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Abstract. A Bayesian approach is developed to assess the factor analysis model.
Joint Bayesian estimates of the factor scores and the structural parameters in the
covariance structure are obtained simultaneously. The basic idea is to treat the latent
factor scores as missing data and augment them with the observed data in generat-
ing a sequence of random observations from the posterior distributions by the Gibbs
sampler. Then, the Bayesian estimates are taken as the sample means of these ran-
dom observations. Expressions for implementing the algorithm are derived and some
statistical properties of the estimates are presented. Some aspects of the algorithm
are illustrated by a real example and the performance of the Bayesian procedure is

studied using simulation.
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1. Introduction

Factor analysis is an important statistical method that has wide practical appli-
cations. Historically, it was developed by psychometricians (e.g., Thurstone (1944))
originally for the analysis of individuals’ scores on mental tests; however, the model
has recently been applied to a much wider range of situations; for example, analyzing
sets of economic quantities, sets of tests of attitudes and behaviors, and sets of physical
measurements. The definition of the model is given by the following equation:

(1.1) y=A{+56,

where y is a p x 1 observed random vector, A is a p X r factor loading matrix, (isa r x 1
vector of factor scores and § is a p X 1 random vector of error measurements. In this
model, the random vector y is expressed as a linear combination of a relatively small
number of latent factors in ¢ and a residual vector §. Hence, the original interest was to
find A and ¢.

Suppose the distribution of § is N[0, W], where W is a diagonal matrix. In the
classical analysis of the model, the latent vector of factor scores ¢ was either treated as
a random vector or as a vector of incidental parameters that varies from observation
to observation. In the latter case, it has been shown by Anderson and Rubin (1956)
that the likelihood function based on a random sample {y;,i = 1,...,n} does not have
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a maximum and the joint maximum likelihood estimates of the factor scores and the
unknown parameters in A and ¥ do not exist. Hence, it became a common practice to
treat the factor scores as random. Under the assumption that ¢ is distributed as N[0, @]
for some positive definite covariance matrix @, the model was then analyzed within the
covariance structure analysis (also known as structural equation modeling) framework,
where the structural parameter vector # that contains the unknown parameters in A,
® and ¥ is estimated via standard approaches such as maximum likelihood (ML) and
generalized least squares (Browne (1974); Joreskog (1978); Lee and Jennrich (1979); and
Bentler (1983)). Under this framework, the estimation of factor scores is not involved
and the main application of the factor analysis model is to find a plausible structure
for the covariance matrix of y that can explain the underlying theory of the practical
situation. To obtain a solution of the basic problem in estimating the factor scores,
most existing methods (e.g., Lawley and Maxwell (1971); Bartholomew (1981)) have to
assume the unrealistic assumption that the structural parameter vector @ is known. In
practice, since @ is unknown, it is replaced by its estimate and the sampling errors are
ignored.

This article develops a Bayesian approach in estimating jointly the parameter vec-
tor @ and the factor scores in a confirmatory factor analysis model. According to our
knowledge, existing published work relating to Bayesian analysis of the factor analy-
sis model is rather limited Rased on the restrictive exploratory factor analysis model,
Martin and McDonald (1975) proposed a Bayesian procedure to handle Heywood cases.
Bartholomew (1981) gave Bayesian estimates of the factor scores in a general confirma-
tory factor analysis model; however, elements in @ were not estimated. Based on the
same confirmatory model, Lee (1981) used a hierarchical Bayesian approach to estimate
0, but factor scores were not estimated. The proposed Bayesian procedure in this article
is more general than the above cited work in one or more aspects. We will consider the
general confirmatory model, and joint Bayesian estimates of @ and the factor scores will
be produced simultaneously. Hence, direct factor scores estimates that do not express
in terms of @ are produced. It will be shown that the joint Bayesian estimates are gen-
erally better than the classical ML estimates, and they are fairly robust to the prior
information on the values of the hyper-parameters in the prior distributions.

The idea of our procedure is to utilize the distributional properties of the funda-
mental latent factor scores by treating them as missing data. This missing data set will
be augmented with the observed data to generate a sequence of random observations of
@ and factor scores from the appropriate posterior distributions via the Gibbs sampler.
Then, based on the simulated sample, the analysis of the model can be carried out easily
by means of some standard data analysis methods.

