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Abstract. From a Bayesian point of view, in this paper we discuss the influence
of a subset of observations on the posterior distributions of parameters in a growth
curve model with unstructured covariance. The measure used to assess the influence is
based on a Bayesian entropy, namely Kullback-Leibler divergence (KLD). Several new
properties of the Bayesian entropy are studied, and analytically closed forms of the
KLD measurement both for the matrix-variate normal distribution and the Wishart
distribution are established. In the growth curve model, the KLD measurements
for all combinations of the parameters are also studied. For illustration, a practical
data set is analyzed using the proposed approach, which shows that the diagnostics
measurements are useful in practice.
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1. Introduction

In general, statistical diagnostics for a certain model are studied under two differ-
ent frameworks, i.e., likelihood and Bayesian methodologies. Within each framework,
diagnostic approaches are further classified into two categories, i.e., global influence or
case-deletion and local influence. The former approach is concerned with the change of
certain statistical quantities, such as the maximum likelihood estimators (MLEs) of pa-
rameters and fitted values of the model, when a subset of observations is deleted from the
model. In such a manner, the influence of a subset of observations on the model fittings
can be assessed in terms of a certain measure, for example, the Cook’s distance (Cook
(1979)). On the other hand, the local influence approach proposed by Cook (1986) aims
to quantify the effect of a local departure on model assumptions. This method may also
reveal the so-called masking and swamping phenomena as well (see, e.g., Cook (1986)).
Within the likelihood framework, Cook (1979, 1986) comprehensively studied the identi-
fication of multiple outliers and influential observations in an ordinary regression model
using the global and local influence techniques. The relationship between those two

techniques was also studied by Cook (1986).
From a Bayesian point of view, statistical diagnostics has received much attention

recently because it may provide much more information about influential observations,
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see, for example, Pan et al. (1996). In the literature, Box and Tiao (1968) consid-
ered the posterior probability of a random event that a subset of observations may
be an outlier or influential set. These diagnostics approaches were further improved
by other authors including Pettit and Smith (1985), Geisser (1987), and Chaloner and
Brant (1988). Johnson and Geisser (1983, 1985) suggested using the Kullback-Leibler
divergence (KLD) between certain predictive or posterior distributions to measure the
influence of a subset of observations. In ordinary regression models, relevant studies were
conducted by Guttman and Pena (1988, 1993) and Ali (1990). In addition, Carlin and
Polson (1991) justified taking the KLD measurement as a utility function, and showed
the way to compute diagnostics using the Gibbs sampling method for more complicated
models.
The model considered in this paper is the growth curve model (GCM):

(1-1) prn =Xp><mBm><rZr><n+fp><na

where X and Z are known design matrices of rank m(< p) and r(< n) respectively, and
B is the regression coefficient matrix. The columns of the error matrix € are independent
p-variate normal with a mean vector 0 and a common covariance matrix X, i.e., the

conditional distribution € | (B,X) ~ Np,,(0,X,I,), where ¥ is an arbitrary positive
definite matrix, known as the unstructured covariance (UC). The model (1.1) is useful
especially in longitudinal studies and growth problems over short periods, and has been
applied extensively in economics and medical research. The GCM was first proposed
by Potthoff and Roy (1964) and then considered subsequently by many other authors,
including Rao (1965, 1966), Khatri (1966), Geisser (1970), Lee (1988, 1991) and von
Rosen (1989, 1991) among others. In the GCM with UC, the MLEs of the regression
coefficient B and the dispersion component ¥ are of the forms,

(1.2) B=X"8'X)"'X"8'YZ(ZZ")! and B=-(S+QsYPsYQF),

1
n
respectively, where Qg = SQ(Q"SQ)~'Q", S =Y (I, — Pz-)Y" and Q € Q in which Q
is a set of matrices defined by Q = {Q | Q@ : p X (p—m), rank(Q) = p—m and X" Q = 0}
(see, e.g., Khatri (1966); von Rosen (1989)). The notation P4 = A(A"A)"'A" denotes
the projection matrix of A provided that A" A is nonsingular throughout this paper. The
p X p symmetric matrix § is positive definite with probability one as far as n > p+r
(Okamato (1973)).

