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Abstract. We present a unified semiparametric Bayesian approach based on Markov
random field priors for analyzing the dependence of multicategorical response vari-
ables on time, space and further covariates. The general model extends dynamic,
or state space, models for categorical time series and longitudinal data by including
spatial effects as well as nonlinear effects of metrical covariates in flexible semipara-
metric form. Trend and seasonal components, different types of covariates and spatial
effects are all treated within the same general framework by assigning appropriate
priors with different forms and degrees of smoothness. Inference is fully Bayesian
and uses MCMC techniques for posterior analysis. The approach in this paper is
based on latent semiparametric utility models and is particularly useful for probit
models. The methods are illustrated by applications to unemployment data and a
forest damage survey.
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1. Introduction

Multicategorical longitudinal data consist of observations (Yi,zi), 1 = 1,...,n,
t = 1,...,T, for a population of n units observed across time, where the response
variable Y is observed in ordered or unordered categories r € {1,...,k}. Covariates may

be time-constant or time-varying.

In this paper, we consider multicategorical time-space data, where the spatial loca-
tion or site s on a spatial array {1,...,s,...,S} is given for each unit as an additional
information. We also distinguish between metrical covariates z; = (41, . . ., Ztp)’, whose
effects will be modelled and estimated nonparametrically, and a further vector w; of
covariates, whose effects will be modelled parametrically in usual linear form. Multicat-
egorical time-space data on n individuals or units then consists of observations

(11) (Yit,xit,wit,Si), izl,...,ﬂ, t=1,...,T,

where s; € {1,...,S} is the location of individual 4.

A typical example are monthly register data from the German Employment Office
for the years 1980-1995, where Y;; is the employment status (e.g. unemployed, part time
job, full time job) of individual ¢ during month ¢ and s; is the district in Germany where
i has its domicile. Data from surveys on forest health are a further example: Damage
state Y;; of tree i in year ¢, indicated by the defoliation degree, is measured in ordered
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categories (severe to none) and s; is the site of the tree on a lattice map. In both
examples, covariates can be categorical or continuous, and possibly time-varying.

In general, time-space data of this kind cannot be analyzed adequately with existing
nonparametric or conventional parametric methods. We present a unified semiparamet-
ric Bayesian framework for jointly modelling and analyzing effects of time, space and
different types of covariates on categorical responses. Trend or seasonal components,
spatial effects, metrical covariates with nonlinear effects and usual covariates with fixed
effects are all treated within the same general framework by assigning appropriate priors
with different forms and degrees of smoothness. This broad class of models contains state
space models for categorical time series considered in previous work as a special case,
see e.g. Fahrmeir and Tutz (2001). Inference is fully Bayesian and uses recent MCMC
techniques. The approach is based on latent variables, where the observable categorical
responses are generated through threshold or utility mechanisms. For latent Gaussian
variables this leads to multicategorical probit models, see Albert and Chib (1993) for
the simpler case of linear predictors, and Yau et al. (2000) for nonparametric regression
using basis functions. For MCMC inference, Gaussian latent variables are considered
as unknown additional “parameters” and are generated jointly with the other parame-
ters in a Gibbs sampling scheme. Efficient methods for sampling from high dimensional
Gaussian Markov random fields are incorporated as a major building block.

Section 2 describes our Bayesian semiparametric regression models for categorical
responses, observed across time and space, and depending on unknown functions and
parameters. MCMC algorithms are presented in Section 3. In Section 4, the methods
are applied to reemployment chances based on categorical time-space data on (un-)
employment status and to data from a forest health inventory.

2. Semiparametric Bayesian models for multicategorical time-space data

2.1 Multicategorical response models

Categorical response models may be motivated from the consideration of latent
variables. This is not only useful for construction of models, but also for Bayesian
inference, treating latent variables as additional unknown “parameters”.

For the case of a nominal response Y with unordered categories 1,...,k, let U, be
a latent variable or utility associated with the r-th category. Assume that U, is given by

(2.1) U, =n +€,

where 7, is a linear or semiparametric predictor depending on covariates and parameters,
and €1,. .., € are random errors. Following the principle of random utility the observable
response Y is determined by

(2.2) Y=reU = max Uj,

i=1,....k

i.e., in choice situations the alternative is chosen which has maximal utility. Since only
differences of utilities are identifiable we may set Uy, = 0 for the reference category k. In
the unemployment example, we choose Y = 3 = “unemployed” as the reference category.
Then U; and U, are latent variables associated with the categories full and part time job.
Depending on the distributional assumptions for the error variables €., equation (2.2)
yields different models. If the €’s are i.i.d. normal, one gets the independent probit model.
The more general multivariate probit model allows correlated noise variables. Assuming
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i.i.d. error variables following the extreme value distribution yields the multinomial logit
model. For the case of an ordered response Y, cumulative models based on a threshold
approach are most widely used. It is postulated that Y is a categorized version of a
latent variable

(2.3) U=n+e,

obtained through the threshold mechanism
(24) Y=rs0_,<U<0, r=1,...,k

with thresholds —co =6y < 6; < --- < 8 = co. In the forest damage example, damage
state Y is considered as a three-categorical version of the latent continuous variable
damage U. If the error variable ¢ has distribution function F, it follows that Y obeys a

cumulative model
(2.5) P(Y < 1) = F(6, - n).

