find that the true model is clearly preferred.
For the model with two switching variables “switching model 2” again there are just two
groups both for two and three states in the observation variance R. This is not what
would be expected, if the selected number of states were correct. If we had two states
in both variances, we would expect four groups in this figure and similarly, six groups,
if one variance has two and the other variance has three different states. The fact that
there are just two groups is a hint that the number of states is too large for both models.
The MCMC output of both models clearly indicates, that there are two states in R and
just one state in Q. Again we would hypothesize the true model from analyzing the
MCMC output of a model which is wrong. If we test all wrong models against the true
one (Table 1), we find that the true model has the largest model likelihood. All model
likelihoods were computed with L = M = 1000 and My = 50 K!. For completeness, we
also report the model likelihood for a model without switching which is much smaller
than the model likelihood for any of the switching models.

After having selected the model, we need an identifiability constraint, if we are
interested in state specific estimation. From Fig. 1 it is clear that the constraint R <
R!? separates the groups. Including this constraint into the constrained permutation
sampler leads to an identified model without label switching.

4.2 Data simulated from a model without switching
Next, we have simulated a time series of length N = 400 from a local level model

without switching:

Ty = Ty—1 + Wi, wy ~ N(0, Q)
Yo =Tt + v, v~ N(O, Ry),

where @; and R; are constant: Q; = 0.001, R; = 0.01. We test this model against the
following alternatives:
e a local level model with jointly switching variances (“switching model 1”):

(@M, RMY, I, =1,
(Qt,Rt) - { (Q[Q],Rm), It — 2;

e and a local level model with independently switching variances (“switching model
27):

_fetn=n p [RU =1,
LT, 1 =2, T RR), 12 =2.

In Fig. 2 we perform explorative Bayesian analysis of the MCMC output obtained
from random permutation sampling of these models, where the simulations are projected
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(a) Switching model 2 (K1 =2, Ko = 2). (b) Switching model 1 (K = 2).

Fig. 2. Explorative Bayesian analysis for simulated data set 2.

Table 2. Formal model selection for simulated data set 2 (standard errors given in parenthesis).

Model log L(y™ | Model)
True Model (No switching) 299.0033 (0.0251)
Switching Model 1 (K = 2) 282.9084 (0.0879)

Switching Model 2 (K; =2, K3 =2)  280.8277 (0.0817)

in the same way as in Fig. 1 (again M = 1000 simulations after a burn-in of 1500
iterations). The simulations from “switching model 2” should show four groups, if both
variances were switching independently, however the only group we see is a clear hint
that this model should be compared with a model without switching which would be the
true one. Similarily, the simulations from “switching model 1”7 seem like coming from
one group. If we compute model likelihoods for all models (Table 2) we find that the true
model, the one without switching, has the highest model likelihood. Again, all model
likelihoods were computed with L = M = 1000 and My = 50 - K.

5. Application to modelling exchange rate data

For further illustration we reanalyze the U.S./U.K. real exchange rate from January
1885 to November 1995, originally published in Grilli and Kaminsky (1991) and reana-
lyzed by Engle and Kim (1999). The real exchange rate is defined as the relative price
of UK. to U.S. producer goods, i.e. U.S./U.K. nominal exchange rate times the U.K.
producer price index divided by the U.S. producer price index. Engle and Kim (1999)
suggested to decompose the log of the real exchange rate y; into a permanent compo-
nent p; and a transitory component ¢; : logy; = p; + ¢;, where p; follows a random walk
process,

pt=pi_1+wae, wae~N(0,03,),
whereas c¢; is assumed to follow an AR(r)-process:
Ct = ¢lct-—1 R (brct—r + We,2, we2 ~ N(Oa J%,t)'

The variance a%’t of the transitory component ¢; is assumed to switch between K states
9}’1 ,...,9}({ according to a Markov switching process I} with transition matrix n!,
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whereas the variance ag,t of the permanent component is assumed to switch between K,

2,1 2,1 . o 1 . .. .
states 67", ..., 0y, according to a Markov switching process I? with transition matrix
2.
n:
2 _ LI 2 _ g2l
(5.1) o1 = 913 y O34 = 913 .

As the model can be reformulated as a dynamic linear model with state vector

Ty = (ph Cty-- s Ct—r+1),

it can be viewed as a special case of the switching Gaussian state space model discussed
in the present paper. Various issues in model selection will be discussed in the context
of this case study:
o Is the (conditional) variance of the permanent and/or the transitory component
really Markov switching?
e How many states do the switching variances exhibit?
e How should we select the order r of the AR(r)-process?