For the GCM (1.1) with UC, within the likelihood framework, Pan and Fang (1995,
1996) established criteria for multiple outlier detection and influential observation iden-
tification in terms of a mean shift regression model and case-deletion techniques. Based
on Taylor expansion of a perturbed model, von Rosen (1995) discussed the identification
of influential observations. Working with a spherical covariance structure, i.e., £ = o2I,,
Liski (1991) considered the detection of influential observations from a likelihood point
of view. Within the Bayesian framework with a non-informative prior

(1.3) p(B,=71) o {det(E~1)}~(PH1)/2

Geisser (1970) obtained the posterior density of the regression coefficient B. In fact it
is a matrix-variate student ¢ distribution (see e.g. Dickey (1967)). Furthermore, Pan et
al. (1998) showed that the posterior distribution of the dispersion component £~ is a
mixture of two Wishart distributions.
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From the Bayesian point of view, in this paper we consider the influence of a subset
of observations on the posterior distributions of parameters in the GCM with UC. The
measure used to assess the influence is based on the Bayesian entropy, i.e., the KLD
measurement. In Section 2, several new properties of this Bayesian entropy are outlined,
and then analytically closed forms of the KLD measurement for the matrix-variate nor-
mal distribution and the Wishart distribution are established. With the non-informative
prior (1.3), in Section 3 the posterior distributions of parameters in the model are given
for later uses. Specifically, in this section we present the KLD measurement for a single
parameter, i.e., B or ¥, and for their combination, i.e., (B, X) as well. For illustration, a
practical data set is analyzed in Section 4. Finally, a discussion on the approach is given
in Section 5. All the technical details on proofs of the theorems are postponed until the
Appendix.

2. Bayesian influence measurements

In this section, we first introduce the definition of Kullback-Leibler divergence
(KLD) and then give several new properties of this Bayesian entropy. Furthermore,
analytically closed forms of the KLD measurements for the matrix-variate normal dis-
tribution and the Wishart distribution are provided, which play important roles in the
detection of influential observations in the GCM with UC. Tu save space, we do uot
intend to give the technical details of these results here. Readers who are interested can
get the details by contacting the authors.

2.1 Kullback-Leibler divergence

Suppose @ is a parameter vector in a statistical model M (@). Without loss of gener-
ality, the sample matrix Y can be partitioned into Y = (Y;) : Y1), where I is a subset
of the index set {1,2,...,n} and n is the sample size. With a prior density of 8, say p(6),
the posterior densities of the parameter 8 based on the full observations Y and the par-
tial observations Y’y are available and denoted by p(6 | Y') and p(@ | Y)), respectively.
How should we measure the difference between those two posterior densities p(@ | Y)
and p(6 | Y(7))? One of the commonly used measures is the Kullback-Leibler divergence

(KLD):

(2.1) K1(0) = K[p@| Y1) p@|Y)] = Epey ) {log %} ’

which measures the effect of Y1 on the posterior distribution of the parameter 8. Since
the KLD measurement (2.1) is in general asymmetric, in other words, the measurement
K[p(8|Y (1)), p(0|Y)] does not necessarily equal to K[p(@ | Y),p(f | Y (1))], some authors
such as Johnson and Geisser (1983) and Guttman and Pena (1993) suggested using a
symmetric version, for instance, the average of the measurements K(p(6 | Y (p)),p(0 | Y)]
and K([p(8|Y),p(0 | Y(r))], known as Kullback-Leibler symmetric divergence, to replace
the KLD weasurciuent Kr(@). Siuce the mcasurcinent Kp(@ | Y7), p(@ | Y(I))] cau be
calculated in a similar manner to K;(@), our attention here is directly paid to the KLD
measurement in (2.1). For the measurement Kj(6), we have to explore some properties
which are related to Bayesian diagnostics.

LEMMA 2.1. The KLD measurement (2.1) is invariant under a one-to-one mea-
surable transformation of the parameter vector 8.
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According to the definition of the KLD measurement, the argument in Lemma 2.1
holds obviously. It indicates that appropriate transformations of parameters can be made
and the resulting KLLD quantities are invariant in order to calculate analytically the KL.D
measurement for some complicated models. This conclusion will be frequently used in
this paper. The following lemma shows the relationship between the KLD measurement
and its marginal form.

LEMMA 2.2. Let @ = (6; : 603). The KLD measurement K;(0) can then be decom-
posed into

(2.2)  K1(8) = K1(61) + Epa,|v ;) [K1(82 | 61)] = K1(02) + Epo, 1y 1)) [K1(61 | 62)],

where K1(0y | 61) = K[p(02 | (61,Y(1))),p(02 | (61,Y))] denotes the KLD measurement
between the posterior densities p(f2 | (01,Y (1)) and p(6: | (6:,Y)).

Lemma 2.2 provides a decomposition of the KLD measurement, which is useful when
only a subset of parameters, e.g., the regression coefficient B, in the model is of interest.
Particularly, if the random variables 8, | Y and 6 | Y are mutually independent, then
we have Ki(0) = K1(61) + K1(6:), which indicates that the KLD measurement on the
total parameter @ = (6, : 65) is the sum of those on the individual components 6; and
Ay

2.2 Kullback-Leibler divergence for matriz-variate distributions

In the GCM with UC, we will see that the posterior distributions of the regression
coefficient B and dispersion component ¥ involve matrix-variate normal distribution and
Wishart distribution, respectively. The KLD measurements for these two distributions
thus need to be studied first, and the related results are presented as follows.