With a linear predictor = w'f3 one gets parametric cumulative models. For identifia-
bility reasons, the linear combination does not contain an intercept term [y. Otherwise
one of the thresholds, for example 6y, had to be set to zero. The most popular choices
for F in (2.5) are the logistic and the standard normal distribution function leading to
cumulative logit or probit models.

2.2 Observation model

For multicategorical time-space data (1.1), we generally assume more flexible semi-
parametric predictors. For nominal responses Y;;, the general form of a semiparametric
additive predictor associated with category r is

P
(2'6) Nitr = ftrime(t) + fsrpat(si) + Z f;(xitj) + w;tﬂr'
Jj=1
Here f7;,,. and fg,,, represent possibly nonlinear effects of time and space, f7,. .., f; are
unknown smooth functions of the metrical covariates z1,...,z,, and wj,3, corresponds

to the usual parametric part of the predictor. Note that the latter may also contain a
(category specific) intercept. Depending on the analysed dataset, the effect of time f];, .
may contain only a nonlinear time trend or may be split up into a trend and a seasonal
component, i.e.

ftqjime(t) = ftrrend(t) + f.:eason (t)

In analogy we may split up the spatial effect f7,,, into a spatially correlated (structured)
and an uncorrelated (unstructured) effect

:pat(s) = f;tr(s) + f;nstr(s)'

A rational is that a spatial effect is usually a surrogate of many unobserved influential
factors, some of them may obey a strong spatial structure and others may be present
only locally. By estimating a structured and an unstructured effect we aim at separating
between the two kinds of influential factors. As a side effect we are able to assess to some
extent the amount of spatial dependency in the data by observing which one of the two
effects exceeds. If the unstructured effect exceeds, the spatial dependency is smaller and
vice versa. With the same arguments we could also divide up the time trend f7,.,,(t)
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into a correlated and an uncorrelated component. Such models are common in spatial
epidemiology, see Besag et al. (1991) and Knorr-Held and Besag (1998).

A further extension of (2.6) are varying coefficient models, where nonlinear terms
fi (zitj) are generalized to f7 (Zitj)zit;, where z; may be a component of z or w or a
further covariate. Covariate z; is called the effect modifier of z; because the effect of z;
varies smoothly over the range of z;. Of course, time ¢ and even the spatial covariate s
are also possible effect modifiers.

For ordered responses Y;; following a cumulative model (2.5), we assume semipara-
metric predictors

P
(27) Nit = ftime(t) + fspat (Si) + Z fJ (‘T‘itj) + w':tﬂ

Jj=1

where the terms have the same interpretation as in (2.6), omitting the category-specific
index 7. Note that the term w’g for fixed effects must not contain an intercept to make
thresholds identifiable.

2.3 Prior model

For Bayesian inference, unknown functions fiime, fopat, fi,-- ., fp, thresholds 8 =
(61,...,0k-1)" and all other parameters are considered as random variables. Categorical
response models are to be understood conditional upon these random variables and have
to be supplemented by appropriate prior distributions. For the “fixed effect” parameters
6 and 8 we assume diffuse priors p(8) « const, p(3) o const. Priors for a time trend fireng
of time t and functions fi, ..., f, of metrical covariates are specified by local smoothness
priors common in state space modelling of structural time series. We illustrate the
approach for the effect of a specific metrical covariate z. Let z(;) < --- <z <--- <
Z(m), denote the m different, ordered observed values of the metrical covariate z. Define
f() = flzw) and let f = (f(1),..., f(l),..., f(m)) denote the corresponding vector
of function evaluations. For equally-spaced values z(;), ..., Z(m) We usually assign first
or second order random walk models

(2.8) fO=f-1)+&I) or fH=2f(1-1)=f(1-2)+£&0)

with Gaussian errors £(I) ~ N(0;72) and diffuse priors f(1) o const, or f(1) and f(2)
const, for initial values, respectively. Both specifications act as smoothness priors that
penalize too rough functions f. The variance 72 controls the degree of smoothness of
f. Of course, local linear trend models or higher order autoregressive priors are also
possible. An example is a time varying seasonal component ficoson Of time ¢t. A flexible
seasonal component with period per can be defined by

per—1

(29) fseason(t) = - Z fseason (t - .7) + g(t)
j=1

and once again diffuse priors for initial values and with errors £(¢) ~ N(0,72,,.0n)-

