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Abstract. As a generalization of the canonical correlation analysis to & random
vectors, the common canonical variates model was recently proposed based on the
assumption that the canonical variates have the same coefficients in all k sets of vari-
ables, and is applicable to many cases. In this article, we apply the local influence
method in this model to study the impact of minor perturbations of data. The method
is non-standard because of the restrictions imposed on the coefficients. Besides in-
vestigating the joint local influence of the observations, we also obtain the elliptical
norm of the empirical influence function as a epecial case of local influence diagnos-
tics. Based on the proposed diagnostics, we find that the results of common canonical
variates analysis for the female water striders data set is largely affected by omitting
just one single observation.

Key words and phrases: Common canonical variates, influence function, local influ-
ence, perturbation, restricted likelihood, statistical diagnostic.

1. Introduction

Canonical correlation analysis is a classical multivariate method to measure corre-
lation between two sets of variables. The common canonical variates (CCV) model was
recently proposed by Neuenschwander and Flury (1995) as a kind of generalization of
the canonical correlation analysis to several sets of variables. Unlike Kesttenring’s (1971)
generalizations which were based on the principle of maximizing some generalized mea-
sure of canonical correlation, the CCV model was defined based on the assumption that
the canonical variates have the same coefficients in all k sets of variables. Such a way of
defining the canonical variates facilitates the interpretations of the canonical correlation
analysis results and makes sense in many applications.

Suppose the kp-variate random vector z is partitioned into k subvectors 2 )
of dimension p each, and denote the positive definite symmetric covariance matrix of z as
U = (¥;;)ij=1,.. k- Similar to the common principal components model for independent
or dependent random vectors (Flury, (1984, 1988), Flury and Neuenschwander (1995a)),
the common canonical variates model assumes that the canonical variates have the same
coofficients in all k sete of variables. This assumption is applicable when all the sub-
vectors (¥ have the same dimension p and measure in some sense the same concepts.
Common structures are only imposed on the covariance matrix of the variables. Thus, if
z satisfies the common canonical variates model, then there exists a nonsingular matrix
T of dimension p x p such that A;; = PT¥,;T is diagonal for all submatrices ¥;; (See
Neuenschwander and Flury (1995), Definition 1.1). It follows that the CCV model can
be written as

Ik ®D)TU(I ®T) = A = (Aij)ij=1, k-
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The column vectors in matrix I' are normalized to unit length and are called the com-
mon canonical variates. Therefore, the parameters of interest in this model are the
diagonal matrices Aj; = diag(Aij1,---,Aijp), 6 J = 1,...,k, and the nonsingular matrix
I' = (m1,...,7p) with columns of unit length. The normal theory maximum likelihood
estimators of these parameters can be obtained by solving the likelihood equation system
given by (7), (8) and (9) in Neuenschwander and Flury (1995), and the equation system
can be worked out by the so-called nonorthogonal FG™ algorithm given by Flury and
Neuenschwander (1995b).

As an example, Neuenschwander and Flury (1995) presented the common canonical
variates analysis results of the female water striders data which was carried in Flury
and Neuenschwander (1995a). It could be seen from the value of the log-likelihood ratio
statistic and the sensible analysis results that the fit of the CCV model is good for this
data set. However, as indicated at the end of their article based on a bootstrap analysis,
the stability of the coefficients of the first canonical variate is quite poor due to the
fact that the likelihood surface is relatively flat in direction corresponding to the first
canonical variate. It is anticipated that individual observations may have large influence
on model fitting and estimates of the parameters. Thus it is necessary to derive influence
diagnostics as the essential supplements to the common canonical variates analysis. In
this paper, we shall develop the local influence approach (Cook (1986)) in the CCV
model. Cook’s (1986) local influence approach is a popular diagnostic mcthod, but the
curvature formula in Cook (1986) cannot be directly used for the CCV model because of
the restrictions imposed on the normalization of canonical variates. It is not until recently
that Kwan and Fung (1998) and Gu and Fung (1998) derived the generalized local
influence formulas which can be applied in the restricted likelihood framework. A review
of these results is given in Section 2. They will then be used to derive the local influence in
the CCV model in Section 3. In Section 4, the female water striders data set is analyzed
by applying our newly developed diagnostics, and some more stable results which are
largely different from those given by Neuenschwander and Flury (1995) are obtained by
omitting just one observation. Besides, a comparison of the statistical diagnostics based
on the deletion influence and those based on the local influence approach is also presented
in this example. Finally, several summarizing remarks are provided in Section 5.

