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Abstract. A new distribution called a generalized binomial distribution of order
k is defined and some properties are investigated. A class of enumeration schemes
for success-runs of a specified length including non-overlapping and overlapping enu-
meration schemes is rigorously studied. For each nonnegative integer p less than
the specified length of the runs, an enumeration scheme called p-overlapping way of
counting is dcfined. Let k and ¢ be positive integers satisfying ¢ < k. Based on
independent Bernoulli trials, it is shown that the number of (£ — 1)-overlapping occur-
rences of success-run of length k until the n-th overlapping occurrence of success-run
of length £ follows the generalized binomial distribution of order (k—¢). In particular,
the number of non-overlapping occurrences of success-run of length &k until the n-th
success follows the generalized binomial distribution of order (k—1). The distribution
remains unchanged essentially even if the underlying sequence is changed from the
sequence of independent Bernoulli trials to a dependent sequence such as higher order
Markov dependent trials. A practical example of the generalized binomial distribution
of order k is also given.

Key words and phrases: Binomial distribution of order k&, Markov chain, probability
generating function, stopping time, success-run, waiting time.

1. Introduction

Let X1, Xa,... be {0,1}-valued i.i.d. random variables with P(X; = 1) = p. We
say success and failure for the outcomes “1” and “0”, respectively. For a given positive
integer k, let 7, be the waiting time (number of trials) until the first occurrence of
a success-run of length k in X3, Xs,.... The distribution of 74 is called a geometric
distribution of order k£ and denoted by Gi(p). We also denote by Gk(p,a) the shifted
geometric distribution of order k£ so that its support begins with a. The distribution
has a very long history (cf. Johnson et al. (1992)) and it has been investigated by many
authors (Philippou et al. (1983), Aki and Hirano (1994, 1995)) especially since 1980’s.
It has also many applications such as start-up demonstration tests, the reliability of
engineering consecutive systems (Hahn and Gage (1983), Chao et al. (1995), Hirano
(1994), Viveros and Balakrishnan (1993) and Balakrishnan et al. (1997))

Among some properties of the geometric distribution of order k, the following prop-
erty is very interesting: If ¢ is a positive integer less than k, the distribution of the
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number of overlapping success-runs of length £ until 7 is also the shifted geometric dis-
tribution of order (k—#), Gx—¢(p, k—£+1) (cf. Aki and Hirano (1994)). When we extend
the study from based on an i.i.d. sequence to based on a dependent sequence, the cor-
responding waiting time distribution becomes complicated. However, surprisingly, the
distribution of the number of overlapping success-runs of length ¢ until the first occur-
rence of a success-run of length k is essentially unchanged even if the underlying sequence
X1, Xa,... is changed to a sequence of dependent trials such as Markov dependent or
higher order Markov dependent trials (cf. Aki and Hirano (1994, 1995) and Hirano et al.
(1997)). To be precise, the following statement holds. Let X_,,41, X_m42,. -, X0, X1,
Xa,... be {0,1}-valued m-th order Markov chain with .

7T:B1,...,xm = P(X_m+1 =T, X_m+2 =ZT2y... ,Xo = xm)
Paryyam = P(Xi = 1| Xicmn = 21, Xicmg1 = 22, .., Xic1 = Trm)

for z1,...,2m = 0,1 and ¢ = 1,2,.... Then, if m < ¢ < k, the distribution of the
number of overlapping occurrences of success-runs of length ¢ until the first occurrence
of the success-run of length k in X7, Xo, ... is the shifted geometric distribution of order
(k=9), Ge—e(pr11,..1,k —£+1).

In the present paper, we shall study the distribution of the number of success-runs
of length k& until the n th overlapping occurrcnce of the succcss-run of length ¢, while
in the above case the distribution of the number of overlapping success-runs of length ¢
until the first occurrence of the success-run of length k is studied. In the problem the
generalized binomial distribution of order & to be defined in Section 2 plays an important
role like the geometric distribution of order & in the above case.