For non-equally spaced values z(1),...,Z(m), priors have to be modified to account
for nonequal distances §; = () — z(;—1). Random walks of first order are now specified
by

fO = fA-1)+£Q0), &) ~N(0,67%),
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and random walks of second order by

£0) = (1 n 5%) FU-1)- A= +E0, €0 ~ NO W)

wgth appropriate weights ;. Based on Fahrmeir and Lang (2001) we choose v, = §;(1 +
L
B

All these priors can equivalently be rewritten in form of a global smoothness prior

1
2.10 2 ——f
(2.10) P17 ocens (~ 5K ).
with appropriate penalty matrix K. For example,

1 -1
-1 2 -1

-1 2-1
-1 1
in the simple case of a first order random walk and equidistant observations.

Let us now turn our attention to a spatial covariate s, where the values of s represent
the location or site in geographical regions. For the spatially correlated effect fgu-(s),
s=1,...,8, we choose Markov random field priors common in spatial statistics (Besag
et al. 1991). These priors reflect spatial neighbourhood relationships. For geographical
data one usually assumes that two sites or regions s; and s; are neighbours if they share
a common boundary. Then a spatial extension of random walk models leads to the
conditional, spatially autoregressive specification

1 T2t
Z T\f;fstr(u)v &:) )

UED;

(2'11) fst'r(s) ! fst'r(u)v U 7‘4_ s~ N (

where N, is the number of adjacent regions, and u € J; denotes that region u is a
neighbour of region s. Thus the (conditional) mean of fs,(s) is an average of function
evaluations fs(u) of neighbouring regions. Again the variance 72, controls the degree
of smoothness. This prior will be used in our first application on durations of unemploy-
ment. In some applications, as in our second example on forest damage data, a more
general prior specification seems to be more appropriate. In this application we assume
that two sites s; and s; are neighbours if they are within a certain distance, d say. In
addition, we assume that the conditional mean of fsr(s) is now a weighted average of
function evaluations fs;(u) of neighbouring sites rather than an unweighted average as
in (2.11). The weights are chosen to be proportional to the distance of neighbouring
sites to site s. In terms of weights ws, a general spatial prior can be defined as

Wsy, 7.52"
(212) fst'r(s) Ifstr(u)a U¢SNN<Z w fstr(u)v E) )

ueas s+

where + denotes summation over the missing subscript. In the forest damage application
the weights are set to wg, = cexp(—d(s,u)) where d is the Euclidian distance between
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sites s and u. The normalizing constant ¢ is chosen in such a way that the total sum of
weights is equal to the total number of neighbours, which is in analogy to (2.11). Note
that the spatial prior (2.11) is a special case of (2.12) with weights ws, = 1.

As for autoregressive priors, (2.12) can be written in the form (2.10), where the
elements of the penalty matrix K are given by kss = wsy and kgy = —wg, if u and s are
neighbours and otherwise zero.

As mentioned before, we may split up the effect of a spatial covariate into a struc-
tured (spatially correlated) and an unstructured (uncorrelated) effect. For an unstruc-
tured effect f,,s:r acommon assumption is that the parameters fupse(s) are i.i.d. Gaus-
sian
(2.13) funstr(8) | Tgnstr ~ N(O’Tgnstr)'

Note that we are not restricted to an unstructured effect only for the spatial covariate
s. An unstructured effect for time ¢, or with respect to any other grouping variable, is
also possible (and already supported in our implementation).

2.4 Hyperpriors
For a fully Bayesian analysis, variance or smoothness parameters TJ?, i=1,...,p
j = trend, season, j = str,unstr, are also considered as unknown and estimated simul-
taneously together with corresponding unknown functions f;. Therefore, hyperpriors are
assigned to them in a second stage of the hierarchy by highly dispersed inverse gamma
distributions p(TJ?) ~ IG(aj,b;) with known hyperparameters a; and b;. It turns out that
the simultaneous estimation of smooth functions and smoothing parameters is a great
advantage of our Bayesian modelling approach. In a frequentist approach smoothing pa-
rameters are usually chosen by minimizing some goodness of fit criteria (e.g. AIC) with
respect to the smoothing parameters, or via cross validation, see, for example Fahrmeir
and Tutz ((2001), Chapter 5). However, if the model contains many nonparametric
effects as in the applications of this paper, a multidimensional grid search is required
which becomes totally impractical for higher dimensions. This problem gets even worse
in multicategorical response models.
The Bayesian model is completed by the following conditional independence as-
sumptions:
(i) For given covariates and parameters observations Y;; are conditionally independent.
(i1) Priors for function evaluations, fixed effects parameters and for variances are all
mutually independent.