2. A review of the generalized local influence approach

The local influence approach proposed by Cook (1986) has been applied to various
other models besides the linear model and has become a very common diagnostic method.
Some general discussion about the methodology can be found in Lawrance (1991), Schall
and Dunne (1992), Billor and Loynes (1993) and Fung and Kwan (1997) among others.
However, when there are constraints imposed on the parameters of the model, the log-
likelihood, and therefore the likelihood displacement, is defined on a restricted parameter
space. Thus the curvature formula in Cook (1986) cannot be directly used in such
cases. Recently, this problem was investigated by Kwan and Fung (1998) and Gu and
Fung (1998). They derived the generalized local influence formulas under the restricted
likelihood framework. A review of these results is briefly given below.

Let L(6) denote the log-likelihood corresponding to the postulated model, where
0 is a d x 1 vector of unknown parameters. A ¢ x 1 vector w is used to reflect any
well-defined perturbation scheme, which is restricted to some open subset  of R9. Let
L(0 | w) denote the log-likelihood corresponding to the perturbed model for a given w
in Q such that L(f | wo) = L(). When there are r constraints H;(§) =0,i=1,...,r,
imposed on the d dimensional parameter §, the log-likelihood L(#) and L(f | w) are
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defined on a d — r dimensional manifold M in R? We further assume that L(f | w)
is twice continuously differentiable in (§7,wT), where 6 is restricted on M. Suppose w
varies around wy in some fixed direction [, then w can be represented by w(a) = wq + al,
where a represents the perturbation scale and ! is a nonzero vector of unit length in R9.

2.1 All parameters are of interest

When all parameters in § are of interest, the likelihood displacement LD(w) =
2[L(A) — L(8.)] is used to calibrate how large the influence of the added perturbation
is to the model. Instead of using the geometric normal curvature of the influence graph
defined in Cook (1986) to measure the local influence, we will use the Taylor expansion
of LD(w) for local influence analysis. It is because the geometric normal curvature at
the null point wq is used to characterize the local change in the likelihood displacement
relative to the small changes of w in Q2 space, which is in fact equivalent to using the
Taylor expansion of LD(w). Suppose 6 and 6., are respectively the maximum likelihood
estimators under L(#) and L(f | w) over the restricted space M. The first order term
of the Taylor expansion of LD(w) = 2[L(f) — L(6,)] at wp is zero. Let the Lagrange
multiplier function of L(6) be denoted as

(2.1) £(0,n) = L(§) + ZmH ().

=1

Then for any w € Q, LD(w) = 2[7(6,%) — f(8.,7)]. Thus the Taylor approximation of

LD(w) around wy is given as
o6~ d%f(6,n) a0
T [ e &) P
(22) ol ( ) ( 80007 |5, ) \ 3T
wo 3”7)

Sw
where Ay is the d x ¢ matrix 82f(6,7 | w)/900wT evaluated at 6 = § and w = wo, and
f% can be obtained from the partition

wo

) L= —a®ITAF % Ayl

3 f._lz[ &2 £(8,7) ]‘ :[foa fon]_lz[fw f""]
' 3(9T,TIT)T3(9T,T)T) fno fm f770 fmle

The results presented in (2.2) and (2.3) are the basic generalized local influence formulas
extending Cook’s (1986) approach, further details are found in Gu and Fung (1998).
Besides the local influence approach, two other commonly used diagnostics are the
empirical influence curves (EICs) and the sample influence curves (SICs) (see for example
Cook and Weisberg (1982)) The empirical influence curve of the i-th observation to the
parameter estimate g, EIC(QZHH), is actually a special local influence diagnostic. It is
found that under the 1nd1v1dual case weight perturbation scheme (See Section 3 for the
case-weights perturbation scheme), generally we have EIC (z;, 0) = ¢80, /dw;, where ¢
is a constant related to the sample size and w; is the weight of the i-th observation in
the estimate. Thus the diagonal elements of —c*A} f%Ay are the elliptical norms of
EICs which are scaled by matrix fgy as noted in (2.2). We shall compare the diagonal
elements of —c? A} f9%A, with the elliptical norms of the sample influence curves SICs
scaled by fgg in the example given in Section 4. The SICs are evaluated under case
deletion, which requires a much larger computational load as compared to the evaluation
of local influence and the EICs. From the definitions of EIC and SIC given in Cook and
Weisberg (1982), we know the limit of SIC when n — oo will be equal to EIC. It
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will be interesting to know the similarities and differences between these two measures
in practice. In addition to revealing influence of individual cases, the local influence
diagnostics could also indicate joint local influential effects.