The structure of the paper is as follows. The main Bayesian theory for the confir-
matory factor analysis model is developed in Section 2. Expressions for implementation
of the Gibbs sampler in generating the random observations from the appropriate pos-
terior distributions are also presented in this section. Here, some related statistical
properties will be discussed as well. To illustrate some aspects of the algorithm and the
performances of the Bayesian procedure, results from analysis of a real example and a
simulation study are reported in Section 3. Finally, Section 4 prescuts some concluding
comments. Some technical derivations are presented in the Appendix.

2. Bayesian analysis of the factor analysis model

Consider a random sample {y;, ¢ = 1,...,n} that satisfies the factor analysis model
as given in (1.1). Let Y = (y1,...,yn) be the observed data matrix, Z = ((1,...,(,) be
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the matrix of latent factor scores, and # be the structural parameter vector that contains
the unknown elements of A, ® and ¥ in the covariance structure X(8) = A®A’ + ¥ of
the model. It is assumed that the model X(@) is identified; and in order to achieve this,
some appropriate elements in A may set equal to fixed known values. From a Bayesian
point of view, this is equivalent to assigning the fixed values to these parameters with
probability one, and in the analysis, they are not estimated. In our analysis, we will use
the following essential idea behind the EM algorithm (Dempster et al. (1977)): treat the
latent factor scores in Z as hypothetical missing data, and augment the observed data
set Y with Z to develop the Bayesian procedure. In the posterior analysis, a sufficiently
large sample of (8, Z) from the joint posterior distribution of  and Z given Y is generated
by the Gibbs sampler algorithm (Geman and Geman (1984)) as follows: At the (j+1)-th
iteration with a current values of 6, say %9

(c1) generate ZYU*Y) from p(Z | Y,09)),

(c2) generate 89TV from p(8 | Y, Z\); update j, return to (c1) and continue,

where p(- | -) indicates the conditional density function. It has been shown (Geman
and Geman (1984); Geyer (1992)) that under mild conditions and for sufficiently large
§, say J, the joint distribution of (8, Z(')) converges at an exponential rate to the
desired posterior distribution [#,Z | Y]. Hence, [#,Z | Y] can be approximated by the
empirical distribution of {(§,Z®) .t = J+1,...,J + T} where T is chosen to give
sufficient precision to the empirical distribution. To obtain a more nearly independent
sample, observations may be collected in cycles with indices t = J + s, J+2s,...,J +
T's for some spacing s (see, Gelfand and Smith (1990)). However, in most practical
applications a small s will suffice for many statistical analyses such as getting estimates
of the parameters and standard errors, see Zeger and Karim (1991), Albert and Chib
(1993). To implement the algorithm, conditional distributions of @ given (Y, Z), and Z
given (Y, ) are required. These distributions are discussed as follows.

2.1 Conditional distribution of Z given (Y, 8)

The derivation of p(Z | Y,8) is based on the definition of the model and the distri-
butional properties of the random vectors y; and ¢;. It is noted that fori =1,...,n, {;
are mutually independent; and y; are also mutually independent given ({;,8). Hence, we
have

(2.1) p(Z|Y,0) = Hp G lyi,0) Hp(Ci 16) p(yi | i, ).

=1

Moreover, since the conditional distributions of {; given 8, and y; given ({;, 8) are N(0, ®)
and N (A(;, ¥) respectively, it can be shown that the conditional distribution of ¢; given

(¥;,0) is given by

(22) G0 2 N(@ AT ATy, (@7 4 NTA)T,

where [- | ] denotes the underlying conditional distribution. Hence, the conditional
distribution of Z given (Y',8) can be obtained from (2.1) and (2.2).
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2.2 Conditional distribution of 8 given (Y, Z) with conjugate prior distributions

The conditional distribution of @ given (Y, Z) is proportional to p(@)p(Y,Z | 8).
Hence, it is necessary to select the prior probability density function p(f) that represents
the prior information of #. Based on the factor analysis as defined in (1.1), we first note
that with given Z the underlying model becomes a regression model with parameters
A and ¥ only. On the other hand, only the parameter matrix @ is involved in the
distribution of the latent factor ;. Hence, it is reasonable to assume that the prior
distributions of (A, ¥) and @ are independent. As a result, in this paper we specify the
prior distribution as follows:

(2.3) p(6) = p(A, @, %) = p(A,¥) p(®).

Moreover, the distribution of Y only depends on A and ¥ when 2 is given, and the
distribution of Z only involves ®. Consequently, it follows that

(24) p(AY®|Y,Z)=p(0|Y,Z) cp(Y,Z|0)p(6) =p(Y |0,2)p(Z | 0)p(6)
=p(Y | 6,Z)p(Z | 9)p(A, ¥)p(®)
=[p(A, ) p(Y | A, ¥, Z)] - [p(Z | @) p(®)].