3. Posterior analysis via MCMC

In the following f denotes the vector of all function evaluations including trend
and seasonal components of time ¢ and structured and unstructured spatial effects, 7
is the vector of all variances, v = f for nominal and v = (,0) for ordinal models.
For a nominal logit model or a cumulative logit model, the contribution of Y;; to the
likelihood p(Y | f,) of the data given the parameters can be easily calculated. Bayesian
inference can then be based on the posterior p(f, 7,7 |Y) o< p(Y | £f,7)p(f | 7)p(7)p(¥).
MCMC simulation is based on drawings from full conditionals of single parameters or
blocks of parameters, given the rest and the data. Single moves update each parameter
separately. Convergence and mixing is considerably improved by block moves for the
vectors f; = (..., f;(1),...)" of function evaluations, using Metropolis-Hastings (MH)
steps with conditional prior proposals as suggested by Knorr-Held (1999). Details of the
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updating schemes are described in Fahrmeir and Lang (2001) for univariate responses,
and can easily be extended to multicategorical responses, see Fahrmeir and Lang (2000).

Useful alternative sampling schemes can be developed on the basis of the latent
variable mechanisms (2.2) and (2.4), augmenting the observables Y;; by corresponding
latent variables Ussr = nigr + €i¢r O Uir = M + €54, respectively, with semiparametric
predictors as in (2.6) or (2.7). Assuming Gaussian errors, we obtain multicategorical
probit models with latent semiparametric Gaussian models. Posterior analysis is now
based on

p(f,7, U Y) ocp(Y | U)p(U | f,m)p(f | T)p(T)R(7),
with p(Y | U) = [[p(Yit | Uit), where Uyt = (Uss1, ..., Usg)' for nominal responses. The
it

conditional likelihood p(Y;; | Ui:) is determined by the mechanisms (2.2) or (2.4). For a
nominal response, we have

k
(3.1) p(Yie | Use) = Zl(maX(Uitl) oy Uik) = U ) I(Yie = 7).

r=1

For a cumulative model, we get

k
(3.2) p(Yie | Uie) = Y 101 < U < 6,)I(Yie = 1),

r=1

due to the fact that p(Y;: | Ui:) is one if U;; obeys the constraint imposed by the ob-
served value of Y;;. Compared to the direct sampling scheme above, additional drawings
from full conditionals for the latent variables U;; are necessary. As an advantage, full
conditionals for functions and fixed effects parameters become Gaussian, allowing com-
putationally efficient Gibbs sampling. The full conditionals for U;; are:

(3:3) p(Uis | £,7,Yie) o< p(Yie | Ust)p(Ust | £,7)-

Since latent variables U;; have (conditional) Gaussian distributions with means 7;; and
unit variances, their full conditionals are truncated normals, with truncation points
determined by the restrictions (3.1) and (3.2).

To derive full conditionals for functions f; and fixed effects parameters 3 it is conve-
nient to rewrite the predictors (2.6) and (2.7) in matrix notation. For example for (2.7)
we obtain

|4
(3.4) N = Xtime ftime + Xspatfspat + ZXjfj +Wg.
J=1

Here the X; are 0/1 matrices where the number of columns is equal to the number of
parameters of the respective effect. If for observation 4,t the value of covariate z; (or
time t or site s) is I, then the element in the 7, ¢-th row and the I-th column is one, zero
otherwise. Now standard calculations show that the full conditional for a function f; is
Gaussian with covariance matrix and mean given by

-1
_ 1 R
(3.5) 5 =Pl = (X;Xj + ﬁKJ) . by =S XNU - 7).

7
J
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Here 7j is the part of the predictor associated with all remaining effects in the model.
Since X ! X; is diagonal and the penalty matrix Kj; is a bandmatrix (e.g. with bandwidth
two for a second order random walk) it follows that: the posterior precision P; is also a
bandmatrix with the same bandwith. Following Rue (2000), drawing random numbers
from the full conditionals for f; is as follows:

(i) Compute the Cholesky decomposition P; = LL'.

(ii) Solve L'f; = z, where z is a vector of 1ndependent standard Gaussians. It follows
that f; ~ N(0,%;).

(iii) Compute the mean p; by solving Pju; = X;(U — 7). This is achieved by first
solving by forward substitution Lv = X (U — 77) followed by backward substitution
L'p; =v.

(iv) Set f; = fj + uj, then f; ~ N(u;, ;).

All algorithms involved take advantage of the bandmatrix structure of the posterior
precision P;.

Finally, the full conditionals for fixed effects parameters § with diffuse priors are
Gaussian with mean and covariance matrix given by

(3.6) poeta = (WW) W' (U ~7),  Tpeta = (WW)™L.

We can now summarize the resulting sampling schemes. For a cumulative probit model,
a Gibbs sampling scheme is defined by the following steps.