2.2 Subset of parameters is of interest

Suppose only 8; in the partition §7 = (67, 67) is of interest, where 6, is of dimension
di and 0 is (d— dy) x 1. In this situation we consider the likelihood profile displacement
LDs(w) = 2[L() — L(f1u,02(h1.,))], where the function 6;(6;) maximizes L(6;,6,) on
the d — r dimensional manifold M in R? for any fixed 6, and élw is determined from the
partition §7 = (AT, 6 ). Then the Taylor approximation of LDg(w) can be expressed
as

(24) _a’ngKlT(IdlaKQT)fGG(Idqu)TKll

in which, K7y is the dy x ¢ matrix 891w/8w evaluated at 6; and wq, K is the (d—dy) xdy
matrix 802(01)/06, evaluated at 81, and Iy, is the dy x dy identity matrix. If we denote

-~ fir fi2 fig
(2.5) f=1fa feo fo],
Sfm fpz O

where f is evaluated at (é, 7)), then when 85 is not involved in the restriction conditions
which is true for the CCV case, we have

(2.6) LDs(w) ~ —a’I" A <f99 - [0 91D Agl.

0 fo
Information on more general local influence diagnostic, when only a subset of parameters
is of interest, can be found in Gu and Fung (1998).

Similar to that indicated in the last subsection, under the individual case weight
perturbation, the i-th diagonal element of the matrix —c2K7 (I, , KT) foo(I14,, KT)T K
is actually the elliptical norm of EIC(z;, ;) scaled by matrix (Iy,, KT)foe(Ia,, KT)T.
Likewise, we also use the partial influence which is the elliptical norm of the sample
influence curve SICs of §; scaled by matrix (I, KT)fee(Is,, KT)T to compare with
the local influence results. When 6, is not involved in the restriction conditions, this
likelihood contour matrix has a simple form fi1 — fio f2"21 fo1.

3. Local influence in CCV model

In this section we will derive the local influence diagnostics under the case-weights
perturbation scheme. Other perturbation schemes can be discussed similarly.

Suppose we have a sample z1,...,zny (N =n + 1), where z;’s are kp dimensional
and they are iid N(u,¥), ¢ = 1,...,N. Denote the sample covariance matrix as § =
(Sij)ij=1,..k, then M = nS is distributed as Wishart with scale matrix ¥ and n degrees

of freedom, n > pk. Let w = (wy,...,wn)T, w; > 0, denote the case weights for all
observations, wy = (1,...,1)T is the null point, and w = wo+al represents a perturbation
along some direction [. Under such simultaneous perturbations, suppose the distribution
of z; is perturbed to N(u, ¥/w;), (i =1,...,N), the maximum likelihood estimates for
p and ¥ are respectively Z, = (Zf\;l wia:i)/(zilil w;) and M(w)/N = Zil wi(z; —
T)(z; — Z,)T /N, and they are statistically independent. Such perturbation was termed
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the case-weights perturbation scheme by Cook (1986); see Lawrance (1991) for a different
name, the variance perturbation scheme. By a result on Wishart distribution given in
Rao ((1973), Section 8b.2(ii)), it could be proved that, under the perturbation scheme,
M (w) is distributed as Wi, (n, ¥). The CCV model imposes structures on the covariance
matrix ¥ (Neuenschwander and Flury (1995)). If we denote G = Iy ® I, then under
the model, we have GT¥G = A = (Ay;)ij=1,.k and the log-likelihood function after

perturbation is

kp
_n—kp—1 nkp 1 )
(3.1) LAT|w)= 5 log | M (w)] 5 log2 ;zl logT [2(71 +1 z)]

B2 1) g og A - 2108 6] ~ § tr(A T MW)G).

If we denote the elements of A;; by the px1 vector A\jj = (Nij1, -+, Aijp) 6,5 = 1,...,k,
then all the parameters in this model can be written in an p? + kp(1 + k) /2 dimensional
vector 6 = ((vecD)T,AT)T = ((vecT)T, N, AL, AT AL MG, L AL, L AE)T.
Define the Lagrange multiplier function as

Y4
(3.2) FO,A ) = LT, A) 1> ne(vFy = 1),
i=1

where L(I',A) = L(T',A | wo) is the unperturbed log-likelihood function and 7 =
(m,...,mp)T. The corresponding results when our interest is focused on all parame-
ters in the unknown vector € or only on the common canonical variates I" are presented
in the next two subsections.