LEMMA 2.3. Suppose pi(e) and pa(e) are the density functions of the matriz-
variate normal distributions Np ,(M1,%5:,1) and Np (M2, 35,8), respectively, then
the KLD measurement between py(e) and ps(e) is given by

(2.3) 2K (p1(), p2(e)) = — pn — plog det(2,2; ") — nlog det(Zh ;")
+tr(2 ) tr(Z 551 + tr{(Me — M)Q (M, — M) 2571},

where My, £; > 0 and ; > 0 (i = 1,2) are the p x n, p X p and n X n matrices,
respectively.

In particular, when n = 1, i.e., p;(e) is the density of the p-variate normal distribu-
tion, say Np(p,;,%;) (¢ = 1,2), then (2.3) is reduced to

2K (p1(e),p2(e)) = —p — log det(21)351) + tr(zlzz—l) + (g — l‘l)Tzz—l(#z — )

This special case was considered in the literature, for example, by Guttman and Pefia
(1993). For the Wishart distribution, it seems to us that the KLD measurement was not
given in the literature hefore. We find that it is relatively simple and is presented in the
following Lemma.

LEMMA 2.4. Suppose pi(e) and pa(e) are the density functions of the Wishart dis-
tributions Wy (n1, ) and Wy(ng, Xy), respectively, then the KLD measurement between

p1(e) and pa(e) is given by
(24) 2K (p1(), p2(e)) = ¢+ n1 tr(E, 55 ") — ng log det(Z,2571),
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where n; > p,¥; > 0 (i = 1,2) and ¢ is a constant which is independent of the parameters
Y1 and X,

Obviously, Lemma 2.4 is a generalization of Guttman and Pefia (1993), where the
KLD measurement for x2-distribution was considered.

3. Bayesian influence measurements in the GCM with UC

In this section, the KLD entropy and its properties shown in Section 2 are employed
to measure the effects of a subset of observations on the growth fittings. With the non-
informative prior (1.3), the Bayesian influence measures based on the KL.D measurement
are established in the GCM with UC.

3.1 Posterior distributions

On the posterior distribution of the regression coefficient B with respect to the non-
informative prior distribution (1.3), it is a matrix-variate student t-distribution. More
specifically, we have

LEMMA 3.1. In the GCM with UC, with the non-informative prior density (1.3),
the posterior distribution of the regression coefficient B is a matriz-variate student t-
distribution

(3.1) B|Y ~tn . (B,N' R V),

where B is the MLE of B, i.e., B= (X"8™'X)'X"87'YZ"(22")"', N = X"S7'X,
S =Y, —Pz)Y,R=(2Z")' +(2Z")7'2Y"QQ"SQ)~'QYZ"(ZZ")~" and

v=n—m-—r-+1.

On the matrix-variate student ¢-distribution (3.1), the first component B denotes

its location, the second and third represent the associated dispersion component, and
the fourth component is the degree of freedom in the distribution. For more details on
the matrix-variate student t-distribution, see Dickey (1967) and Muirhead (1982). In
Lemma 3.1, the matrix R involved in (3.1) seems to be somewhat complicated, but its
inverse has a relatively simple form R™' = Z(I,, — Py-g)Z", which is independent of
the specific choice of @ € Q because Pyrq is a projection matrix. This fact will be
useful in our subsequent consideration. On the other hand, our major concern about
the regression coefficient B is to calculate its KLD measurement. The exact form of the
KLD entropy for the matrix-variate student ¢-distribution, however, is too complicated
so that an appropriate approximation to the KLD measurement could be considered
alternatively. For the matrix-variate student t-distribution (3.1), in particular when the
sample size n is sufficiently large, it can be approximated by a matrix-variate normal
distribution
(3.2) B|Y~Ny, (B, [vN] ™, K)
(see, e.g., Pan (1995)), where the notation “~” means “approximately distributed”.
In fact the approximation is in density convergence so that the KLD measurement for
matrix-variate normal distribution can be used to approximate that for matrix-variate
student t-distribution. More details can be referred to Box and Tiao (1968) and Dickey
(1967).
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The posterior distribution of £~! is somewhat complicated and actually it can be
viewed as a mixture of two Wishart distributions, which makes the calculation of the
KLD measurement of £, say K;(X7'), rather difficult. Nevertheless, Lemma 2.1
guarantees that K;(X7') is invariant under all one-to-one transformations of £=!. We
thus pay our attention to looking for such appropriate transformations so that K;(X™")
can be calculated analytically. In what follows two such transformations are proposed
and the posterior distributions of transformed parameters are established with respect
to the non-informative prior (1.3). First, since rank(X) = m, there exist two orthogonal
matrices I' and I'™ with orders p x p and m x m, respectively, such that