Sampling scheme 1.
(i) The latent variables Uy, @ = 1,...,n, t = 1,...,T are sampled as follows. If
Y;; = r, then Uy, is generated from N (7, 1), with mean 7;; as in (2.7), evaluated
at current values of f; and 3, subject to the constraint 6,1 < Uyz < 6.
(ii) Following Albert and Chib (1993), the full conditional for threshold 6., r =
1,...,k — 1 is uniform on the interval

[max{U;; : Yie = r},min{U; : Vie =7+ 1}].

Posterior samples from these uniform distribution may exhibit bad mixing. A
reason is that intervals can become quite small and, as a consequence, the chain
moves slowly. In such a case, other parametrizations as suggested for example in
Chen and Dey (2000) are a possible alternative. For k = 3 such a reparametrization
becomes particularly convenient, see Section 4 or our application to forest damage
in Section 5.

(iii) Function evaluations f; are generated from Gaussian full conditionals p(f; | U,-)
with covariance matrix and mean in (3.5), using the algorithms for bandmatrices
described above.

(iv) Samples for variances 7'32 are generated from inverse Gamma posteriors with up-

dated parameters aj = a; + m—nk(ﬁ’—)- and b; = b; + %fj’-Kjfj.
(v) Samples for fixed effects 3 are drawn from Gaussian full conditionals with mean
and covariance matrix in (3.6).

For nominal response, we choose k as the reference category. Since only differences
of utilities can be identified (see Section 3.2), we set the latent variable Uz to zero.
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Fig. 1. True time trend (solid line) and average posterior mean estimates (dashed line).

Sampling scheme 2.

(i) Setting Uy = 0, latent variables Ui, 7 = 1,...,k — 1, are generated as follows
for each observation Y;, i =1,...,n, t =1,...,T. If Y;; = r, r # k, then Uy, is
generated first from a normal distribution with mean 7;;, and variance 1, subject
to the constraints Uy, > Usy, | # k, and Uy > 0 (= Uj). Next we generate
Uiy for | # r from a normal distribution with mean 7;; and variance 1, subject
to the constraint that Ujy is less than the Uj, generated just before. If Yj; = k

(the reference category), then we generate Uyy,l = 1,...,k — 1, from a normal
distribution with mean 7;;; and variance 1, subject to the constraint U;y < 0.
(ii) Posterior samples for functions fj’ ,7=1,...,k—1 and all other parameters are

generated as in the steps (iii)—(v) of sampling scheme 1.

4. Simulation study

We have analyzed several simulated data sets to see how well our proposed method
works. In particular, we have investigated if the procedure provides a reasonal decom-
position of temporal and spatial components and how sensitive results depend on the
choices of inverse Gamma, hyperpriors for variances of Gaussian priors (2.10) and (2.12).
In the following we present results for a cumulative probit model defined as in (2.3)-(2.5)
with semiparametric predictor

(4-1) it = ftrend(t) + fstr(si) + funstr(si)-

The true trend function was chosen sinusoidal. Evaluations at 15 equidistant time points
are displayed in Fig. 1 (solid line). The true structured spatial component fy,(s) for the
map of West Germany displayed in Fig. 3 a) was constructed from an underlying plane.
Observations fs(s;) for the districts s;, ¢ = 1,...,309 in this map were taken as the
values of the plane at the centroids of the districts. The values fynstr(s;) of the unstruc-
tured spatial component were generated by i.i.d. drawings from a N (0, 0.32) distribution.
Keeping the “true” predictor fixed, realizations of latent time series {U},,t =1,...,15}
were generated for each district ¢ = 1,...,309 from the latent model U}, = m;; + €}, for
[ =1,...,100 simulation runs. Corresponding three-categorical ordered responses vl
were then obtained via the threshold mechanism (2.4) with 6; = —0.5 and 6, = 0.5. To
investigate the sensitivity of the estimates from the respective choice of hyperparameters
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Fig. 2. Sampling paths of thresholds for the first 4000 iterations.
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Fig. 3. Map of the “true” structured spatial effect (left) and average posterior mean estimates
(right).

for the variances estimation was carried out with three alternative settings for a and b,
ie.a=1,b=0.005 a=0.25b=0.005 and a = 0.1, b = 0.005.

We first applied the ordered probit model in standard parametrization. However, in
step (ii) of sampling scheme 2 mixing of posterior samples for thresholds 6; and 6, was
not satisfactory. Fig. 2 displays the sampling paths of the sampled threshold parameters
for the first 4000 iterations. Obviously, the generated Markov chains show extremly bad
mixing properties. Seemingly, the chains are still far away from the equilibrium around
the “true” thresholds #; = —0.5 and 62 = 0.5. Following Chen and Dey (2000), we
therefore reparametrized the model. First, inclusion of a constant By in (4.1) allows
to set 7 = 0. Secondly, because parameters in the predictor of the latent Gaussian
model are only identifiable up to a multiplicative factor, we assume that errors ¢;; are
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Fig. 4. Relative MSE’s for the time trend and the structured spatial component.