Since the first term of the product on the right hand side of (2.4) depends only on
(A, ¥) while the second term depends only on @, the marginal conditional densities
p(A, ¥ |Y,Z) and p(® | Y, Z) are proportional to p(A, ¥)p(Y | A, ¥, Z) and p(Z | ®)p(®),
respectively.

Now, we need to select prior distributions for (A, ¥) and ®. Based on the justifica-
tions and rationale given in Raiffa and Schlaifer (1961), Lee (1981), Lindley and Smith
(1972), Broemeling (1985), and Press and Shigemasu (1989), the following conjugate
type prior distributions are considered. Let ¥ and A} be the k-th diagonal elements
of ¥ and the k-th row of A respectively. For any k& # h, we assume that the prior
distribution of 14 is independent of ¥y, and Ay is independent of Ay; moreover,

(2.5) Y} 2 Gammalook, Box),  [Ax | Ykl 2 N[Aok, YirHox), and
@—1 2 W[R07 Lo, T]a

where W[, -,-] denotes the Wishart distribution, ook, Bok, Aok, po and the positive
definite matrices Hor and Ry are hyper-parameters whose values are assumed to be
given from the prior information of previous studies or other sources. It will be shown
by our simulation study in the next section that the Bayesian solution is fairly robust to
the selected values of these hyper-parameters.

Let 75 = 1/),;,:, Y’ be the k-th row of Y, @y = (Hg,g1 +ZZ)7 o = Qk(HEkle;g +
ZY}), and By = Box + 27 (Y, Yk — Q% “ s + Ay Hyt Agk), it can be shown as in the
Appendix that for kK = 1,...,p, the conditional distribution of (Ag,vyx) given Y and Z

is independently distributed as the following Normal Gamma distribution (Broemeling

(1985)):

(2.6) [y |Y,2) 2 Gammaln/2 + cor, Bx], and  [Ax | Y, Z,vk] 2 Nipk, v Q.

Since p(Ax, v | Y,2) = p(vk | Y, 2)p(Ax | Y, Z, k), the conditional distribution of
(Ak,vk) given (Y, Z) can be obtained via (2.6).
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Moreover, from the prior distribution of @ ! given in (2.5) and the distribution of
¢ given @, which is N(0,®), it can be shown that

p@1Y,2) o @00t ep { L iRy e}

oo (155c076) |
i=1

= |Q|—(n+po+r+l)/2 exp {_% tr[@—l(zzl +R51)]}

Since the right hand side of above equation is proportional to the density function of an
inverted Wishart distribution (see, Zellner (1971)), we have

(2.7) [@|Y,Z] 2 1W((ZZ + R5Y),n + po, 1),

where IW[-, -, -] denotes the inverted Wishart distribution.

From results given in (2.4), (2.6) and (2.7), the derivation of the posterior distribu-
tion p(@ | Y,Z) is completed. This distribution will be extended to handle the general
gituation with fixed known clements in A as follows.

Let cx; = 0 if A, is a fixed parameter; and cx; = 1 if Ag; is an unknown parameter
fork=1,...,p,j=1,...,r,and vy = cg1 + - - - + ckr. Moreover, let A}’ be the 1 by ry
row vector that contains the unknown parameters in Ag; Z} be the ry by n submatrix
of Z such that for j = 1,...,r, all the rows corresponding to cx; = 0 are deleted; and

Y = (v}, - Yk, With
T
Uk = Uki — 2 MsCyi(1 = crj)-
j=1

The conjugate prior distributions defined in (2.5) about the loading matrix becomes

(2.8) (A | k) 2 NIASy, YruH,

for some hyper-parameters Aj, and Hp,. Let Q = (Hy' + Z5Z0) 71, pr = QL (HG!
Ay + Z3Y0), and By = fBox + S(YEVE — py@ i + AgiHy, 'AS,). Then, for k =
1,...,p, it can be shown from exactly the same reasonings as given in the Appendix that
the posterior distributions of (Af,~x) and @ corresponding to the conjugate priors are
respectively given by:

(2.9) [vx|Y,2) 2 Gammaln/2 + o, 8], ALY, Z,vk] 2 Nuj,7;'Q], and
[®|Y,Z) 2 IW([(ZZ' + Ry"),n + po, 7).

Based on similar reasonings, the Bayesian procedure can be extended to cover linear
constraints over the factor loadings. In this situation, the corresponding conditional
distribution may be slightly complicated than the Normal-Gamma distribution as given
in (2.9). Some general algorithms, such as the Metropolis-Hastings (Metropolis et al.
(1953); and Hastings (1970)) algorithm can be used to generate the required observations.