Engle and Kim (1999) selected a model where the (conditional) variance of the
transitory component is determined from a 3-state Markov switching process, the (con-
ditional) variance of permanent component is constant, and the order of the AR-process
is equal to two (i.e. K; = 3,K, =1, r = 2). They adopt this specification by exploring
the posterior distributions without formal Bayesian model selection. In the present paper
the best model will be one where the (conditional) variance of the transitory component
is determined from a four-state Markov switching process, the (conditional) variance of
permanent component is constant, and the order of the AR-process is equal to two (i.e.
Ky = 4,K, =1, r = 2). Our findings will be confirmed by formal Bayesian model
selection.

Our estimation method differs from the one adopted in Engle and Kim (1999) in
various respects. First, we start with estimating unidentified models of various orders
and try to find the “best” one through formal Bayesian model selection. Estimation is
based on random permutation sampling. Within permutation sampling we may sample
all variances 93’1, i =1,...,K;, and 9]2-’1, j =1,..., Ko, at the same time, as they
are conditionally independent, inverted Gamma distributed for an unconstrained model
given (IVN, 13N 2N yN). This is different from Engle and Kim (1999) who impose a
priori an identifiability constraint on the variances and sample the variances in a single
move manner from the constrained posterior.

Second, we do not condition on the first values of the state process, but sample
the whole processes ¢;_,...,¢Co,...,cn and po,...,pn including the starting values by
applying the multi-move sampler of Frithwirth-Schnatter (1994), and initializing the
filtering step with the prior 2o ~ N(Zojo, Pojo), where Zgj0 = (logy; 0---0)" and Fyjo =
Diag(1000 M) where

2 ...
vece(M) = (Iyxr — F2 , @ FS, )71 o010 . FS_ = P10 Pra br ,
0(7‘2—1))(1 I("'-l)x(r—l) 0(7‘—1))(1

and ® is the Kronecker product of two matrices. This choice is based on the suggestion
of DeJong and Chu-Chun-Lin (1994) for combining a vague prior with a stationary prior
for state vectors containing both non-stationary and stationary components. Sampling
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Fig. 3. Explorative Bayesian analysis for a switching model with K; =4, Ko = 2,r = 3.

the AR(r)-parameters is carried out in a similar fashion as in Engle and Kim (1999) from
the regression model ¢; = ¢¢1¢1 + -+ + ct—r @y + (9}11-)0'5 - €4, where g is iid standard
normal. However, as samples of ¢g,...,c1_, are avafilable from our Gibbs sampler, ¢
is running from 1 to N rather than from r + 2 to N. Within one iteration, sampling
@1, ...,¢r is repeated until the stationarity condition on the AR(r)-process is fulfilled.

Estimation is based on the symmetric priors 03’1 ~ 1G(3,8), 7 = 1,...,Kq, and
9]2-’1 ~1G(3,2), j = 1,...,K,. The prior for all conditional transition probabilities 7},
and 77 is chosen to be D(1,...,1).

We start with explorative Bayesian analysis of a model with K; =4,K5 =2 andr =
3. Although this model is not identified, a lot of interesting information is available from
the MCMC output of the random permutation sampler. Part (a) and (b) of Fig. 3, for
instance, show a scatter plot of (stationary) MCMC simulations (8)"7)(™) versus (n})(™
and (9]2-‘1)("‘) Versus (n]?j)(m) for all possible states : € {1,..., Ky} and j € {1,..., K2},
respectively. For I} we have allowed for four states and there are actually four distinct
groups; for I?, however, we have allowed for two states, and there are no separate groups.
This provides empirical evidence in favour of a homogeneous rather than a switching
variance of the permanent component. This hypothesis is further supported by part (c)
of the figure where (7)™ is plotted versus (9]2’1 ){™) for all possible combinations (i, 7)
of states. Finally, part (d) of the same figure plots the posterior of the AR-parameter ¢s3
which may be estimated directly from the output of the random permutation sampler
as ¢3 is state independent. The mode of the posterior is close to 0 providing evidence
for the hypothesis that ¢3 is equal to zero. To sum up, from our explorative analysis
we obtain evidence in favour of a model with K; = 4, K5 = 1 and r = 2 rather than
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Table 3. Formal model selection for exchange rate data.

(Standard error given in parenthesis).
Model log L(y™ | Model)
Ki=4,Ko=2r=3 —2562.4 (0.217)
Ki=4 Ky=1r=2 —2515.5 (0.083)

Ki=4Ko=1r=1 —2612.5 (0.124)
Ki=3Ky=1r=2 —2605.9 (0.076)
Ki=5Ky=1r=2 —2880.2 (0.120)

No switching, 7 = 2 —2914.4 (0.081)
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Fig. 4. Explorative Bayesian analysis for a switching model with K; =4,Ks = 1,7 = 2.

K1=4,K2=2and7‘=3.