N(0, 0?) distributed with unknown variance o2. This allows us to set §; = 1. For o?
we specify an inverse gamma prior, leading to posterior samples from an inverse gamma
full conditional. The following results are given in the original parametrization which
is obtained by simply dividing sampled parameters in MCMC simulation through the
current value of the standard deviation o.

Figure 1 (dashed line) shows the average fiime(t) = S229 Flime(t) of the 100 pos-
terior mean estimates for the values f(t), t = 1,...,15 of the true trend function. It is
seen that the true function is estimated almost unbiased. The figure shows only estima-
tion results for the choice of ¢ = 1 and b = 0.005 for the hyperparameters of variances
because results for the three alternative choices of hyperparameters are more or less in-
distinguishable. Similarly, Fig. 3 b) shows the average fs;,(s) of the 100 posterior mean
estimates of the true map fs-(s) (a = 1,b = 0.005). Although, there is more bias than
for the trend component, the map is well recovered. It is however not too surprising that
we get more bias for the spatial effect since the number of observations per district is far
less compared to the number of observations per time point. Another important aspect
is that the smooth component is considerably masked by the superimposed unstructured
spatial effect. We found out that the bias becomes smaller if the variability of the un-
structured effect is less than in the present simulation experiment, particularly if the
unstructured effect is omitted. Similarly to the time trend, the differences between the
estimated maps for different choices of a and b are more or less neglegible. We therefore
printed only results for a = 1 and b = 0.005. The robustness with respect to the choice
of hyperparameters can also be seen in Fig. 4 which displays boxplots of the relative

MSE’s

15 ¢ 309 , 2 .
(ftrend - ftrend(t))2 (fstr - fstr(z))2
D 3 O D Dy W

for the three choices of hyperparameters. Finally we note that the estimates for the
variance component of the unstructured spatial effect are slightly biased. The average
of the 100 posterior means of 72, is 0.26 whereas the true variance is 0.32.

A more detailed simulation study including the case of unordered response can be
found in a supplement paper (Lang and Fahrmeir (2001)).

5. Applications

We consider two applications. In a first application on unemployment durations
we analyse unemployment data from the German Federal Employment Office. This is a
huge dataset with approximately 280000 observations showing the practicability of our
methods even for very large datasets. In a second application, we analyse longitudinal
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data on forest health collected in the forest district of Rothenbuch in northern Bavaria.
All computations have been carried out with BayesX, a software package for Bayesian
inference. The program is available under http://www.stat .uni-muenchen.de/~lang/,
see also Lang and Brezger (2000).

5.1 Reemployment chances

In our first application we analyse monthly unemployment data from the German
Federal Employment Office for the years 1980-1995. Our analysis is restricted to data
from former West Germany (excluding Berlin) and to women. For each individual the
data provides information about the employment status in month ¢, the district where
the individual lives and a number of personal characteristics. Since we are interested
in analyzing reemployment chances, distinguishing between full and part time jobs, we
define three-categorical response variables Y;; as event indicators

1, gets a new full time job in month ¢ (calendar time)
Yi: = { 2, gets a new part time job in month ¢
3, i is unemployed in month ¢t (reference category).

Our analysis is based on the following covariates:

D  duration time measured in months

A age (in years) at the beginning of unemployment

N nationality, dichotomous with categories “German” and “foreigner” (= reference
category)

U; unemployment compensation (in month d of duration time), dichotomous with
categories “unemployment benefit” (=reference category) and “unemployment
assistance”

P, number of previous unemployment periods (in month ¢ of calendar time): 1,2,3
and more, 0 (reference category)

E  education, trichotomous with categories “no vocational training
training” (reference category) and university

S district in which the unemployed have their domicil

All categorical covariates are coded in effect coding.
We model the probabilities P(Y;; = r | i), 7 = 1,2, by an independent probit
model with predictors

” “yocational

Nitr = ftrrend(t) + fsreason(t) + f.:tr(si) + f:;nstr(si) + f{(dlt) + f;(ait) + w;tﬂﬂ
r=1,2,

where f] ., and fI.. ... are trend and seasonal component of calendar time ¢, fJ;. and
fr st are structured and unstructured spatial effects of the district, f is the effect of
duration D in current unemployment status and f5 is the effect of age A. The priors
for fl..na» fI and f3 are second order random walk models (2.8) with diffuse priors
for initial values. For fT,. and f7 .., we assign the Markov random field prior (2.11)
and the prior (2.13), respectively. For the seasonal component we choose the flexible
seasonal prior (2.9). Priors for fixed effects parameters 3, are diffuse. An analysis with
similar predictors using a multinomial logit model and with direct drawings from full

conditionals can be found in Fahrmeir and Lang (2000).
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Fig. 5. Estimated nonparametric effects of duration and calendar time. Shown is the posterior
mean within 80 % credible regions.