It is advantageous to use the conjugate prior distributions in the Bayesian analysis
if we have reasonable prior information about the hyper-parameters. Moreover, as will
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be demonstrated by our example and simulation study, the proposed procedure is fairly
robust to their selected values. It should also be noted that the conditional distributions
that required by the Gibbs sampler as given in (2.2) and (2.9) are very simple and draw-
ing observations from them requires little computational effort. Although the Bayesian
procedure developed in this paper is based on the conjugate prior, analysis with other
prior distributions can be considered similarly with the same reasonings.

2.3 Bayesian estimates and their statistical properties

Let {(O(t), Z (t)), t=1,...,T} be the random observations of (8, Z) generated by the
Gibbs sampler from the joint posterior distribution of # and Z given Y, E(8 | Y) and
Var(f | Y) be the posterior mean vector and the posterior covariance matrix, respec-
tively. The Bayesian estimate 6 of 0y can be easily obtained from the simulated random
observations as

L1
(2.10) b=7 > 6,

which is the sample estimate of F(@ | Y'), the posterior mean of 8 given Y. Based on the
results given in Geyer (1992), @ tends to E(f | Y) in probability as T tends to infinity
(independent of n). An estimate of the posterior covariance matrix can be obtained
easily via the simulated sample as well:

(2.11) Var(@|Y) = io@ 9)(6® — 8)'.

This estimate tends to Var(@ | Y) in probability as T' tends to infinity (also independent
of n). Other statistical inference on @ can be carried out based on the simulated sample
as well.

Assessing the plausibility of a proposed model is always a fundamental issue in the
analysis. Based on the posterior predictive assessment as discussed in Rubin (1984),
Gelman et al. (1996) recently proposed an approach for model-checking in a Bayesian
framework. It has been shown that (see Gelman et al. (1996) and the references therein)
this approach is conceptually and computationally simple, and is very useful in model-
checking for a wide varieties of complicated situations. Moreover, the required compu-
tation is a hyproduct of the common Bayesian simulation procedures such as the Gibbs
sampler or its related algorithms. Therefore, it is natural for us to apply their procedure
in achieving a goodness of fit assessment for our proposed model. To save space, we just
present the procedure; see Gelman et al. (1996) for a more detailed discussion.

As suggested by Gelman et al. (1996), we use the following sums of squares of
standardized residuals as a discrepancy variable in the procedure:

n
D(Y,0) = > yi(ARA +¥)'y;.
=1

Given {9(t),t = 1,...,T}, the following steps are performed for each #: (i) Given
6™, simulate a replicated data set, Y™P(t) = (yiep(t),...,yzep(t)), from its posterior
predictive distribution p(Y'P | 0,0(t)), where C denotes the proposed factor analysis

model with covariance structure A®A’ + ®. (ii) Calculate D(Y,8®)) and D(Y™P®) (D).
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Having obtained {(D(Y,8%), D(Y™*® ) t =1 ... T}, a scatter-plot of D(Y,8%)
against D(Y™P®), B(t)) is constructed to make a graphical assessment. A sample p-value
of posterior predictive assessment is defined as the proportion of the pairs for which
D(Yrep(t),ﬂ(t)) exceeds D(Y, B(t)). Since the procedure uses the available 6 the com-
putational burden is rather light.

We now consider the posterior analysis about the factor scores. For any given
individual g;, let E({; | %;) and Var(¢; | ;) be the posterior mean and the posterior
covariance matrix, and ¢;, be the true factor scores of ;. Similar to (2.10), a Bayesian
estimates éi of {;, can be obtained based on the simulated sample from the posterior
distribution as

T
.1
(2.12) G=752 ¢ i=1,...,n,
t=1

where (Et) is the i-th column of Z®. This gives a direct Bayesian estimate that does
not express in terms of the structural parameters or their estimates. Based on similar
reasonings as in Geyer (1992), it can be shown that {; is a consistent estimate of F((; |
¥i). A consistent estimate of Var(¢; | i) can be similarly obtained as in (2.11) with 8
replaced by ;. In practice, standard crror cstimates of elements in &z can be obtained
via Var(¢; | ¥;). It should be noted that both E(¢; | ¥;) and Var((; | ¥;) are difficult to
assess using the existing theory of factor analysis, see Bartholomew (1981).

3. Example and simulation studies

In this section, we present a real example and a simulation study to illustrate the
performance of the proposed Bayesian approach.