(3.3) X=F<3>PH§@VPQ<3>P

where A = diag(A1, A2, ..., Am), A2 > 0 (1 < i < m) are the eigenvalues of X™ X, and Iy
with order p x m is the submatrix of I'. Now, make the transformation

_ Q Q
3.4 Q=02 'r=( " 12)
(3.4) <921 Dy )’

where the partition of 2 corresponds to that of I'. Second, set a further transformation
Vi V12) ( O 91—1912)
3.5 V= = _ 1
(3:5) <V21 Vaa D107 Doy )7

where 991 = Q90— 291 1 11912. For those transformed parameters, we have the following
conclusions.

LEMMA 3.2. In the GCM with UC, with the non-informative prior (1.3), the pos-
terior distribution of the reparameterized dispersion matriz V consists of

(3.6) Vit | Y ~ Wi (n —r, ¥y),
V12 , (V11,Y) ~ Nm,(p—-m) (V*avl_lla‘llz_l)a
V22 | Y ~ Wp_m(n — m,\Ilgl),
and Voo | 'Y is independent of (V11,V12) | Y, where V* = —(T]STy)(T38T,) "1, ¥, =

I8, ¥, = 58T, W3 =T5YY'Ty, S is given in Lemma 3.1, and Ty (i = 1,2) s
defined by (3.3).

By the use of Lemma 3.1 and Lemma 3.2, we can also obtain the conditional poste-
rior distribution of B given 7!, which will be useful for calculating the KLD measure-
ment of the parameter pair (B, X).

LEMMA 3.3. In the GCM with UC, with the non-informative prior (1.3), the con-
ditional posterior distribution of B given ¥7! can be written as

(3.7) B | (EilaY) ~ Nm,T('BZ: (XTEX)il! (ZZT)—1)7

where By = (XS X)IX"E7YZ7(ZZ7)7Y, i.e., the matriz 8 in the MLE of B s
replaced by the matriz X.

For the technical details on proofs of Lemma 3.2 and Lemma 3.3, one can refer to
Pan et al. (1998).
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3.2 Bayesian influence measurements

In this subsection the KLD measurements for the regression coefficient B, the dis-
persion component ¥, and their combination (B, X) are considered, respectively. Since
the technical details of the derivations on the KLD measurements are troublesome, we
only summarize the results in the following theorems and postpone the proofs until the
Appendix of this paper.

Let I = {iy,%2,...,%x} C {1,2,...,n} (n > p+k) be a subset containing the indices
of the k£ individuals to be deleted, where the number & is given in advance. Without
loss of generality, the index set can be assumed tobe [ = {n —k+1,n—k+2,...,n}
so that the response matrix Y can be partitioned into Y = (Y/;) : Y;), where Y =
(Yn—t41:Yn—ks2,-- - Ypn)- Correspondingly, the matrices Z and € are partitioned into
Z = (Z() : Z1) and € = () : €1), respectively. Then, the GCM after deleting Y7
becomes

(3.8) {YUV:XBZur+Qn
‘ €1y ~ Np,(n-k) (0,2, L),

which is known as the multiple individual deletion model (MIDM), see, e.g., Pan and
Fang (1995). For the MIDM (3.8) with UC, Lemma 3.1 also implies that

(39) BlY([) Ntmyr(.AB(I), N(_ﬁ, R(I),V*),

where B(I) = (XTS(-ﬁX)—IXTS&§Y(I)ZZI)(Z(I)sz))—l, S(]) = Y(I) (In_k — PZ(TI))Y‘(rI)’
Ry = (ZyZ{n)™" + ZuZn) ' Zay)Y(nQQ Sn@) QY 1 Z(1(Z1yZ{1) ™",
N = XTS(*AX and v* =n—~k —m— 1+ 1. Due to the reasons mentioned above,

an approximation to the matrix-variate student t-distribution (3.9) should be considered
alternatively. In particular, when the sample size n is sufficiently large, (3.9) can be
approximated by a matrix-variate normal distribution

(3.10) B|Y(5y~Nm:(B(p, [v*"Nry] ™ Rny).-

Based on (3.2) and (3.10), the KLD measurement for the regression coefficient B can be
established approximately, which is summarized in the following theorem.