Figure 5 displays estimated effects of duration time, calendar time trend and sea-
sonal component for getting full time jobs (left column) and part time jobs (right col-
umn). Duration time effects have the typical pattern also observed in other investiga-
tions, with a peak after 2-3 months and sloping downward then. Calendar time trends
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a) full time: age effect b) part time: age effect
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Fig. 6. Estimated nonparametric effects of age. Shown is the posterior mean within 80 %
credible regions.
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Fig. 7. Posterior mean of the structured spatial effects.

for full and part time jobs show a similar general pattern: declining until the year 1982,
then slowly increasing until 1990 (one year after the German reunion), declining dis-
tinctly again thereafter, with an intermediate recovery. This corresponds to the observed
economic trend of the labor market in Germany during this period. Initial credible re-
gions are larger here for the following reasons: We use diffuse priors f},.,.4(1) o const,
firend(2) o< const, and there is less information provided by the data, since there are
comparably few unemployment periods ending already at the beginning of the observa-
tion period. Estimated seasonal effects are more or less stable over this period although
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a) full time b) part time

Fig. 8. Posterior probabilities of the structured spatial effects.

varying in size. To gain more insight Fig. 5 f) and g) display a section of the estimated
effects for the year 1992 with the typical peaks in spring and autumn, and a global min-
imum in December. The effect of age can be found in Fig. 6. For the age effect there
are local minima for women about 30, which may be a “family” effect. The dramatic
decline of unemployment probabilities of people older than 50 years is particularly strik-
ing. Again, credible regions near the boundaries are wider because there are much less
individuals below 20 and above 60 years in the sample. The increase after 60 years is
caused by a very small number of individuals in the sample (reemployed about 65 and
66). We observed this effect for age with other methods as well, showing that this is
not a particular problem of our approach. Note that the age effect is much stronger
for women seeking full time jobs (Fig. 6 a)) compared to women seeking part time jobs
(Fig. 6 b)). Structured regional effects are shown in Figs. 7 and 8. Figure 7 displays the
estimated posterior mean and Fig. 8 shows “probability” maps. The levels correspond
to “significantly negative” (black colored), “nonsignificant” (grey colored), i.e. zero is
within the 80% confidence interval around the estimate, and “significantly positive”
(white colored). In order to interpret the structured effects, unstructured effects must
be taken into consideration as well. Therefore Table 1 gives a summary of the estimated
posterior means of the unstructured spatial effect for the different regions. We observe
that the structured effect for getting full time jobs is stronger than for getting part time
jobs. Even more important, the unstructured effect for part time jobs cleary exceeds
the structured effect which is in constrast to the estimated effects for full time jobs.
Although the estimated posterior mean of the structured effect for getting part time
jobs in Fig. 7 b) shows some spatial variation, Fig. 8 b) cleary indicates that there is no
“significant” variation in terms of posterior probabilities. In the contrary, the structured
effect for getting full time jobs displays “significant” variation with improved chances in
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Table 1. Summary of the posterior means of the unstructured spatial effect.

full time  part time

std. dev. 0.0246 0.103
minimum -0.073 —-0.274
10% quantile  —0.0287 -0.120
90% quantile 0.0291 0.134
maximum 0.128 0.501

Table 2. Estimates of constant parameters for the application on duration of unemployment.

full time part time
Variable mean 10% quant 90% quant mean 10% quant 90% quant
German 0.05 0.04 0.06 0.11 0.09 0.13
foreign —0.05 —0.06 -0.04 -0.11 —-0.13 -0.09
unemployment ass. -0.07 —-0.08 —0.06 -—-0.08 -0.10 —-0.07
unemployment ben. 0.07 0.06 0.08 0.08 0.07 0.10
no voc. training -0.03 —0.05 -0.02 -0.10 -0.12 ~0.08
voc. training -0.02 -0.03 -0.01 -0.05 -0.07 —0.035
university 0.05 0.03 0.08 0.15 0.12 0.19
P=0 -0.11 -0.12 -0.10 -0.16 -0.17 -0.14
P=1 —-0.04 -0.05 —-0.02 -0.05 -0.07 -0.03
P=2 0.00 —0.01 0.02 0.01 —0.02 0.03
P>3 0.14 0.13 0.15 0.20 0.18 0.22

the south compared to the middle and the north. The two black spots in the west in
Fig. 8 a) mark areas that are known for their structural economical problems during the
eighties and nineties.

Estimates of fixed effects for getting full and part time jobs are shown in Table 2.
Chances for re-employment are better for Germans and for women with a university
degree compared to women with vocational training and no vocational training. Both
effects are stronger for women getting part time jobs. The number of previous unemploy-
ment periods serves as a surrogate for experience at the labor market: an increase in the
number of previous spells increases the probability for shorter unemployment duration.
The estimated effect of unemployment assistance is significantly negative. It is positive
for unemployment benefits, which seems to contradict the widely-held conjecture about
negative side-effects of unemployment benefits. However, it may be that the variable
“unemployment benefit” also acts as a surrogate variable for those who have worked,
and therefore contributed regularly to the insurance system in the past.