3.1 Numerical example: The language data
Fuller ((1987), p. 154) provided a real data set from a study about the writing skill
of nonnative speakers of English. One hundred faculty members were asked to read and
give scores to two essays using a five point scale for eleven items. The information on
each item in the data set is the sum of scores on that item for the two essays. A part of
the data set that involved six items was analyzed by Fuller (1987). To illustrate various
aspects of our proposed algorithm, this part of the data set was reanalyzed based on
the assumption that the random observations are coming from a multivariate normal
population with a factor analysis model. As suggested in Fuller (1987), the following
structure of A is considered in the analysis:
AN |?1 A 00 1 o]
Az Azz Azz A2 0 17

where elements with ‘0’ and ‘1’ are treated as fixed known values. Hence, the structural
parameter vector @ contains the unknown elements of A, the upper triangular elements
of & and diagonal elements of ¥. The total number of unknown structural parameters
1s 15.

Bayesian estimates with conjugate prior distributions are first obtained via our
proposed method. In practice, values of the hyper-parameters should be selected based
on the historical prior information of that particular research. In this example, we do
not have any historical information, so for illustration, ML estimates that obtained from
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Fig. 1. Values of EPSR for all 15 parameters for the Language Data (BAY I).

the first forty observations are used to provide values for elements in Ag;, Ro, aor and
Bok, k= 1,...,p. Let f\;, Vi and @ be the corresponding ML estimates. We select

s = A%; and since E(¥yi) = Box/ (o — 1) and E(®) = ﬁgl/(pg — 7 —1), we take
agr = 3, po = r+4, Box = (cok— 1)k and REI = (po—r—1)®. Finally, for convenience,
we take Hop = I, a 2 x 2 identity matrix. The Bayesian estimates were obtained with
the remaining sixty observations. The convergence of the Gibbs sampler is monitored by
the following method as described in Gelman (1996). Based on different starting values
of the structural parameters and factor scores, three parallel sequences of observations
are generated and the ‘estimated potential scale reduction (EPSR)’ values corresponding
to the 15 parameters are calculated sequentially as the runs proceed. As suggested by
Gelman (1996), convergence of these sequences has been achieved if the EPSR values
are all less than 1.2. Figure 1 presents the plots of the EPSR values against the iteration
numbers. We observe from this figure that the sequences converged rapidly. The values
of EPSR for all parameters are less than 1.2 after 100 iterations and less than 1.1 after
about 200 iterations.

After the sequences have been converged, a total of T' = 4000 observations are col-
lected with s = 1. Then, the Bayesian estimates and their standard errors estimates are
obtained via (2.10) and (2.11), respectively. The sample posterior predictive p-value is
equal to 0.476, indicating the proposed model fits the sample data. Moreover, ML esti-
mates of the structural parameters that based on the given data set Y are also obtained
from LISREL VIII (Joreskog and Sérbom (1994)). The Bayesian estimates (BAY),
the ML estimates and estimates of the corresponding standard errors are presented in
Table 1. We observe that the ML estimate of 155, the unique variance corresponding
to the fifth item, is equal to 0.06. Hence, this estimate is very close to an improper
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Table 1. Bayesian estimates (BAY) and ML estimates and their standard errors for the Lan-
guage Data.
Standard Standard
Estimates Errors Estimates Errors
Parameters ML BAY ML BAY Parameters ML BAY ML BAY
A11 0.77 1.04 018 0.18 P11 097 079 021 0.8
A12 028 0.06 0.18 0.20 P22 103 102 0.17 0.16
A2t 0.53 065 0.14 0.14 P33 097 103 020 021 .
Aa2 0.50 042 0.16 0.17 a4 0.97 1.01 0.21 0.21
As2 1.19 125 0.14 0.19 P55 0.06 040 026 0.13
Ag2 1.27  1.34 015 0.19 P66 0.89 093 017 017
$11 2.35 1.92 043 035
$12 115 109 0.25 024
¢22 141 131 032 031
o 0'#'
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%
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factor score 1
Fig. 2. Plots of the estimates of the factor scores for the Language Data.

Heywood case. As suggested by Lee (1980), Heywood cases in the ML estimation can
be avoided by imposing an inequality constraints on 1 with a penalty function. In our
Bayesian approach, the conjugate prior distribution of 1/1,:,3 specified Y, in a region of
positive values and hence has a similar effect as adding a penalty function. As a result,
no Heywood cases are found in the Bayesian solution because of the penalty function
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induced by the prior distribution on 1/),:,3. This phenomenon agrees with the results in
Martin and McDonald (1975).