THEOREM 3.1. In the GCM with UC, with the non-informative prior (1.3), the
KLD measurement of the regression coefficient B can be written approzimately as

(3.11) 2K;(B) = (n—m—r+1)

t{K[(ZZ") ' Z(I, — Py-Q)Z"(ZZ") 'KV AV}

- eV )

r{(Pz- +Z7(22") ' Z;(I, — H;)"'Z7(Z2Z")"'Z2)(I, — Py-q)}
+u{(YZ" - Er(Iy —I;)"1Z27)(227) 121, — Py u)27(227)~!
-(YZT - E/(I, - H;)™'Z1) Q@ SQ)™'Q"
(I, + BV EfQ(Q"SQ)™'Q")}]

— mlogdet{I, + (YPz- Y™ - Y ;Y] +E[(I, - H;) 'E])

QQSQ)'Q (I, + EIVI'ETQ(Q™SQ)'Q")}
—mlogdet{(I, — H;)"'} —rlogA; + c1,
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where K; = Z; —ZYTQES'lQSEI, Vi=I-H;— }Qg-S‘lQSEI, Qs =8Q(Q"SQ)~!
Q,Q¢€ 9, A = E] _1X(XTS_1X)—1XTS_1EI, Py-q =Y QQYY Q)'QY,
H; = Z}-(ZZT)_lzI, E = Y(In —Pgz-) = (E(I) - Ep), A; = det{Ik +A1(Ik — H; —
E}S'IEI)_l}_l, and the constant ¢; is independent of the index subset I.

Theorem 3.1 implies that the KLD measurement of the regression coefficient B not
only depends on the generalized Cook’s distance D;(R™", (X" S™'X)~!) given by (A.3)
in the Appendix, but also contains the information of discordant outliers provided by
the statistic A7, where A is actually the likelihood ratio statistic for detecting multiple
discordant outliers, see Pan and Fang (1995) for more details. On the other hand, for
the dispersion component X, the following theorem presents the analytical form of its
KLD measurement.

THEOREM 3.2. In the GCM with UC, with the non-informative prior (1.3), the
KLD measurement of the dispersion component ¥ can be expressed as

(312) 2K1(E) = (n—k—r)tr{A;(Iy —H; — E}ST'E;) "™} + (n—r)log A;
+ (n—k —m) tr{(I, — A}) 7'} + (n — m)logdet{(I; — A})}
+mtr{(l, — H)V7YY — mingdet{(I,, — H,)V;7!}
+(n—-k—r)tr{A;(Ixy —H; - E{ST'E;) (I - Hr — V)V;'} + ¢,

where the definitions of Ar, Hy, Er, Vi and A; are the same as those given in The-
orem 3.1, and AT =Y1QQ'YY'Q)~1Q"Y . The constant cy does not depend on the
index subset I.

When both of the regression coefficient B and the dispersion component ¥ are of
interest, the associated KLD measurement can be calculated in terms of those on B and
¥, according to Lemma 2.2. The main results are summarized in what follows.

THEOREM 3.3. In the GCM with UC, with the non-informative prior (1.3), the
KLD measurement of the parameter pair (B, X) can be simplified to

(3.13) 2Ki(B,X)=(n—k—r)tr{A;(Ix — Hr —E;S'E;)"'} + (n—r)log As
+ (n—k—m)tr{ITx — A}) 7'} + (n — m) log det{(I}, — A})}
+mtr{(I, — Hr)V;'} — mlogdet{(I, — H;)V'}
+(n—k-r)tr{A/(I —H; - E]S'E;) ‘(I ~H; - V)V7'}
+ mlogdet{(Iy — Hp)} + mtr{H;(Ix — H; — E;S 'E;)~'}
+(n—k—-m~-r)tr{H/(Iy - H — E;S7'E;)™}
(A - AV'ADIy —H; — E7ST'E;) 7'} 4¢3,

where the definitions of A, &, Vi und Ar wre the sume us those defined in Theo-
rems 3.1-3.2, and the constant c3 is independent of the index subset I.

Although the results in Theorems 3.1-3.3 are somewhat troublesome, the KL.D mea-
surements are of analytically closed forms. So, the computations on those measurements
are straightforward and intensive computations such as Gibbs sampling methods used
by Carlin and Polson (1991) are not necessary in the GCM.
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4. An illustrative example

In this section, the diagnostic techniques proposed in this paper are applied to a
practical data set analyzed by Rao (1987), and Lee (1988, 1991). The primary objective
is to illustrate applications of the Bayesian influence measures. Thus, an unstructured
covariance matrix is assumed for the practical data set in our analysis. For more details
about the model selection criteria with respect to the covariance structure, one can
refer to Lee (1991). In addition, for simplicity, we only consider single case-deletion.
In other words, each single observation is deleted in turn with k¥ = 1 and I = {i}
(1 < i < n). In the data analysis, when either one of the parameters B and ¥ > 0 or
both of them are of interest, the KLD measurements K (B), K (X) and K} (B,X) are
calculated using Theorems 3.1-3.3, respectively, where K} (e) is the KLD measurement
K () without the associated constant ¢;. In other words, the measurement is defined by
K;(e) = (2K;(e) — ¢;)/2, where ¢; is the constant involved in the theorem, see (3.11)-
(3.13).