In order to obtain the corresponding distributional results, how to enumerate suc-
cess-runs is also very important. We give here the definition of enumeration scheme for
success-runs.

DEFINITION 1.1. Suppose we are given a {0,1}-valued sequence of finite length.
Success-runs of length & are assumed to be enumerated along the sequence in order. For a
nonnegative integer u less than &, the u-overlapping number of success-runs of length & is
the number of success-runs each of which may have overlapping part of length at most u
with the previous success-run of length k& that has been enumerated. Then 0-overlapping
and (k — 1)-overlapping numbers of success-runs of length k& mean non-overlapping and
overlapping numbers of success-runs of length k, respectively.

For example, let us enumerate the number of success-runs of length 3 in the se-
quence SSSSFSSSSSSSFE. By the non-overlapping way of enumeration, the sequence
(8SS)SF(S8SS)(8SS)SF contains 3 (0-overlapping) success-runs of length 3. By the
overlapping way of enumeration, the sequence (S[SS)S]F(S[S{S)(S][S}S)S]F contains
7 (2-overlapping) success-runs of length 3. The 1-overlapping number of success-runs of
length 3 in the sequence (SSS)SF(SS[S)S{S|SS}F is 4.

We shall show in Section 3 that the distribution of the number of (£—1)-overlapping
occurrences of success-run of length &k until the n-th overlapping occurrence of success-
run of length ¢ is a generalized binomial distribution of order (k—#¢). A practical example
of the generalized binomial distribution of order k is given in Remark 3.2 of Section 3.
Similarly as we stated above on the geometric distribution of order k, the distribution
remains unchanged essentially even if we change the underlying sequence of {0, 1}-valued
i.i.d. random variables to a dependent sequence such as higher order Markov chain. This
property will be rigorously stated and proved in Section 4.
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The main tool for deriving the results in this paper is the so-called method of
conditional probability generating functions. However, the method is used here by con-
ditioning with some stopping time rules. A little advanced use like this is explained
generally in the Appendix.

2. Definition of a new distribution and its p.g.f.

Let a, k, and n be arbitrarily fixed positive integers. Let X;, Xs,... be a sequence
of {0, 1}-valued i.i.d. random variables with P(X; = 1) = p=1—q. We call X; the i-th
trial. At each trial, we define the score of the ¢-th trial by

s(i) = { a  if a non-overlapping 1-run of length k& is observed at the i-th trial,

1  otherwise.

For example, when k£ = 3, in the sequence 1111011111110, we have s(1) = s(2) = 1,
s(3) =a,s(4) =--- =3s(7) =1, s(8) = a, s(9) = s(10) = 1, s(11) = q, s(12) = s(13) = 1.

DEeFINITION 2.1. A distribution is called a generalized binomial distribution of
order k, to be denoted by Bg(n,p,a), if it is the distribution of the number of non-
overlapping success-runs of length & while the snm of the scores is less than or equal to
n.

Remark 2.1. When a = 1, the generalized binomial distribition of order k& is the
usual binomial distribution of order k£ with probability function

Z Z I+ -+t n g Trtotan
Ty -y Tk T P p

m=0x1,.

for z =0,1,...,[n/k] where the inner summation is over zy, ...,z such that z; + 2z, +

-+ kxy = n—m — kz (cf. e.g. Hirano (1986) and Philippou and Makri (1986)) since
the sum of the scores becomes the number of trials in this case. As we shall see later,
By(n,p,2) is very important in our problems. The binomial distribution of order k is
generalized and there are alternative binomial distributions of order k (cf. e.g. Aki (1985),
Ling (1988), Johnson et al. (1992) and Balasubramanian et al. (1995)). However, the
generalized binomial distributions of order k£ with a # 1 in this section are new discrete
distributions.

In the following propositions we derive the recurrence relations and the probability
generating functions (p.g.f.’s) of Bi(n,p, a).

PROPOSITION 2.1. Let ¢n(t) be the p.g.f. of Br(n,p,a). Then,

if n<k4+a-1, then ¢,(t)=1.
If n=k+a-1, then ¢,(t) =p*t+ (1 -p").
If n>k+4+a-1, then
bn(t) = qbn-1(t) + padn_2(t) + - - + P* T qbn_k(t) + P*tdn_k—as1(t).