The Gibbs sampler also generates a sequence of factor scores, {Z(t), t=1,...,T},
from the joint posterior distribution of (@, Z) given Y. For each individual y; the corre-
sponding Bayesian estimate of factor score, &i, is obtained from this sequence of obser-
vation via (2.12). For completeness, scores estimates were also obtained by the plots of
the factor score estimates are presented in Fig. 2. More detailed comparisons with the
existing methods will be given in the simulation study.

Bayesian estimates of this example have also been obtained with s = 50 and 100.
We found that the estimates obtained with different s are very closed to each other.
Using s = 1, Bayesian estimates have also been obtained with T' = 2000 and 8000. We
found that these estimates are very close to the previous one with 7" = 4000 (difference
only at the third decimal place). Hence, it seems that the choice of s and T is not

important in our analysis.

3.2 A simulation study

Results of a simulation study will be presented to give some ideas on the accuracy
of the Bayesian estimates and to compare their performances with some estimates ob-
tained by the existing methods. Several confirmatory factor analysis models with various
factor loading structures and different numbers of variables and factors have been con-
sidered. Results obtained from each of these different cases are quite similar, hence to
save space only detailed results obtained from the model with the following specifications
are presented:

A= 08 0 Ay A1 A1 0O 0 O p_ |1 12
0 08 O 0 0 ez Az As2 |’ d12 P22

and ¥ = diag{v11,...,%ss}. To identify the model, only ¢11, ¢12, P22, the diagonal
elements of ¥ and the Ag; in A are treated as unknown parameters, while others with
the given preassigned values are considered as fixed known parameters. Hence, there are
a total of 17 free unknown structural parameters in this model.

For each k, the true population value, ¥k, is obtained based on a simulated ob-
servation w,:kl from Gamma[10,9 x .36|, while the true value of A is then obtained
based on a simulated value from N(0.8,%kx0). The true value of @y is obtained based
on a generated observation of @' from the Wishart distribution W[R*~!/17,20,2] with
R*(1,1) = R*(2,2) = 1.0 and R"(1,2) = 0.6. To create data sets for the simulation
studies, random samples {¢;} and {6;} of size n were generated respectively from the
corresponding multivariate normal distributions with mean vector zero and true pop-
ulation covariance matrices @3 and ¥y as given from above. Then a random sample
{#;, i =1,...,n} was obtained with the true population matrix Ay according to equa-
tion (1.1). Three sample sizes n = 100, 300 and 500 were selected.

Based on our proposed procedure with the Gibbs sampler, the following Bayesian
estimates were obtained with different types of prior distributions; (i) BAY I estimates
based on conjugate priors with hyper-parameters obtained via the following procedure:
First, a data set {g;} with n = 300 was simulated, then the ML estimates of the 17
unknown structural parameters were obtained from the simulated data set. Finally,
we took agr = 10 and Hy, = Iy for all k, pg = 20 and the values of other hyper-
parameters such that the means of the prior distributions were equal to the corresponding
ML estimates just obtained. The conjugate prior distributions obtained via this proce-
dure represent distributions that give good prior information for the Bayesian analysis.
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Table 2. RMS between the structural parameters estimates and the true values.

n = 100 n = 300 n = 500
BAY ML BAY ML BAY ML
I II I IT I IT

A3l .091 .096 .159 057 .057 .081 .048 .048 .075
Ad1 .095 .105 .116 .059 .062 .057 .063 .056 .050
As1 .110 122 131 077 .081 077 .057 .060 .059
A62 .091 .102 .109 .063 .067 .073 052 .052 .053
A9 .087 .091 101 .061 .061 .065 .051 .051 .051
Ag2 .107 .113 119 .063 .067 .066 .053 .056 .054
11 .196 215 275 145 .159 .158 113 1260 .114
P12 141 145 .160 .091 .090 .092 069 .068 .069
22 .206 253 .261 126 .136 135 100 .108 .100
Y11 .069 .095 .110 .043 .058 .046 .034 .045 .033
Yao .062 .089 .066 .045 .049 .053 .030 .033 .031
Y33 .060 .071 .107 .044 .046 .055 035 .038 .047
Yaa .060 .054 077 .037 .035 .045 .028 .027 .030
Pss5 .067 .075 .100 .048 .051 .075 .039 .039 .047
Yee .0U8U U85 .U85 .065 .070 .075 052 .057 .055
Y7 .080 .080 .086 .050 .047 .048 .041 .040 .039
Yss .060 .062 .079 .042 .040 .046 .034 .033 .036