Dental Data This data set was first considered by Potthoff and Roy (1964) and
later analyzed by Lee and Geisser (1975), Rao (1987) and Lee (1991) for different study
purposes, focusing mainly on statistical inferences such as estimation, testing hypothesis
and prediction. Dental measurements were made on 11 girls and 16 boys at age 8, 10,
12 and 14 years. Each measurement is the distance, in millimeters, from the center of
the pituitary to the pterygomaxillary fissure.

Since the measurements are obtained at equal time intervals, the design matrices X
and Z, respectively, take the following forms:

(11 1 1Y\ (17, 0
X”(s 10 12 14) and Z‘(o 1{6)’

where 1,, is a m X 1 vector with all components 1’s. The structure of the between-
design matrix Z emphasizes that two different groups of the observations are involved
in the study. For this data set, based on the likelihood case-deletion approach, Pan and
Fang (1995, 1996) indicated that the 24th observation, which belongs to the boy group,
is a discordant outlier. Also the 20th observation is the most influential observation.
Analogous conclusions were obtained by von Rosen (1995) in terms of a neighborhood
method based on the Taylor expansions.

Now, we use the Bayesian case-deletion approach to analyze this data set. In this
example the regression coefficient B and the dispersion component ¥ > 0 are 2 x 2
and 4 x 4 matrices, respectively. When we are concerned with influence analysis on
either parameter, i.e., B or X, or both parameters, i.e., (B, X), the numerical results are
calculated in terms of the influence measurements given in Section 3. Figure 1 gives the
index plot of the KLD measurement K;(B). We observe that the effects of the 24th,
20th and 15th observations on the posterior distribution of B stand out. In particular,
the 24th observation has the largest influence on the regression coefficient B. In tact,
it is also a discordant outlier in terms of a mean shift regression model (Pan and Fang
(1995)).

For the KLD measurement of the dispersion parameter ¥ displayed in Fig. 2, how-
ever, the largest influence is achieved at the 20th observation. The 24th observation has
the second largest influence on the posterior distributions of ¥. This is in agreement
with the results of Pan and Fang (1995) and von Rosen (1995). In addition, Fig. 2 also
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Fig. 1. Index plot of K} (B) for the Dental data.
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Fig. 2. Index plot of K} (X) for the Dental data.

shows that the effects of the girl group, indexed by the first eleven observations, on the
Bayesian inference in the GCM are significantly less than those of the boy group, indexed
from the 12th to 27th observations. The influence measures of the joint parameters B
and X for this data set is also calculated. It gives us very similar diagnostics information
to the KLD measurement of the dispersion component, i.e., K*(X). For brevity, it is
omitted here.

We are suggested by a referee that it may be worthwhile looking into the results
when the boys and girls are treated separately, because Lee (1988) already indicated
that the prediction is better when they are treated as from two different populations.
By treating the boys and girls separately, we found that in the boy group the information
on influential observations is very similar to that when the boys and girls are treated
together. In the girl group, however, we do find more information when it is studied
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Fig. 4. Index plot of K}(X) for the boy group in Dental data.

separately. To save space, we only display the index plots of KLD measurements for the
dispersion component ¥ here. Figure 3 presents the KLD measurement K} (X) for the
girl group while Fig. 4 is for the boy group. Figure 3 indicates that the 11th, 10th and
3rd observations in the girl group stand out and may be the influential observations on
the Bayesian inference for the girls. Figure 4 reveal quite similar information to Fig. 2,
in other words, the Yth and 13th observations in the boy group have large iuflluence on
the Bayesian inference of the boy population, which are the 20th and 24th observations
in Fig. 2, respectively.

In summary, the performance of the KLD measurement on the girl group is hidden
when the boys and girls are treated together because the influence of the boy group is
considerably much larger than that of the girl group. Therefore, it is better to treat
them separately, in particular when there is heterogeneity between the groups, which
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confirms Lee’s (1988) conclusion from the view point of diagnostics.

