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Abstract. A statistical prediction problem under LINEX loss function is consid-
ered. Some results about LINEX-unbiased predictor are derived and the best LINEX-
unbiased predictor is given. We also show that the best risk-unbiased predictor is equal
to the best equivariant predictor in the location family.
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1. Introduction

In some estimation problems it may be appropriate to use asymmetric loss function.
Varian (1975) proposed a very useful asymmetric loss function which is called a LINEX
(Linear-Exponential) loss function, though the loss function was first considered by Kle-
banov (1974) in the different context. Zellner (1986) showed that the sample mean is
inadmissible for estimating the mean of a univariate normal distribution with respect
to the LINEX loss function. Shafie and Noorbaloochi (1995) extended the inadmissibil-
ity result to the location family. Considering the concept of risk unbiasedness due to
Lehmann (1951), Klebanov (1976) showed that the well-known Rao-Blackwell theorem
holds under a LINEX loss function.

In this paper we discuss a prediction problem under a LINEX loss function. In-
troducing a concept of risk unbiasedness to the prediction problem, we consider some
properties of risk-unbiased predictors, especially under a. LINEX loss function. Section 2
is devoted to discuss risk-unbiased predictors. In Section 3 the Rao-blackwell theorem is
shown to hold under a LINEX loss function, using an adequate statistic which plays the
role of a sufficient statistic in usual estimation problems. An adequate statistic is intro-
duced by Skibinsky (1967). See also Takeuchi and Akahira (1975) for further discussion.
The best risk unbiased predictor under the LINEX loss function is also considered. In
Section 4 it is shown that the unique best risk-unbiased predictor coincides with the best
equivariant predictor under the location family.

2. Risk unbiased predictor

Suppose that X is observed random vector and Y a future real random variable, and
the joint distribution of X and Y depends on an unknown parameter 6. After observing
X = z, we want to predict the value of Y. A non-negative loss function L(d, y) represents
the loss of predicting Y = y by d. Let §(X) be a predictor of Y and
be the risk function.
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DEFINITION 1. If a predictor §(X) satisfies
1) Eo {L(5(X),Y)} = min By {L(6(X), Y + )},

where ¢ is a real number, then it is called a risk-unbiased predictor. If a risk-unbiased
predictor minimizes the risk for all values of 6, then it is called the best risk-unbiased

predictor.

Now we shall give a result which characterizes the risk-unbiased predictor (cf.
Lemma 1 of Klebanov (1974)).

THEOREM 1. Let L(d,y) be a loss function which is twice continuous differentiable
and convex in its second argument for each fixed value of the first. Suppose the predictor
6 1is such that for all 6

&L
(2.2) Eg { sup = (6(X),Y +¢) » < oo,
lel<e Oy

where € is some positive number. In order for § to be risk-unbiased, it is necessary and
sufficient that for all 0

(2.3) Eo {%(5(}(),1/)} — 0.

Proor. Let § be a risk-unbiased predictor of Y. Then for any c satisfying |c| < e,
we have

Eg {L(6(X),Y +c)} — Eg {L(6(X),Y)}
2
= cEy {Z—z(é(X),Y)} + 1cQEg {%

5 (5(X),Y+U(X,Y)C)},

where 0 < v(X,Y) < 1. From the last equality and condition (2.2) it is apparent that
for sufficiently small ¢ (2.1) can hold only if (2.3) is satisfied.
Suppose that relation (2.3) holds. Then we have

Eg {L(6(X),Y + )} — Eg {L(8(X),Y)}
0L

= 5By {5?;2(6(X),Y+U(X,Y)C)} >0,

by virtue of the convexity of the function L in its second argument. Hence the proof is
completed.

The following corollary easily follows from Theorem 1.
Conovranry 1. If L(d,y) — (d — y)?, then 8§(X) is risk-unhiased if and only if
(2.4) E¢é(X) = EpY.

Under a squared error loss the risk-unbiased predictor is called mean-unbiased,
though it is the usual unbiased predictor. A LINEX loss function is defined by

L(d,y) = expla(d —y)| —a(d-y) -1, a#0.
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A risk-unbiased predictor with respect to the LINEX loss is called LINEX-unbiased. The
following corollary is easily obtained from Theorem 1.

COROLLARY 2. Suppose that §(X) satisfies
(2.5) Ep {exp[a(§6(X) = Y)]} < oo,
for all 8. Then §(X) is LINEX-unbiased if and only if
(2.6 Bo {expla(8(X) - Y)]} = 1
for all 6.