> RMS 1.662 1.853 2.141 1.116  1.176  1.247 .889 .937 .943

(ii) BAY I estimates based on conjugate prior distributions with the following hyper-
parameters: oo = 10, )‘akj = 04, Box = 9 x0.18 and Ho, = I, for all k, pg = 20,
Ry(1,1) = Rp(2,2) = 1/17 and Ry(1,2) = 0. It is noted that the prior values of Aok » Bok
and Ry are quite different from those in BAY I. After the algorithm has been converged,
we took s = 1 and T = 1000 in obtaining the Bayesian estimates. In analyzing the
structural parameters, for comparison sake, ML estimates were also obtained from the
LISREL VIII (Jéreskog and Sorbom, (1994)) program. The root mean squares (RMS)
between the estimates and the corresponding true values based on 100 replications are
reported in Table 2. To give a rough idea of the overall accuracy, the sums of the RMS
across the estimates are also presented in the last row. From this table, we observe that
(i) BAY I estimates that obtained with reasonably good prior information are accurate
and obviously better than the ML estimates. (ii) BAY II estimates with the rough prior
information are not as good as BAY I estimates, but the differences are rather minor.
This result indicates that Bayesian approach with conjugate prior is robust to the choices
of hyper-parameters. Apparently, when n = 100, and 300, the BAY II estimates with
some inaccurate prior information are still better than the ML estimates. As expected,
when n = 500, the differences between the two estimates are minor. (iii) As expected,
increasing the sample size improves the accuracy of the estimates.

From previous sections, we have shown that the Bayesian estimates of the factor
scores possess more established properties than the estimates obtained by the existing
methods. In the study of the empirical performance of the factor scores estimates, in ad-
dition to our Bayesian estimates, those using the existing regression method (REG) (see,
Lawleg and Maxwell (1971)) were also obtained. For each n = 100, 300 and 500, and
for each replication, the RMS between the n estimates obtained by various methods and
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Table 3. RMS between the factor scores estimates and the true values (n = 100).

Methods
Replications Bay I Bay 11 REG
20th C(1) .279(.343) .282(.323)  .333
((2) .436(.413) .423(.394) 416
40th C(1) .238(.243) .243(.237) 270
{(2) .269(.303) .271(.295) .276
60th C(1)  .299(.292) .302(.284)  .298
$(2)  .273(.308) .304(.317)  .298
80th {(1)  .313(.250) .311(.234)  .388
{(2)  .299(.279) .309(.285)  .298
100th &(1)  .307(.324) .307(.306) .301
{(2) .345(.388) .362(.364)  .354
3 RMS 3.058 3.114 3.232

Note: Averages of the standard error estimates across the n factor score estimates
are in parentheses.

the true factor scores {;} were computed. Unlike the estimation of the structural pa-
rameters that can be based on the information from the whole sample {y;,i =1,...,n},
in estimating the true factor score (o, the available information is the single particular
observed individual y; with only p measurements. With this limited information, it is
expected that ¢; may not be very close to (;o and its standard error may be quite large.
Moreover, the accuracy of the estimates is not improved with larger n. For each replica-
tion and each n, we have a RMS between the estimates and the true factor scores. It will
take too much journal space to present the RMS for all the 100 replications and for all
n = 100, 300, and 500. Hence, to save space, only the RMS corresponding to the 20th,
40th, . .., 100th replications with n = 100 are reported in Table 3, together with the av-
erages of the standard error estimates across the corresponding n factor score estimates.
The sums of the RMS across the estimates are also presented in the last row. The other
RMS values and averages of standard error estimates have similar behaviours and order
of magnitudes. From these results, it can be seen that the Bayesian estimates based on
conjugate prior distributions are slightly better than the REG estimates. Moreover, it
seems that the Bayesian estimates with conjugate priors are fairly robust to the choice
of the hyper-parameter values.

4. Discussion

Factor analysis involves a model that contains both observed and latent variables.
In the past years, since the joint ML estimates of the structural parameters and the
factor scores do not exist (Anderson and Rubin (1956)), the traditional methods in es-

timating the latent factor scores are not perfect because they depend on the unrealistic
assumption that the structural parameters are known. In practice, the unknown struc-

tural parameters are replaced by the estimates, ignoring the corresponding sampling
errors and the statistical properties of the estimates. In computing the standard errors
of the traditional factor scores estimates, some general Bootstrapping approaches may
be considered. But such approaches cannot be applied in a naive way and the compu-
tational burden involved may be heavy. In this paper, a Bayesian procedure has been
developed to provide joint estimates of the structural parameters and the factor scores
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which do not express in terms of the structural parameters. In previous sections, it has
been shown that the proposed procedure is efficient, simple to implement and produces
reasonably accurate estimates.