5. Discussion

In comparison with the likelihood case-deletion approach in the GCM with UC (Pan
and Fang (1996)), the Bayesian case-deletion technique can reveal more information on
influential observations. Both our theoretical and numerical results show this point well.
For example, for the regression coefficient B, (3.11) implies that the KLD measurement
K1(B) not only depends on the generalized Cook’s distance D;(R™*, (X" 871 X)~!) given
by (A.3), but also contains the information of multiple discordant outlier detection,
ie. A7 (Pan and Fang (1995)). Numerical analysis on the dental data shows that the
Bayesian case-deletion method detects not only the 20th observation as influential but
also the 24th observation as a potential influential point. The 24th observation is actually
a discordant outlier (Pan and Fang (1995)).
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Appendix. Proofs of theorems

PrOOF OF THEOREM 3.1. Firstly, by applying Lemma 2.3 to both (3.2) and (3.10)
we know that the KLD measurement of B is approximately equal to

(A1) 2K;(B) = —mr —mlogdet(RR™")
v\™ a— — a—
—rlog <7) det{(X"S;2X)"{(X"871 X))
+ Vl tr{Ry R~} r{(X"S A X) 1 (X787 X))
+vtr{(B- B))R™(B - B1))"(X"87'X)},

where Ry is defined in (3.9). Secondly, by using the relation between S and () given

by Pan and Fang (1995) and setting A; as the form in Theorem 3.1, we have

(A.2) tr{(XTS(“I;X)_l(XTS—lX)} =m — tr{A/V]'},
det{(XTS(_IéX)_l(XTS’_lX)} = det{I — A/V;'} = A,

where V; = Iy —~H;—E7;S ' E;+ A;. Thirdly, the relation between Band B(I) presented
by Pan and Fang (1995) shows

(A.3) tr{(B — B(;)R~*(B - B;))" (X" 87 X)}
=te{K7(Z227)"'Z(I, — Py-Q)2"(Z2") 'K,V 'A/V7'},

where K1 = Z; — ZY'Q(Q"SQ)'Q"E; and Py~ = Y'Q(Q'YY ' Q)~'Q"Y, which is
the generalized Cook’s distance and denoted by D;(R™!,(X"S™*X)~!) (Pan and Fang
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(1996)). Fourthly, we can show that

(A4) tr{R R} =tr[{Pz- + 27 (227 2:(I, — H)"'25(227)"'Z}(I, — Py+q))
tr({YZ" — E/(I, — H;)"'Z7}(ZZ2")'Z(I, — Py-Q)Z"
(2z")"Y{zy™ - Z;(1, - H;)"'E7}
Q@ SQ)'Q{I, + E/V'ETQ(QSQ)'Q"}]
and
(A.5) det{RR™'} = det{I, + (YPz-¥Y™ — Y Y] + E/(I, — H;)"'E7)
R SQ)'Q I, + E/VI'E[QQ™SQ) Q7))
-det{(I, — H;) '} det{Pz- (I, — Py-q)}.

where the matrices H; and E; are defined in Theorem 3.1. Finally, by substituting
(A.2)-(A.5) into (A.1), we know Theorem 3.1 holds and the proof is complete. O

PRrOOF OF THEOREM 3.2. Since the transformations from ¥! to V, given by
(3.4) and (3.5), are obviously one-to-one, we have K;(X) = K;(27!) = K;(V) according
to Lemma 2.1. On the other hand, using the partition of V given by (3.5), Lemma 2.2
shows that K;(V) = K;(Vy1,V12) + K;(Vaa) because (Vi1,Vi2) | Y is independent of
V2 | Y. Furthermore, K;(V) can be written as

(A.6) Kr(V)=EKi(Vi1) + Eyvo iy o) [E1(Viz | V)] + Kr(Vas).

According to Lemma 3.2, for the MIDM (3.8) with UC, we have Vi3 [ Y1) ~ Wir(n —

-T Fis(_ll)rl) Via | (Vu,Y(I)) ~ m(P m)( ?I)?Vﬁl;(FgS(I)Fﬁ_l% Voo | Y(I) ~
Wyem(n — k = m, ([T3Y ()Y 7T2)™!), and Vap | Y(y) is independent of (Vy1,V12) |
Y, where the deﬁnltxon of I (i = 1,2) is given by (3.3) and V{;) = —(I7SnI2)
(T38nT2)~!. By applying Lemma 2.3 and Lemma 2.4 to those facts, the KLD mea-
surements of the parameters Vi3, V1o | V11 and Vo can be expressed as

2K/ (Vir) = ¢ + (n— k — 1) te{(T]SAT)(TT87'T) )
— (n—r)log det{(F7S /T1)(CTS™'T1) "1},
2K1(Viz2 | V1) = —m(p — m) — mlogdet{(T38I2) " (I5ST2)}
(A7) +mtr{(T38(T2) " (T3 ST2)}
+tr{(V* = V() ([T38T) (V" = Vi) Vi,
2K (Vaz) = c3 + (n — k —m) tr{(T5Y (5 )1"2) HTIYY™T,)},
= (n—m)log det{(T3Y (Y T2)~ HTTYY™Ty)},

respectively, where the constant ¢} (i = 1, 2) does not depend upon the index subset I. In
addition, by noting that I’y (T]ST;)~'T] = X(X"SX)~!X" and FIS&;Fl =T787'I, +
TS~ 'E[(I, — H; — E;S™'E;)"'E7S™'T",, we establish that