ProoOF. If n < k+ a— 1, then a success-run of length k£ can not occur. If n =
k +a — 1, then only the case that X; = Xy = --- = X} = 1 is possible for occurrence
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of a success-run of length k, and hence ¢, (t) = p*t + (1 — p*). When n > k+a~ 1, by
considering the location of the first occurrence of “0”, we obtain

Gn(t) = qdn_1(t) + padn—a(t) + - + P" i (t) + P*tdn_t—as1(t).
This completes the proof. O

PROPOSITION 2.2. The p.g.f. of Bi(n,p,a) is given by

k-1
ny+n2+ -+ Ngy
dalt) = D >
_ _ n1,M2,- .-, NE+1
m=0n; +2na+ --+knk+(k+a—1)nrgs1=n-m

nytAng o net2ng 4 (k—Dng+kng +mynk

xq p
kta—2
pc <n1+n2+--'+nk+1>

i,y 2
m=k .ny+2n2+ - +kng+(k+a—1)ngp1=n-m
ny +--.+nkpng+2n3+...+(k—1)nk+knk+1+ktnk+l .

Ny, N2, -y N4

xX4q

PrOOF. We define ®(2) = Y o0 #n(t)2z™ and U(j) = leo ¢n(t)2™. Then, from
Proposition 2.1 we obtain

®(2) = qz2(®(2) —U(k +a—2)) + pgz*(®(2) ~U(k +a—3)) +---
+ 12" (8(2) — Ula — 1)) + pFtzo=1(&(2) - U(0)) + U(k +a—1)
=(gz+pgz® +--- + pF1g2" +pktzk+“_1)¢>(z)

+14pz+pP2? - +phlzk-ly fla,2),

where E k | ok k+1 k_k+a—2

a- >
f(a,z):{pz +p 2T+ 4+ P2 (a >2)
0 (a=1).

Therefore, we have

B(a) = 1+pz+p222 4+ +pF 1281 4 f(a,2)
(2) = 1— gz — pgz? — - — ph1gsF — pht kta—1"

If |2 < 1 and |t| < 1, then Ianzlp’”‘lqzm + pFtz¥+a=1| < 1. Then, by expanding the
above equation we obtain the desired result. O

3. Numbers of success-runs until some stopping time rules

In this section, we consider the distributions of the numbers of non-overlapping
occurrences of success-run of length k until some stopping time rules in a sequence of
{0,1}-valued random variables.

For the moment, let X, Xo,... be i.i.d. random variables with P(X; = 1) =p =
1-g=1-P(X; =0). Let n be a positive integer. Let 7 be the waiting time of the
n~-th “1” in Xl, XQ, .

Then, we obtain the following proposition.
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PROPOSITION 3.1. The distribution of the number of non-overlapping occurrences
of success-run of length k until T is a generalized binomial distribution of order (k — 1),

Bk—l (na b, 2)

PROOF. We denote by ¢, (t) the p.g.f. of the distribution of the number of non-
overlapping occurrences of success -run of length k until 7. Suppose we have currently
success-run of length ¢. Then, ¢ ( ) denotes the p.g.f. of the conditional distribution
of the number of non-overlapping occurrences of success-run of length k from this time
until we observe the m-th “1” after this time.

If n < k then ¢, (t) = 1, since a success-run of length k can not be observed until 7.

If n = k then ¢, (t) = p*~'t + (1 — p*~1), since in this case a success-run of length
k can be obseved only just after a failure-run of nonnegative length which begins from
X1

Suppose that n > k. Then ¢,(t) = ¢>§}_)1(t) holds, since the first “1” necessarily
occurs before the occurrence of the n-th “17.