It is well-known that the Gibbs sampler is a powerful algorithm that can be applied
to solve complicated problems with ill-conditions and/or a large numbers of parameters,
see Gilks et al. (1996), Meng and van Dyk (1997), and the references therein. In this
article, the basic idea in computing the Bayesian estimates is to treat the factor scores
as missing data. Then, the efficient algorithm that based on the Gibbs sampler can be
applied by augmenting the observed data with the latent factor scores. In this way, the
distributional properties of the latent factor scores are incorporated in the analysis. From
(2.2) and (2.9), it can be seen that the conditional distributions required by the Gibbs
sampler are very simple, hence the effort in simulating observations from these distribu-
tions is light. Based on our experience from the empirical studies, the convergence of the
Gibbs sampler is quite rapid and the computational burden is not heavy. Moreover, the
rate of convergence is improved with the increase of sample sizes. For example, in the
simulation study, the average numbers of iterations required to achieve convergence for
n = 100, 300 and 500 are roughly 200, 150 and 100, respectively. The computing time
to create 100 replications in our simulation study with n = 100 is roughly ten minutes
using a HP9000 series 735/125 workstation.
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Appendix: Derivation of p(Ax,vx | Y, Z)

We now consider the derivation of p(A, ¥ | Y, Z) that proportional to p(A, ¥)p(Y |
AW, Z). Let v = zp;,cl; for convenience and without lost of generality, we will work with
Yk From (2.5), the conjugate prior densities of , and Ay given 74 are proportional to
720k =L exp(—Borys) and /% exp{—3(Ax — Aox) Hyk (Ak — Aok )7}, Tespectively. Also,
from (1.1), it can be seen that the likelihood of Y is given by

n

p(Y | AW, Z) o< ||/ exp {—% D (g — AG) Ty - ACi)} :

=1
Let Y, be the k-th row of Y, y; be the i-th component of Y},, A = (ZZ2')"1ZY}, and a =
Y\Y,-Y,2(ZZ\71ZY, =YY} — A (ZZ')A, the exponential term in p(Y | A, ¥, Z)
can be expressed as

- % (¥ — AG)' O™ (y: — AG)
i=1
1 &
222 kk (yk:'i-A;cCi)z
i=1 k=1
)
33 {eit [t S e (w3 |
k=1 i=1

{Vin [YiYr — 20,2Y . + AL (ZZ))As) }

wna
)=

s
_\L
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1 14
-52{%3 VLY - Y2/ (Z22) 1 2Y)
k=1

+ gt (A - (22)7'2Y) (22)) (A - (22))712Y ] }

l\3|)-—a

Z{¢kk (L—i— Alc_A) (ZZ/)(Ak A)]}

Therefore, it follows from the likelihood of Y and the conjugate densities of A and ¥
that

14

n T ook — 1

p(A, T Y, Z) o H[n/“ [rreos 1exp{—§vk[<Ak—A)’(ZZ’xAk—A)
k=1

+ (Ax — Aok) Ho (Ax — Aok)'] = vk (Bow + G/Q)H
= [] p(Ae, % 1Y, 2).
k=1

From the above equation, it can be seen that the conditional distributions of (A, vk)
given (Y,Z) are mutually independent for £k = 1,...,p. Hence, it suffices to derive
P(Ak,’)’k I Ya Z)

Let Q@ = (Hy,' + ZZ')~" and py, = Qi(Hy Aok + ZY i), it follows that

(A — A)(ZZ')(Ax — A) + (A — Aox)' HGy! (Ax — Aok)’
= (Ax — i)' (A — ) — P s + A'ZZ' A+ N Hyl Aok

Hence,

p(Ak, % Y, 2) =p(v | Y, Z)p(Ax | Y, Z, k)
o [rp/ 2T~ exp{—Bri}]

. 1 e
[7,/2 exp {—5 (Ak — i)' (A — M)%H

where B = Box + 27 (Y .Yk — 1.9 #k + Ay Hy, AOIc) Thus, the posterior distribution
of (Ak,vk) given Y and Z is the following Normal Gamma distribution (Broemeling
(1985)):

e | Y, Z) 2 Gamma[n/2 + aok, Bi), and [Ag|Y,Z, %) 2 N (e, v ).
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