(A.8) 2K (Vi) =ci+mn—k—-r)+ (n—r)logAs
+(n—k—r) tr{AI(Ik - H;— E}-S—lE[)—l},
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where Ay is defined in Theorem 3.1. Similarly, for K;(V3), since T (T3YY ' Ty) 71T =
RQRYY Q'Q" Q€ Q, and (T3 ()Y 7)) = (TjYYTy)~1 + (TJYY'T,)~'ITY,
(It — A}) 'Y TR (TIYYT,) 71, where Af = Y7Q(Q'YY™Q)~'Q7Y, we have

(A9) 2K;(Vao) =c3 + (n—k—m)(p—m—k)
+ (n=k—m)tr{(Ix — A})"'} + (n — m) logdet{ (I, — A})}.

Finally, for K;(Vi2 | Vi), by using the following facts, Tp(I5ST,)"'I'; =
RERTSY)™Q" = 71 - STIX(XTST'X)TIXTSTY, (T38(yTe)~' = (T58Ty)~! +
(T38TL) "' T3 BV BTy (T3 ST2) !, and EFQ(Q7SQ)"'Q"E; = I, — H; -V, it can be
concluded that V{;) = V* + T X (X" 8™ X))~ X" S ' E;V EJT(I5ST2) 1. Therefore,
the KLD measurement of V5 | V11 can be written as

2K}(V12 | Vll) = —mk+ mtr{(Ik — H])Vl_l} — mlogdet{(Ik — H])Vl—l}
4+ te{ETST I X(XTST X)X T, VT X
(XTST'X)T' XTSI B, VI (I, - Hy - V)V

Furthermore, since Eyv,,|v ;) [Vi1] = (n—k—r)(T7S;\T1) and XTI (I78\T)TTX =
XTS("II)X =X"S'X+X"S'E;(Iy - H; — E7S™'E;)"'E}S'X, it is calculated that
(AIO) QEP(VuIY(;))[KI(Vl? | Vu)]
= —mk+mtr{(I - H)V;'} ~ mlogdet{(Iy — H;)V;'}
+ (n — k- T‘) tI‘{A;(Ik —H; - E;S_IEI)_l(Ik —H; — V])Vl_l}.

Substituting (A.8)-(A.10) into (A.6), then (3.12) is obtained and the proof is complete. O

PrOOF OoF THEOREM 3.3. On the one hand, Lemma 2.2 suggests that the KLD
measurement of (B, X) can be decomposed into

(A.11) Ki(B,X) = Ki(B,£7") = K1(37") + Epm-1y,,,) [K1(B | Z71)),

where the KLD measurement K;(X™!) is given by (3.12). On the other hand, for the
MIDM (3.8) with UC, Lemma 3.3 implies B | (£7.,Y(;)) ~ Ny, (Bs,
(XTE—IX)—I, (Z(I)Z’(rl))_l), where BE(I) = (XTE_1X)_1XTZ_1Y(I)ZZ-I)(Z(I)ZZ—I))_I.
Using Lemma 2.3 we have 2K;(B | &™) = —mr — mlogdet{(ZnZ7;)) " (Z27)} +
tr{(Bg — Bs()(227) (Bs — Bs1))"(X"S7' X)} + mtx{(Z(1yZ]1)) " (ZZ7)}. 1t can be
shown that By = By — (XS X)"'X"S™ E; (I — H;)~'Z5(Z27)~". So, the KLD
measurement K;(B|X™') can be further simplified as

(A12) 2K;(B|T7Y)
= —mr +m(r — k) + mlogdet{(Iy — H7)} + mtr{(I — H;)~'}
+ {7 ' X(X"S X)) XS B (Iy — H)'H (I, — H) " EG).

The remaining task is to calculate the expectation of (A.12) with respect to the pos-
terior p(Z7! | Y(;)). In the similar manner to the proof in Theorem 3.2, the quantity
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TTIX(X"E71X)7'X"E ! involved in the last term in (A.12) can be expressed as a func-
tion of the transformed dispersion components Vy, V15 and Vas. In this way, the poste-
rior distributions of V11, V12 and Va3 can be used to calculate Ejm-1)y ) [K7(B | =),
which can be simplified into

[mlogdet{(Ix — H;)} + mtr{H;(Iy —H; - E7S'E;) '} + (n—k—m—r)
te{H (I — Hr - E1S" Er)~' (A1 - AV A (I - Hi - B1S7'Er)™'}]/2.

Substituting this fact and (3.12) into (A.11), then (3.13) is obvious and the proof is
complete. O
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