THEOREM 2. Ifé is a LINEX-unbiased and satisfies (2.5), then it can not be mean-
unbiased, unless Py(6(X) =Y) = 1. The converse is also true.

PROOF. Suppose that 6 is also mean-unbiased. Then it follows from (2.4) and (2.6)
that
R(6,6) = Ep {exp[a(6(X) = V)] - a(6(X) - V) — 1} =0,

which implies Fy(6(X) =Y) = L. Hence 0 can not be mean-unbiased unless £ (6(X) =
Y) = 1. The converse is similar.

3. LINEX-unbiased predictor

In this section consideration is devoted to LINEX unbiased predictors. Now we
shall give the definition of an adequate statistic which plays an important role in a
prediction problem, like a sufficient statistic in an estimation problem. See Skibinsky
(1967), Takeuchi and Akahira (1975), and Takada (1981).

DEFINITION 2. A statistic T = T(X) is said to be adequate if given T, X and Y
are conditionally independent, and T is sufficient for the family of distributions of X.

The following theorem, which was obtained by Sugiura and Morimoto (1969), is
useful to get an adequate statistic. See also Takeuchi ((1975), p. 138).

THEOREM 3. Let the joint density function of X and Y be f(z,y | 6). Then a
necessary and sufficient condition for a statistic T(X) to be adequate is that there exist
non-negative functions h and g such that

f(z,y0) =h(z)9(T(2),y,0) ae.
It is well known that if §(X) is mean-unbiased and T is adequate, then
(3.1) 5(T) = B(3(X) | T),

is also mean-unbiased and the risk of §* is less than or equal to that of § (Rao-Blackwell
theorem). We show that the similar results holds under the loss funtion

(3.2) L(d,y) = ¥(d)Aly) + B(y) + ¢(d),
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where A(-) and B(:) are convex, twice differentiable functions, ¥(-) (> 0) is a strictly
monotone function and ¢(¢~1(-)) is a convex function (cf. Klevanov (1974)). The LINEX
loss function is of the form. For example we can take

L{d,y) = ——logg—l
for d > 0 and y > 0.
THEOREM 4. If§ is risk-unbiased with respect to (3.2) and satisfies (2.2), then
(3.3) §5(T) =¥~ (E[(6(X)) | T))
also satisfies (2.2) and is risk-unbiased. The risk of 6* is less than or equal to that of 6.

Proor. The condition (2.2) is equivalent to

Ey {¢(5(X)) sup A"(Y + 0)} <00

le|<e

and

Eg{sup B"(Y+c)} < o0

le|<e

Since T' is adequate,

Ey {¢(5*(T))sup A"(Y + C)} = Ey {E(¢(5(X)) | T)sup A"(Y + C)}

lel<e le|<e

= Fy {w(é(X)) sup A" (Y + c)} .

le|<e

Hence (2.2) is satisfied for §* in (3.3). So from Theorem 1 it is enough to show that 6~
satisfies (2.3).
By the risk-unbiasedness of § and (2.3), we have

Ey {%L(é*(ﬁ*m} — By (0(5" (D)4 (Y) + B'(Y)}
— By (E@(S(X)) | T)A'(Y) + B/(Y)}
= By (EW(S(X)A(Y) | T) + B'(Y)}
= By ($(5(X)A'(Y) + B'(Y)}
0
B, { a—yL(é(XxY)}
= 0.

Hence 6* is risk-unbiased.
Next, by Jensen’s inequality we have

$(6%(T)) = ¢(v ™ (E[p(6(X)) | T)))
<E@G(X)|T) ae,
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which follows

E¢(5°(T)) < E¢(6(X)).

Therefore

R(6,8%) = Eo{y(8"(T)A(Y) + B(Y) + ¢(6(T))}
= Ep{E((8(X)) [ T)A(Y) + B(Y) + ¢(8*(T))}
= Eg{d(6(X))A(Y) + B(Y) + ¢(6"(T))}
< Eo{9(8(X)A(Y) + B(Y) + ¢(6(X))}
= R(9,56),

(
(X))
(X))
which completes the proof.

COROLLARY 3. Ifé is LINEX-unbiased and satisfies (2.5), then
1
(3.4) 8 (T) = - log Elexp(aé(X)) | T

also satisfies (2.5) and is LINEX-unbiased. The risk of §* is less than or equal to that
of 6.