3.1 All parameters in 8 are concerned
The log-likelihood displacement is given as

(3.3) LD(w) = 2[L(0) — L(0.)]
(3.4) =2[£(0,%) — f(Bo, ).

From (2.2) and (2.3), we have the generalized local influence at wp as
(3.5) —atITAT 99 Ayl
To get the Ay and f99 in (3.5), we need the following results.

LEMMA 3.1. The first order derivatives of the perturbed log-likelihood function
L(T, A | w) with respect to the parameters in (T, A) have the forms:

(3.6) (a) LF___QVTC(F_)_
1 5K _
= knkyy vee(T™) = 5 37 DTIAT © (Mg () + Mys(w)) vee(T)],
i=1 j=1
1 )
— Fii _ )\u,h, S
(37) (b) Ly, = Qégfélﬂ _ { S Fip—nX™,i=j
o Fyn—n\oh i#j



758 HONG GU AND WING K. FUNG

where F = A™'GT M(w)GA™Y, Fyjn, Xijn and X9 are respectwely the h-th diagonal
elements of the ij-th p x p blocks of matrices F', A and A™. K,, is the permutation
matriz of order p x p. V

The permutation matrix K, is defined as Knn = 300, 30, Eij(m,n) @
E;";(m,n), where E;;j(m,n) is an m x n matrix with 1 at the ¢j-th position and 0 oth-
erwise. For properties of the permutation matrix and the rules for differentiation, see
Magnus and Neudecker ((1988), p. 46 and Chapter 8) or see Fang and Zhang ((1980),
p. 13-20). A brief proof of Lemma 3.1 is given in the Appendix.

From (3.6), we have

of(T, A, m) _ : B
(3.8) fr (A= _aW B = Lr |t 4) +2 vec(I'diag(m, ..., 7)) (=10
Left multiplying (3.8) by 47,(t = 1,...,p), we may get # = 0 and those equations

presented in Theorem 2.1 in Neuenschwander and Flury (1995) which are used for solving
the maximum likelihood estimates I' and A.
Further differentiating the results in Lemma 3.1 with respect to w, we can get

THEOREM 3.1 Suppose that the t-th observation (t =1,...,N) is written as z; =
zh, ... 2k where xy(i = 1,...,k) is of dimension p, and correspondingly T =
i )"
(y‘clT,...,a:k) Let

?f(T, A1 |w)

fr‘u
8907 ] '

(3.9) Ay = _ [
0=6,w=wq Fro

Then the t-th (t =1,...,N) columns of fro and fi. are respectively

P ko F e
(3.10) s = S veel (s — ) (ze; ~ )T TAY),
We 1(F,A,wo) i=1 j=1
and
]-F",t ..
(3.11) Ofxijn _ )t VT
' &ut

A, frt . .
(T:A o) Fij,h> i # 7,

where FJ , 1 the h-th dmgonal element of the ij-th p x p block of matriz E't which is F*
evaluated at (T, A), and F* = A='GT(z, — Z)(z; — 2)TGA™Y, t=1,...,N.

The proof of Theorem 3.1 is given in the Appendix.
The term left unknown in (3.5) is f 99 which is the upper-left block of matrix fi
We partition the matrix f as

82 f(T, A, ) frr fra frg

f=8((vecI‘)T,/\T,nT)Ta((vecF)T,)\T,nT) (f’;\’ﬁ): ;:E J}:;\ fb\n




DIAGNOSTICS FOR COMMON CANONICAL VARIATES 759

i fFF fr)\u e fl“)qk fF)\zz ce fr')\zk e fl“)\kk fFT[ ]
f/\uF f)\u/\u f)\ll)\lk f>\11)\22 f)\u)\zk f)\n)\kk f>~1177
— f)qkr f)\lk)\u T f/\uc)\lk f)\uc)\zz T f)\lk Aok T f)\uc)\kk f)xlkﬂ
3
f/\ggr f)\22 A 7 f>\22>\1k f/\22 A2z T f)\22>\2k T f)\22 Akk f/\2277
f)\kkf f)\kk)\n co f)\kk)qk f)\kk)\zz T f)\kk dop T f)\kk)\kk fAkkﬂ
L an fﬂ)\u c fﬂ/\uc fn)\zz T fﬂ)\zk T fﬂ/\kk 0 ]

~

where all matrices are evaluated at (f‘, A, 7). To derive the matrix f, the next result is
fundamental.