Suppose we have currently success-run of length £. If the next outcome is “17, then
the current length of success-run becomes (¢ + 1). If the next outcome is “0”, then the
current length of success-run becomes zero. However, the next “1” necessarily occurs if
the observed number of “1”’s is less than n. Hence, we obtain

P02 (1) = oS () + adll (1)
¢<” () = pe () + a5 (1)
(3.1)
'Ezk k2-)+2(t) = P¢£Lk kl-{)-l( t) + Q¢1(7,1)k+1( t)

L ¢%20,(6) = ptd® () + gl (8).

From (3.1), we have

B4 (8) = adl) o (t) + pad s (t) + -+ P" 208 L () + PP (0),
and hence we obtain

Pn(t) = gbn-1(t) + PaPn-2(t) + - - + 0" 2qbn_k11(t) + P*tPn-k(t).

Then, by using Proposition 2.1 we see that the distribution is the generalized binomial
distribution of order (k — 1), Bx-1(n,p,2). O

Remark 3.1. Here, we explain a little advanced use of the so-called method of con-
ditional p.g.f.’s. The method is a widely-used useful method for deriving complicated
discrete distributions especially based on dependent trials and it is usually used by con-
sidering the condition of one-step ahead from every condition (cf. Ebneshahrashoob and
Sobel (1990) and Aki et al. (1996)). We have, however, used the method by considering
the condition not of one-step ahead but of random-step ahead for obtaining the formula
(3.1). We refer the reader.who is interested in the method of conditional p.g.f.’s in
general situations to the Appendix.

Remark 3.2. A start-up demonstration test is a mechanism by which a vender
demonstrates to the customer the reliability of a equipment with regard to its starting
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(cf. Hahn and Gage (1983), Viveros and Balakrishnan (1993) and Balakrishnan et al.
(1997)). The vender repeats start-ups of the equipment until consecutive k successful
start-ups are observed. Consider the following more practical start-up demonstration
test. The equipment consumes the specified amount of fuel gas for one successful start-
up and it does not consume fuel gas for unsuccessful start-ups. The equipment has in
advance the amount of fuel gas necessary for n successful start-ups. Then, the probability
that the number of success-runs of length & until the n-th success is zero means the
probability that the start-up demonstration test does not successfully end. Further, if
the vender repeats start-ups of the equipment until the fuel gas is completely consumed,
then the number of non-overlapping runs of consecutive k successful start-ups follows
the generalized binomial distribution of order (k — 1) with a = 2.

Next, we consider the distribution of number of occurrences of success-run of length
k until the n-th overlapping occurrence of success-run of length ¢, where k and ¢ are
positive integers satisfying £ < k and k > 2.

Let 7o be the waiting time for the n-th overlapping occurrence of success-run of
length £in Xl, XQ, R

THEOREM 3.1. Let X1, Xo,... be a sequence of {0,1}-valued random variables
with P(X; =1)=p=1—-qg=1- P(X; =0). Then, the number of (£ — 1)-overlapping
occurrences of success-run of length k until 7, follows the generalized binomial distribution
of order (k — £), Bix_¢(n,p,2).

PrROOF. Let ¢,(t) be the p.g.f. of the distribution of the number of (¢ — 1)-
overlapping occurrences of success-run of length & until 7.

Suppose we are currently observing a success-run of length v. Then, ¢§.") (t) denotes
the p.g.f. of the conditional distribution of the number of (£ —1)-overlapping occurrences
of success-run of length & from this time until we observe the j-th overlapping occurrence
of success-run of length ¢ after this time.

If /+n—1 < k, then ¢,(t) = 1, since a success-run of length k can not be observed
until 7.