In Table 3 both models are compared by formal Bayesian model selection, showing
a much higher model likelihood for the simpler model. Explorative Bayesian analysis
of the new model is reported in Fig. 4. The scatter plot of (4}"")(™ versus (n)(™
for all possible states ¢ € {1,...,K;} still shows four groups. The posterior of ¢o is
shifted away from 0, but there is some evidence for the hypothesis that ¢, actually is
0. The model likelihood of the model with K; = 4, Ko = 1 and r = 1 reported in
Table 3, however, clearly favours the model with K; = 4, Ko =1 and r = 2 which is our
final choice. This model differs from the one selected in Engle and Kim (1999) by the
number of states of the variance of the transitory component. The model likelihoods in
Table 3 clearly favour our “best” model rather than the one selected by Engle and Kim
(1999). Increasing the number of states from four to five, however, reduces the model
likelihood drastically. For completeness, we report the model likelihood for a model
without switching, showing that this model is the most unlikely of all. Computation of
all model likelihoods reported in Table 3 is based on the random permutation sampler.

We can draw further interesting inference from the output of the random permu-
tation sampler without the need to identify the model. This is especially true for the
smoothed permanent component p;y which is compared in Fig. 5 with the observed time
series. Our estimate of the permanent component is much smoother than the rather noisy
estimate published in Engle and Kim (1999), being nearly constant till the end of the
fifties and increasing afterwards. Another interesting picture is obtained, if we plot the
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Fig. 6. Estimated time varying variance &%,t for a four state model (K3 =4, Ko =1, r=2).

time varying variance o7, estimated from (5.1) by

1 M

5 2 @)™

m=1

A2
01t =

where s = (I1){™) over time ¢ (Fig. 6).

To draw state specific inference on the variances of the different states as well as
to obtain the smoothed posterior state probabilities, however, we have to identify the
model. For comparison, we will identify both the “best” model and the three state model
selected by Engle and Kim (1999). An identifiability constraint for the “best” model is
obvious from Fig. 4. The main difference between the states is the associated variance
of the transitory component leading to the constraint 9%’1 <0y < Hé’f < 0»1’1. If this
constraint is included into the permutation sampler under identifiability constraints, no
label switching occurs. Table 4 reports point estimates as well as 95%-H.P.D.-regions
for all model parameters, including estimates of the state specific variances as well as
estimates of the transition probabilities. Similarily, the identifiability constraint for the
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Table 4. Estimation results for K3 =4, Ko = 1,7 = 2.

Parameter Mean Std.dev. 95%-H.P.D. regions

of 0.634 0.151 0.371 0.93

6% 2.05 0.196 1.67 2.42

6% 7.63 1.07 5.9 9.88

6} 36.4 9.13 20.7 53.9

o2 0.366 0.132 0.121 0.608
é1 1.06 0.0474 0.967 1.14

2 -0.0729 0.046 -0.158 0.0139
N1 0.968 0.0132 0.943 0.991
2 0.0091  0.00861 2.84e-006  0.0256
3 0.00639  0.00586  2.87¢-006 0.0189
N14 0.0162  0.00987  0.000231  0.0341
n21 0.00855 0.00576  0.000165  0.0205
22 0.973  0.00853 0.957 0.988
723 0.00587  0.0057  6.19e-006 0.0155
724 0.0123  0.00697  0.000484  0.0246
731 0.00498  0.00489  1.24e-005 0.0144
732 0.0139 0.0123  9.59e¢-006  0.0373
733 0.956 0.0222 0.916 0.992
734 0.0248  0.0161 0.00129  0.0562
N41 0.039 0.0338  0.000159  0.103
a2 0.147 0.0691 0.024 0.288
743 0.123 0.0934 0.00108 0.309
44 0.691 0.116 0.438 0.865

three state model is given by: 9}’1 < 95’1 < 9:1,,’1.

Figure 7 plots the estimated smoothed posterior state probabilities Pr(I} =i | y™)
of being in a certain state i € {1,2,3,4} over time ¢, for a four state switching model,
and compares them with the probabilities obtained from the three state model. The
probabilities Pr(I} =i | yV), i =1,...,K; are estimated from the constrained MCMC
output by:

Br(l} = i|y") = A#{I)™ =i},

For the three state model Engle and Kim (1999) found that periods with low-state
variance correspond to periods in which the nominal exchange rate was fixed, whereas
periods with medium-state variance correspond to periods of floating nominal exchange
rates. Periods of high-state variance are rather singular events and can be identified
with specific historical events. It is interesting to observe that for the four state model
the third and the fourth state actually correspond to the second and the third state of
the three state model, whereas the first two states are a further split of the low variance
state of the three state model. The most quiet state occured during the first half of the
forties and then from about 1952 to the end of the seventies.
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Fig. 7. Smoothed probabilities.
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