LEMMA 3.2. Suppose A is a kpx kp symmetric matriz with all its p x p submatrices
Ai;(3,5=1,...,k) being diagonal, then we have

(3.12) oA"Y _ {‘P‘?h( *0)71® Enn(p,p), i=j
OXijh — AT+ AT ( '@ Ern(p,p), i # 4,
where Xt = (WP AR DB (m,n) = ef(m)e;(n)T, and e;(m) is a m x 1 vector

with 1 at the i-th position and 0 otherwise.

Using the formula 0X~!/8z;; = —X"10X/0z;; X' (Fang and Zhang (1980),
p. 15), the proof of Lemma 3.2 is straightforward.

The corresponding result of each block in f is presented in the following Theorem,
and the proofs are given in the Appendix.

THEOREM 3.2. The p? x p? matriz frr has formula:

k k
(3.13) ﬁTz—%anKf”¥r®@“HL—%E:E:M“®(MQ+AQM.

i=1 j5=1

The p* x kp(k + 1)/2 matriz fra has k(k + 1)/2 submatrices of dimension p* X p,
all of which are block diagonal matrices with the diagonal blocks given by the p x 1
vectors

k: k
1 ...
2 Z NERAGR (My; + M) | t=m
i=1 j=1
(3'14) f’Yh)\tvﬁ,h - M e &
1 Stih Amg i,k t .
5 ZZ(/\t h ymih + A ’h/\tj’h)(Mij + Mji)’yh , t # m.
=1 j=1

The matriz fry, is a p* x p block diagonal matriz with the diagonal blocks fy,n,. = 2%4.
For the blocks wn fax, we have

e e p A
ti,h\2 _ \ti,h =7 =

F N2 = JEREy 1=9, t=s

n/\tiwh)\“yh _ /\ti’thz’,h _ /\sz,th,’h, 1=73, t 76 S

(3'15) f}\ij,h)\ts,h = NE RS sih Seihltih  Stih A Csih A
’I’L/\u7 A5 +n/\sz, /\tj’ _/\tz, st,h — 2% th,h

Stih B Ssih E , L
— AP Fgi b — AP E 4, i#J, t#s
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and finally fay = 0. The matriz FF = A"'\GTMGA~" where G = I, @ T.

With all blocks given above, to conduct local influence analysis we define the in-
fluence matrix —A} f%%A, as INF. The eigenvector lmax associated with the largest
eigenvalue of matrix INF will indicate the way to perturb the case-weights to obtain the
greatest local change in the likelihood displacement. Thus [ax could be used to ex-
plore the joint influential effects of the data. Besides ljax, if there are other eigenvalues
which are not significantly smaller than the largest one, the eigenvectors associated with
these large eigenvalues may be informative about the joint influence, and may also be
investigated.

As indicated in Section 2, the diagonal elements of influence matrix INF are propor-
tional to the elliptical norms of EICs. Because EICs are good approximations to SICs,
we will compare the diagonal element of INF with the elliptical norm of SIC(z;, §)/n in
the example presented in Section 4.

3.2  Only parameter " is concerned
Since the restrictions imposed on the CCV model involve T' only, by (2.6), the
restricted log-likelihood profile displacement is written as

(3.16) LD,y (w) ~ —a*I* A} ( £ [8 f?f]) Agl.

Therefore, the influence matrix for the subset I' is

0 0
(3.17) INF, = —A} (f‘”’ —~ [0 fIfD Ay,

and similar steps can be taken to conduct the local influence analysis as in the last
subsection. The diagonal elements of matrix INF; are now comparable to the norms of
SIC(z;,I')/n, i = 1,...,N, and the scale matrix for the elliptical norm in this case is