We consider the case that /+n—1 = k. In this case, a success-run of length & can be
observed only when a success-run of length (k — #) occurs just after the first occurrence
of success-run of length ¢. Since we continue observing until the n-th occurrence of
success-run of length ¢, we observe the first occurrence of success-run of length £ with
probability one and hence the probability that a success-run of length k occurs in the

case is pF~¢.
Suppose that n > k — £+ 1. By considering the first occurrence of success-run of
length ¢, we have ¢,(t) = gll(t). Suppose we have currently success-run of length

v (£ < v < k—1). Then, if the next outcome is “1”, the current length of success-
run becomes (v + 1). If the next outcome is “0”, then the current length of success-run
becomes zero. However, the next success-run of length ¢ necessarily occurs if the observed

number of overlapping occurrences of success-run of length ¢ is less than n.
Suppose we have currently success-run of length (£ — 1). lf the next outcome is “07,

then the current length of success-run becomes zero and the next success-run of length ¢
necessarily occurs while the observed number of overlapping occurrences of success-run
of length ¢ is less than n. If the next outcome is “1”, then the current length of success-
run becomes k£ and the success-run of length & is enumerated. In this case, if the next
outcome is also “1”, then the next overlapping success-run of length ¢ is observed here.
Further, if success-run of length (k — £) occurs just after the outcome, then we observe
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the next success-run of length k. Then, the success-runs of length k have the overlapping
part of length (£ —1).
Therefore, we obtain
(e ¢
(821 (t) = ol (1) + a9, (2)
bt (1) = pd 73 () + a8 ()

682 1 (1) = DS o (8) + 0 (1)
¢nk-k1-{)~f (t) = pt¢n k46~ 2(t) + q¢n—-k+€—1 (t)

From (3.2), we have

¢ ¢ ¢ —0, (€
6101 (t) = adl)o(t) + pad g (t) + -+ PR adN) oy s () + PTG o n (1),
and hence we obtain

b (t) = gbn_1(t) + pgdn-2(t) + -+ P*gbn_kae(t) + PF T bp_kre—1(t).

From Proposition 2.1, the distribution is the generalized binomial distribution of order
(k - 2)7 Bk—e(n:p72)' g

4. Higher order Markov dependent trials

In this section, we study the corresponding problem based on higher order Markov
dependent trials. Let m, £ and & be positive integers satisfying m < ¢ < k.

Let X _mt1, Xema2, ..., Xo, X1, Xo,... be {0, 1}-valued m-th order Markov chain
with

Tagyzm = P(Xomt1 = 21, Xoma2 =22, ..., Xo = Zm)
Paryom = P(Xi=1|Xim1 =2m, Xico =2m-1..., Xism = 21)
Qzy,.izm = 1 — Dzy,...,tm>

for z3,...,2m = 0,1 and ¢ = 1,2,.... For z,...,z, = 0,1, we assume that 0 <
Pzr,os@ms Qo1,ezm < L.

Let 70 be the waiting time for the n-th overlapping occurrence of success-run of
length £ in X;, Xo,....

THEOREM 4.1. Let X_,py1, X _ma2,...,Xo0, X1, Xa,... be the above {0,1}-valued
m-th order Markov dependent trials. Let m, ¢ and k be positive integers satisfying m <
£ < k. Then, the number of (¢ ~ 1)-overlapping occurrences of success-run of length
k i X1,X2,... until'r follows the genernlized binomial distribution of order (k — £),

Bk——e(napl,l,...,l ) 2)~

PROOF. Let ¢,(t) be the p.gf. of the distribution of the number of (£ — 1)-
overlapping occurrences of success-run of length k in X, X,...,X;,. We denote by
Az, .z, the event that {X_, 41 = 21, X mq2 = 20,..., X = 2}, We fix Az ...
and let ¢vf" """ *™ (t) be the conditional p.g.f. given A5, . . . Forv=m, m+1,... k-1,
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suppose we have currently success-run of length v. Then, (1)(") (t) denotes the p.g.f. of the
conditional distribution of the number of (£ —1)- overlappmg occurrences of success-run
of length & from this time until we observe the j-th overlapping occurrence of success-run
of length ¢ after this time. Since m < £, the conditional distribution does not depend on
more than m-step past.

Starting from A, . . ., we observe the sequence until the n-th overlapping occur-
rence of success-run of length £. Therefore, we observe the first occurrence of success-run
of length ¢ with probability one, and hence we have

R (1) = 6 (1),

Note that the RHS of the equation does not depend on the initial condition A, . ..