If T is adequate and complete, then §*(T") in (3.1) is the unique (up to the sets
of measure zero) best mean-unbiased predictor. Under some conditions a similar result
holds for the risk-unbiased predictor in (3.3).

THEOREM 5. If T is adequate and complete, and
(3.5) Ey(AY)|T)=QO)K(T) ae.

for some non-zero functions Q and K, then §* in (3.3) is the unique best risk-unbiased
predictor among the predictors satisfying (2.2).

PROOF. From Theorem 4 it is enough to show that the predictor in (3.3) is the
unique risk-unbiased predictor based on T'. Let §(T) be the other risk-unbiased predictor
based on T and satisfy (2.2). Then from (2.3)

Ey {a%L(é*(T),Y)} — B, {%L(&(T), Y)} .

So we have

Ep {$(6"(T)A(Y)} = Ep {y(6(T))A'(Y)},

which implies
Ep {4h(8"(T)Eo(A'(Y) | T)} = Eg {$(6(T)) B (A'(Y) | T)}.
Hence from (3.5)
QO)Ee {K(T)p(67(T))} = Q(8)Eg {K(T)%(5(T))} -
So from the completness of 7' and the strict monotone of 9 we have

Fy(6"(T) = 6(T)) = 1,
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which completes the proof.

Example 3.1. Let Xy,...,X, beiid according to Poisson distribution with mean
6. Based on X1,..., X, (m < n), we want to predict the total sum ¥ = Zle X; It
follows from Theorem 3 that X = L Y™ X, is adequate. X is also complete. So it
is easy to see that nX is the best mean-unbiased predictor. It is also shown that the
condition (3.5) holds and hence the best LINEX-unbiased predictor is given by ¢X with
c=m{l+ Llog[l + (2 —1)(1 — exp(—a))]}.

Example 3.2. Let Xi,...,X, be iid according to N(u,0?), and let Y be also
distributed according to N(u,0?) and the covariance between Y and X; be po?(i =
1,...,n), where p is known and p? < % Based on X = (Xi,...,X,), we want to
predict Y. First we assume that u is unknown, but o? is known. Then from Theo-
rem 3 X = 13" | X; is adequate. Since X is complete, X is the best mean-unbiased
predictor.

It is easy to see that the condition (3.5) is satisfied and hence the best LINEX-

unbiased predictor is given by

(3.6) 5(X) :X’+-;- (2p— ":1> ao?.

It turns out that the risk of the best mean-unbiased predictor X is larger than that of
the best LINEX unbiased predictor under the LINEX loss, and the converse also holds
under the squared error loss. In the following section we shall show that this result holds
for the location family.

Next we assume that both u and 02 are unknown. Then it is also shown that
T = (X, 5?%) is adequate and complete where S2 = "7 | (X; — X)2. Hence X is the best
mean-unbiased predictor. But there does not exist a LINEX-unbiased predictor, which
is shown in the Appendix.

4. Risk-unbiasedness and equivariance
In this section we shall show that the unique best risk-unbiased predictor is equal

to the best equivariant predictor in the location family.
Suppose that the joint density function of X = (X,...,X») and Y is given by

flz—06,y—0),
and the loss function is of the form
L(d,y) = p(d — y),
where [ and p are some known functions and z — 0 = (2, 6,..., @ 6).
DEFINITION 3. A predictor §(X) is said to be equivariant if
S(z+a)=6(z)+a

for any real number a.
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It is easy to see that the risk of an equivariant predictor does not depend on 6. An
equivariant predictor is said to be the best equivariant if it minimizes the risk among all
. equivariant predictors.

Now we shall give an expression of the best equivariant predictor. Though the
expression follows from Theorem 2 of Takada (1982), we give more elementary proof for

the sake of completeness.

THEOREM 6. If 6*(X) is the unique predictor which satisfies

[ 06000 )5 - 0.5~ gyayie

—min [ [ p(d=9) 50X - 6,y - B)dyas,

then 6*(X) is the best equivariant.