frr = foafsx Far
4. Example: the female water striders data

Water striders grow in six discrete stages called ‘instars’. The length of the femur (F)
and the tibia ('T') of the hind legs of 88 female water striders were recorded in millimeters
(Neuenschwander and Flury (1995)). With indices 1 to 3 denoting the first three instars,
X; = (F,T)T, i = 1,2,3, could be assembled into a six-dimensional random vector
X = (X, XTI, XT)T. Using log-transformed variables and scaled by 100, the CCV
analysis results using the whole data set have been presented in Neuenschwander and
Flury (1995). Based on these results and the formulas given above, we can get the
local influence diagnostics directly. When both I" and A are concerned, the comparison
of the diagonal elements of influence matrix which are scaled norms of the EICs and
the elliptical norms of the SICs/n is given in Fig. 1. It is noted that the SICs are
obtained by deleting each single case and performing the FG* algorithm of Flury and
Neuenschwander (1995b) to recompute the parameter estimates. From Fig. 1, it can be
seen that both diagnostics basically provide the same information about the influential
effects of individual observations, although EICs tend to be underestimate SICs a little
bit at those very influential points. Actually, Fig. 1 reflects a rather common relationship
between the deletion and local influence measures when the sample size is reasonably
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Fig. 2. Index plot of the joint local influence when both I* and A are of interest: the components
of the first eigenvector of INF.

large. Thus, as an exploratory method to detect which individual observations have
undue influence on the parameter estimates, the EICs seems performing quite well.

In addition to the influence of individual observations presented in Fig. 1, the com-
ponents of the eigenvector associated with the largest eigenvalue of matrix INF plotted
in Fig. 2 show the joint effects of these cases. It could be seen from Fig. 2 that case 13
and case 39 have some joint local influence, but it is mainly due to case 13. Figure 1
also shows that case 13 individually has an undue influence to parameter estimation.

As areference, we also plot in Fig. 3 and Fig. 4 the comparison of local and deletion
influence and the components of the first eigenvector ot the influence matrix when only T'
is of interest. In this case the profile log-likelihood displacement and the influence matrix
INF, are used. Figure 4 shows that cases 13 and 39 have large joint local influence to
the estimate I, and Fig. 3 again reveals that case 13 individually has an undue influence
to I'. When we check the data set carefully, we find that case 13 has the smallest values
on all six variables. It is no doubt that case 13 is an influential observation. To see the
effect of case 13 on I', we give the solutions of I' based on the full data set (see also
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Fig. 3. The comparison of the norms of EICs and SICs when only I" is of interest.
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Fig. 4. Index plot of the joint local influence when only I' is of interest: the components of
the first eigenvector of INF.

Neuenschwander and Flury (1995)) and the data set without case 13:
P 0.731 0.763 P 0.490 0.807
T \0.683 —0.647 )’ a3 = \ 0872 -0.591 /"

Comparing these two results, it is clear that the estimate for I' is largely changed by
omitting only one case. The matrix A;j, ¢, j = 1,2, 3 could be obtained from the diagonal
elements of matrix f‘TSijf‘, i,7 = 1,2,3. We find that if case 13 is omitted, the maximum
off-diagonal element of matrix f‘Sijf‘, i, 7 =1,2,3, is reduced to 0.458 from 0.643 of the
full data case, and the convergence speed of the FG* algorithm is faster than that of the
full data set. The estimate for A is also largely affected when case 13 is omitted. For
brevity, this result is not shown. The fit of the CCV model could be tested by the usual
log-likelihood ratio statistic, which has value 6.65 in the full data case, and value 4.54 if
case 13 is deleted. Both values are not significant at any reasonable level comparing to

the x? distribution with 7 degrees of freedom, but from the test statistic value, we can
still see that the model fits better after case 13 is deleted.
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5. Concluding remarks

We have developed the local influence diagnostics in the common canonical vari-
ates model. These diagnostics are some essential supplements to the common canonical
variates analysis. From these diagnostics, we could not only detect the influential effect
of each single case to the model, but also disclose some joint local influence. The de-
rived local influence diagnostics are effective in disclosing the points which have large
influence on parameter estimation and on model fitting. As a special part of our local in-
fluence diagnostics, the elliptical norm of empirical influence function is obtained. Some
comparisons between empirical influence functions and sample influence functions are
performed and consistent indications of the influential observations are given by these
two measures, which reflects a rather common relationship between the empirical and
sample influence functions when the sample size is reasonably large.
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Appendix

A.1  Proof of Lemma 3.1
(a) From (3.1) we have

dlog IIk ® F| _ latr[A_l(Ik ® FT)M(w)(Ik ® F)]
dvec(T) 2 9 vec(I')

_Oklog|T| o tr[TT M;;(w)TA%)
= M avec(T) () Z Z dvec(T) '

(Al) Lr =N

7.—1 Jj=1

By the derivative formula dtr(XTAXB)/0X = AXB + ATXBT (Fang and Zhang
(1980), p. 16), the expression in (A.1) will be

knKpp vec(I' l)——Z:z:vec[MU(w TA% + M (w)TAY)
i=1 j=1

= knKyp vec(T'

k k
ZZ Aw ® (M;;{(w) + Mﬂ(w)))vec([‘)]

i=1 j=1

The result (3.6) of Lemma 3.1 is obtained.