Hence, we can write simply ¢, (t) = ¢f Freo®m (). Similarly as the proof of Theorem 3.1,
we obtain
¢
1) = P11, d5 TS (£) + qu,. b 5(2)
S =11, 107D (1) + @t 1885 (1)
(4.1)

k- ¢

d)r(t k+e+1(t) P1,1,... 1¢n k+z( )+a,. :1¢§zlk+£(t)
k-1 ¢

LA ile() = P11, 1t o o(t) + 11, 100 g pe o (B).

From (4.1), we have

¢
¢§fll(t) =quu,.., ¢£f)2(t) +p1,1,.,.,1Q1,1,...,1¢£11 (t) +
® B+t tol® ¢
+P1 1 1‘11,1, ,1¢n—k+e—1( )+p11 ¢n—k+e—2( ),

and hence we obtain

dn(t) =@, 10n-1() + P11, 1010, 1Pn—2(t) + - - -
+P’f1£ a1 kre(t) + P88t Bnokre— (t).

LR ]

From Proposition 2.1, the distribution is the generalized binomial distribution of order
(k E) Bk g(n,pl,ly L1 2) (]

Appendix

Let N = {0,1,2,...}. Suppose {X,}nen is a sequence of {0,1}-valued random
variables defined on a probability space (Q,F, P). Let F, = o({Xo, X1,...,X,}) and
let Foo = Vo F,. Suppose we are given (F,)-stopping times 79, 71 and 7, i.e., they
are measurable maps from §2 to N = {0,1,2,...,00} such that {r; < n} € F, for all
neNandi=0,1and 2. For:=0,1and 2, Weset

Fri={A € Fo |Vn €N, AN{r; <n} € Ful.

Let En,...,E; be {0,1}-patterns of finite lengths. For integers a and b (a < b), we
denote by N(a,b) the vector of numbers of occurrences of Ey, Ey,... and E; in Xa41,
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Xa+2;---,Xp. Under some assumptions, we now derive recurrence relations of condi-
tional probability generating functions of the vector of numbers of occurrences of the
pattrens until the stopping time 7.

ASSUMPTIONS

Al. 1 <715 < 79 hold almost surely.

A2. For i =1 and 2, there exist BJ(,Ti) € Fr, j=1,...,m such that Q = U;”le](.”)
(disjoint) and

E[tN(Ti,Tu) |]-'1_1] = E[tN(Ti’TO) [ U({BJ(-Ti)};'n:])]
_ E[tN(ﬁ,Tu) | BJ(,”)], w e BJ(.“), where

iy (1) _— 1 iy — ViU | 4V —
E[tNCam) | BT] = P(B,(T“)E[tN(T To)lBJ(fi>] and ¥ = t]'t52 .-ty for t =

(tl, e ,tg) and v = (’Ul, Ce ,Ug).
A3. The random variables N(0,7;) and N(m,72) take only finite values {rlj};?lzl

and {rgj}ff__l, respectively. We define Rz(l) = {w | N(O,11) = r;},i=1,...,k and
R;Q) = {w | N(m,72) =72}, 7 =1,..., kp. Then, without loss of generality we assume
P(r{M) > 0 and P(R) > 0.

THEOREM A.l. Under the above assumptions, the following relations hold

k1 m
(A1) E[tN(O,To)] - ZP(R?))trle ZP(BJ('TI) | REI))E[tN(T“TO) | B;TI)]

=1 j=1
and
k2
(A.2) E[tN(Tl’TO) | BJ((’J’I)] _ ZP(R52) | Bj(gl))trze
e=1m
x S P(B{™ | B 0 RP)EN2) | BI),
j=1

PrOOF. Since 13 < 79 holds almost surely, we can write N(0,79) = N(0,71) +
N(m1,79), and hence tV(0:70) = ¢N(0.7) . ¢N(71,70) Note that V(™) is F, -measurable.