5.2 Forest health

In this longitudinal study on the state of trees, we analyse the influence of calendar
time, age of trees, canopy density and location of the stand on the defoliation degree
of beeches. Data have been collected in yearly forest damage inventories carried out in
the forest district of Rothenbuch in northern Bavaria from 1983 to 1997. There are 80
observation points with occurence of beeches spread over an area extending about 15 km
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Fig. 9. Map of observation points.

from east to west and 10 km from north to south, see Fig. 9. The degree of defoliation
is used as an indicator for the state of a tree. It is measured in three ordered categories,
with Y;; = 1 for “bad” state of tree ¢ in year ¢, Yy = 2 for “medium” and Y;; = 3
for “good”. A detailed data description can be found in Gottlein and Pruscha (1996).
Covariates used here are defined as follows:

A age of tree at the beginning of the study in 1983, measured in three effect coded
categories a; = “below 50 years”, a; = between 50 and 120 years, and a3 =
above 120 years (reference category);

C Canopy density at the stand measured in percentages 0%, 10%,. . .,90%, 100%.

The covariate age is time constant by definition, while canopy density is time vary-
ing. Based on previous analysis, we use a three-categorical ordered probit model (2.5)
based on a latent semiparametric model U;; = ;¢ + €;; with predictor

(5.1) Nit = firend(t) + fotr(si) + f(cit) + Brair + Baaia.

Here a;; and a;o are the indicators for age categories 1 and 2. The calendar time
trend firena(t) and the effect f(c) of canopy density are modelled by random walks of
second order. For the structured spatial effect we assign the Markov random field prior
(2.12), with the neighbourhood 9, of trees including all trees u with Euclidian distance
d(s,u) < 1.2 km. An unstructured spatial effect is excluded from the predictor for the
following two reasons. First, a look at the map of observation points (Fig. 9) reveals
some sites with only one neighbour, making the identification of a structured and an
unstructured effect difficult if not impossible. The second reason is that for each of the
80 sites only 15 observations on the same tree are available with only minor changes of
the response category. In fact, there are only a couple of sites where all three response
categories have been observed. Thus, the inclusion of an unstructured effect in our model
leads to severe identification problems between the structured and unstructured effect,
which can be observed by inspecting sampling paths of parameters.

For interpretation of estimation results note the following: In accordance with our
definitions (2.3) to (2.5), higher (lower) values of the predictor (5.1) (or of effects in this
predictor) correspond to healthier (worse) state of the trees. Similar to the simulation
study we reparametrized the model to obtain better mixing properties for the thresholds
(see Section 4), but results are given in the original parametrization. Estimates for fo
and the effect of age are given in Table 3. As we might have expected younger trees
are in healthier state than the older ones. Fig. 10 shows posterior mean estimates for
the calendar time trend and for the effect of canopy density. We see that trees recover
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Table 3. Estimates of constant parameters in the forest health study.

Variable mean 10% quant. 90% quant.

a1 0.55 0.33 0.78
ag 0.04 -0.14 0.22
a3 —0.59 —0.78 -0.41
a) calendar time b) canopy density
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Fig. 10. Estimated time trend and nonlinear effect of canopy density. Shown is the posterior
mean within 80 % credible regions.
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Fig. 11. Posterior probabilities of the spatial effect.

after the bad years around 1986, but after 1994 health status declines to a lower level
again. The distinct monotonic increase of the effect of canopy densities > 30% gives
evidence that beeches get more shelter from bad environmental influences in stands with
high canopy density. Fig. 11 shows the estimated (structured) spatial effect in form of
posterior probabilities, where black spots indicate areas with strictly negative credible
regions, i.e. areas with more trees in bad state. The black colored sites correspond mostly
to areas in the forest district which are located higher above sea level than the other
sites. Here the environmental conditions in terms of nutrient quantity and soil quality

are worse compared to other areas.
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6. Conclusion

The applications demonstrate that the Bayesian methods developed are useful and
flexible tools for inference in realistically complex categorical regression models.

A variety of extensions are possible by modifying or generalizing the observation
models, predictors and smoothness priors. For example, probit models based on latent
utilities can be extended to correlated categorical or mixed continous-categorical re-
sponses by considering latent multivariate semiparametric Gaussian models. Predictors
can be made more flexible by introducing nonparametric interactions between covariates
following suggestions in Clayton (1996) and Knorr-Held (2000). Replacing Gaussian pri-
ors by heavy-tail distributions would allow to consider unsmooth regression functions.
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