(b) As

dlog|A| _ 1 J[vec(A)]” IIA]| O[vec(A)]T .
A — =
(A2) 53— ijn A Ohgn  Ovec(A) hijn vee(A™)

/\:”’h’, Z =J
AV i ]

and
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dtr[ATIGTM(w)G]  Bvec(A~)]”

(A.3) Trin = P vec(GT M (w)G)
B { [vec(—A™ Ey; h A1) vec|GT M(w)G), i=7
| [vee(— AN Eij + Eji ) AT vec GTM(W)G], i # 5

—Fii i=7
_QEj,hv i 7é .7
where E;; 5 = e(i—l)p+heg;~l)p+h’ and e(;_1)p4p is a kp dimensional vector with 1 at the
(i — 1)p + h-th position and 0 otherwise. Substitute (A.2) and (A.3) into
OL(T, A | w) ndlog|A| 10tr[A7'GTM(w)G]

A4 ! = —— _Z
(4.4) OAij 2 Odijn 2 OAijh ’

with i = j or i # j where 4, j =1,...,k, (3.7) follows.

A.2  Proof of Theorem 3.1
By the result OM;;(w)/0w; |lwo= (zu — Zi)(zej — %)%, (6,5 = 1,...,k) and
Lemma 3.1, it follows that

afr

Bwt

_okr

(Phwy  Owr

E &k
= _ Z Zvec[(axti — %) (@y; — 3_7j)Tf‘Aij]a

i=1 j=1

1 3 zk: 8 vec[(My;(w) + Mji(w))TAY)
2

(P4 wo) i=1 j=1 Ow wo

(A.5)

and the result in (3.10) is shown. Also by Lemma 3.1, the result in (3.11) is straightfor-
ward.

A.3  Proof of Theorem 3.2
Let diag(n, ..., mp) be the px p diagonal matrix with diagonal elements (71, ...,7p).
Since fr = Lr + 2vec[[ diag(n1, ..., mp)|, we have

Jfr
(4.6) I(vec )T
dvec(™) 1 ij dvec(T)
]"nKPP 8(V€CF ;Jz:l l: A ® )+ Mjl( ))) (VGCF)
26V€C[F diag(”?b s )77}")]
A(vec)T ’
By the following results
dvec(I1) T 1 ovec(l')
O(vecD)T —T) eI, d(vecT)T — 7%
dvec[[diag(m,...,np)] .
8(VGC F)T - dla‘g(nla sy 7717) ® IpJ

and evaluating (A.6) at (I', A, %) and wq, (3.13) follows.
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It is easy to see that fp, = 20 vec[['diag(n1,...,np)]/On* |(1a,A,7.7)= bdiag(2%1,. ..,
24,), where the symbol ‘bdiag’ is for the block-diagonal matrix with diagonal blocks as
indicated. Since

4 LAY VAR
8)\;:1;}1 BAtm h % zzj g [(8)\tm N (sz (UJ) + Mj,‘ (w))) VGC(F)} ,

using the result given in Lemma 3.2 and evaluating 9fr/0Aim,n at (f,f\) and wg, we
obtain

Ok |
OAtm,h (I, Awo)
1 k F g .
—32_ D (AP B, (p, p) @ (Myj + M) vee(D)],  t=m
i=1j=1

k

1j=1
®(M;; + M) vee(D)], t#m
( [ & &
1 .~ .
5 vee DO ARG (M + M) T Epn(p,p) | t=m
i=1 j=1
[k &
1 T NP N
3 vee DO (AhRmak 4 NmE IR (M5 + M) CEpn(p,p) |, t#m
i=1 j=1

which are equivalent to the results presented in (3.14) (for Enp(p, p), see the definition
of E;j(m,n) in Lemma 3.2). Similarly, (3.15) could be derived using Lemma 3.2 and the
chain rule, which will not be shown here.
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