PrOOF. Let Z = (Zy,...,Zp—1) with Z; = X; — X,,, i =1,...,n— 1. Then it is
easy to see that §(X) is equivariant if and only if for some function w

8(X) = Xn +w(2).
Since the risk of an equivariant predictor does not depend on 6,
(4.1) R(0,8) = Eo {Eo[p(Xn +w(Z) - Y) | 2]},

where Ep denotes the expectation under § = 0. Since the joint conditional density
function of X,, and Y given Z under § =0 is

f(Zl + Tpyoo- )Zn—l +$n3$n7y)
ffoooffooo f(Zl +2Zn,. .y Ln-1+ $na$nay)dxndy,

we have

Eolp(Xn +w(Z) - Y) | Z]
C S p(u+w(Z) ~0)f(Z1+u,. . 2oy 4 u, u,v)dudy

—00J—

ffoooffooo f(Zy+u,..., Zn_1 +u,u,v)dudy

Making the change of variables from (u,v) to (6,y) with v = X, — 0 and v =y — 6, it
follows

Eolp(Xn +w(Z)-Y) | Z]
_ eSS (X + w(2) = y) F(X = 0,y — 6)dbuy
Jooo S oos F(X =6,y — 6)dydd

Hence from (4.1) if §(X) is equivariant and minimizes

[:[zpm'wﬂX-&y—mw@
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with respect to d, then it is the best equivariant. Therefore it is enough to show that 6*
is equivariant, which follows from the uniqueness of §*.

COROLLARY 4. Under the squared error loss, the best equivariant predictor is

S (X =6,y — 0)dydd

O X) = T gy~ B)dydd

COROLLARY 5. Under the LINEX loss, the best equivariant predictor is

2 20 f(X =6,y — 6)dyds

) = o8 s (o) F(X — 0y — O)dyde

Applying Corollaries 4 and 5 to Example 3.2, we have that X and §(X) in (3.6)
are the best equivariant predictors under the squared error loss and the LINEX loss,
respectively. That is, the best risk-unbiased predictor coincides with the best equivariant
predictor. We shall show that this result generally holds under the location family. To
prove it, we need the following lemmas, the proofs of which are similar to those of
Lehmann (1Y51). So the proots are omitted.

LEMMA 1. If 6* is the unique (up to sets of measure zero) best risk-unbiased pre-
dictor, then it is almost equivariant.

LEMMA 2. If 6§* is the best equivariant, then it is risk-unbiased.

THEOREM 7. If there exists the unique (up to sets of measure zero) best risk-
unbiased predictor, then it is equal (up to sets of measure zero) to the best equivariant
predictor.

PROOF. Suppose that §* is the best risk-unbiased predictor and & is the best
equivariant predictor. From Lemma 1 6* is almost equivariant. So there exists an
equivariant predictor & such that 6*(X) = §'(X), a.e.. See Berk and Bickel (1968).
Hence

(4.2) R(6,6%) = R(0,8") > R(9,6).
From Lemma 2, é is risk-unbiased. So
R(8,8) > R(0,6*).

Hence from (4.2)
R(0,6%) = R(0,6).

The uniqueness of §* implies

which completes the proof.
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Appendix
Suppose that there exists a LINEX-unbiased predictor é such that
Eg {expla(6(X) - Y)]} =1

for all & = (u,0?). Since the conditional distribution of Y given X is N(u + np(X —
©),02(1 — np?)), we have

Epfexpla(6(X) — = np(X = )} = exp (~ 520 ) ).

In the sequel, we assume g = 0. Then

a?o?

(A.1) Ep{exp[a(6(X) — npX)]} = exp (— 3 (1- np2)> .

Let V =3 ", X2 Then V is complete and sufficient, and the density of V" is ;12- 9(z=),
where ¢(z) is the density function of a chi-squared random variable with n degrees of

freedom. Let )
§*(V) = E {expla(6(X) — npX)] | V}.

Then from (A.1)

20,2

(A.2) E6*(V) = exp (- Y7 1- np2)> .

Multiplying both sides of (A.2) by (¢2)" (r > 0) and integrating with respect to 02 from
zero to infinity, we get the following equation

(A.3) /Ooo(az)r {/Ooo 5 (v)o~2g (0—”2) dv} do?
= /Ooo(az)r exp (— a2202 (1- an)) do?.

The right hand side of (A.3) is finite if » > 1. By Fubini’s theorem, the left hand side of
(A.3) is equal to

/Ooo 5*(v) { 000(02)“19 (%) daQ} dv
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where ¢ = 2"/ 2I‘(%). Since §* is positive, this integral is infinite if » > 3 — 1, which
contradicts to the fact that the right hand side of (A.3) is finite if 7 > 1. Hence there
does not exist a LINEX-unbiased predictor when p and o2 are unknown.
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