This implies
E[tN(O’T‘))] = E[tN(O'Tl)E[tN(“”“) | Fr ]

From the assumption A2, there exists an F,, -measurable partition {B](-Tl) }7L1 such that
BN | ] = BEVCRT) | o (B )]

Further, from the assumption A3, N(0,y) takes only finite values {T1i}f;1- Hence,
for £ = 1,...,k; and j = 1,...,m, tNOTIEN(.70) | F_] has the constant value
tre BN (o) | B](-")] over R{" 11 B](-T‘). Therefore, we have

kl m
E[tN(O’TU)] — ZZP(REZI) A B§Tl))tr1€E[tN(T1aTO) | B)(-Tl)]
2=1 j=1

k1 m
- ZtrleP(Rél))ZP(BJ('n) I Rgl))E[tN(Tl’TO) lBlgrl)].

=1 j=1



776 SIGEO AKI AND KATUOMI HIRANO

Similarly, we can show (A.2). Since 7 < 75 holds almost surely, F,, C F,, holds. Then,
we have

E[tN(n,‘ro) lB}((’J’l)] — E[E[tN(n,To) |j:T2] | BJ(;])]
= BN gV | 7 ) | B

From the assumptions A2 and A3, for £ =1,... kg and j = 1,...,m, tN(1.72) B[tN(72.70) |
F,,] has the constant value #72¢ E[tN(™2:70) | B](-TQ) ] over R®) M BJ(T?). Consequently, we
obtain (A.2), which completes the proof. O

Exzample A.1. Let X, Xo,...be{0,1}-valued i.i.d. random variables with P(X; =
)=p=1-¢=1-P(X; =0). Let i, 7 and 79 be the waiting times of the
first, the second and the n-th occurrence of “1”. E; denotes a success-run of length
k (n > k > 2). Let N(a,b) be the number of non-overlapping occurrences of E; in
Xa+1, Xat2,---,Xp. Then, by definition 71 < 75 < 79 hold. Since 7, comes before 7

almost surely, we have E[tN(7v70) | F ] = EN0v7)] je, BY‘) = . If we define
B{™ = {w| 7(w) = 7a(w) — 1} and B = {w| n(w) < T2(w) — 1}, then we obtain

E['LN(“'D'T“) , 1}1("'2)]7 w e B{m)

E[tN(Tz,To) | Fr] =
| ENUe | BUY), we BS.

Since k > 2, N(0,73) = 0 and N(mn,72) = 0 hold almost surely. Therefore, we obtain
from Theorem A.1,

E[tN(O,‘ro)] — E[tN(TI»TO)]

and
B[N )] = P(BY™) B[N | B + P(BY™) BtV | By

= pEtN27) | BT 4 gB[tN ) | B,
The latter is the first equation in (3.1).

Ezxample A.2. Let X_pi1, Xomt2,---,Xo0, X1, X2,... be {0,1}-valued m-th or-
der Markov chain defined in Section 4. Let 71, 79 and 79 be the waiting times of the first,
the second and the n-th overlappng occurrence of success-run of length ¢. Fy denotes a
success-run of length k (m < ¢ < k—1). Let N(a,b) be the number of (¢— 1)-overlapping
occurrences of Ey in X,11, Xa42,...,Xp. Then, by definition 7 < 75 < 79 hold. Sim-
ilarly as Example A.1, we have E[tV(mm) | F, ] = EtN(1m™)] e, Bgn) = Q. If we
define BgT"“’) ={w | n(w) = (w) — 1} and BSTQ) = {w | m(w) < T2(w) — 1}, then we
obtain
E[tNC=7) | B, w e B
E[NT>™) | B, we B{™.

Since { <k—1, N(0,73) = 0 and N(ry,72) = 0 hold almost surely. Then, we have from
Theorem A.1,

E[N(r2m) | £ ] = {

E[tN(O,To)] — E[tN(T1 ,‘I’O)]

and
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E[t(N(T1,T())] — P(B£T2))E[tN(72,TO) l B{TQ)] +P(B§T2))E[tN(T2’Tn) ' B§T2)]
=p11,.1 BN (270 | B{TQ)] + (L= prg,. 1) E[tN(m2m) | Bén)].

The latter is the first equation in (4.1).
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