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Abstract. In this paper, hypotheses testing based on a corrected score function are
considered. Five different testing statistics are proposed and their asymptotic distri-
butions are investigated. It is shown that the statistics are asymptotically distributed
according to the chisquare distribution or can be written as a linear combination
of chisquare random variables with one degree of freedom. A small scale numerical
Monte Carlo study is presented in order to compare the empirical size and power of
the proposed tests. A comparative calibration example is used to illustrate the results
obtained.
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1. Introduction

Most studies in life sciences, biology, engineering, demography and economics involve
covariates that can not be recorded exactly. Errors arise, most notably as measurement
errors. Examples include a follow-up study of A-bomb survivors where the variable ra-
diation received is measured with error (Okajima et al. (1985), Pierce et al. (1992)),
amount of nitrogen in the soil in a study related to the yield of a certain grain (Fuller
(1987)), biologic covariates, such as systolic blood pressure, daily intake of saturated
fat in the famous Framingham Heart prospective study dealing with cardiovascular dis-
ease (Gordon and Kannel (1968)). Frequently, interests are on assessing the statistical
relationship between the unobserved covariates and the response.

The present paper is primarily concerned with testing for association between the
true covariates and the response variable. A simple approach considers the naive test
obtained from substituting the unobserved covariates with the observed ones. Tosteson
and Tsiatis (1988) have compared the local power, assuming a general measurement
error structure, of the naive score test and the optimal score test obtained by a flexible
procedure in generalized linear models. Lagakos (1988) has also computed the efficiency
loss for naive tests in univariate linear, Cox and logistic regression models. Stefanski
and Carroll (1990) have considered Wald tests. They have compared the naive Wald
and a corrected Wald test (Stefanski (1985)) assuming an additive measurement error
structure.

Nakamura (1990) introduced an approach which allows the derivation of consistent
and asymptotically normal estimators for the parameters of a linear or nonlinear mea-
surement errors-in-variables model. Additional results on corrected score functions are
established by Gimenez and Bolfarine (1997). We recall that most of the approaches
considered for estimation in such models produces only approximate unbiased estimates,
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with no formal theoretical justification, such as the regression calibration (Carroll and
Stefanski (1990)) or James-Stein (Whittemore (1989)) type estimators. These less bi-
ased estimators are used to avoid the attenuation problem typically associated with the
naive or ordinary regression estimators. Resampling techniques are then required for ob-
taining the estimated standard errors associated with such estimates, making it difficult
to obtain general valid asymptotic results to be used in conjunction with such estima-
tors. Nakamura’s approach allows its use in more general situations without making
assumptions concerning the true covariates, having associated general expressions for
the asymptotic covariance matrix. The main object of the paper is to derive asymptotic
valid tests (Carroll et al. (1995), p. 207) for some measurement error models, which are
validated by the asymptotic distributions associated with the procedures. A review of
the approach is considered in Section 2. In Section 3 the asymptotic tests are formally
obtained by using the asymptotic properties of the estimators. Wald, score and likeli-
hood type statistics are proposed. A small scale numerical study is presented in Section 4
for comparing the asymptotic tests. The applicability of these results is illustrated in a
comparative calibration model in Section 5.

2. Corrected score estimator approach

Let Z = (z1,...,2.)" denote the matrix of independent variables (covariates), Y =
(y1,--.,yn)" the vector of dependent variables and @ = (f1,...,6,)" the p-dimensional
vector of unknown parameters, lying in a parameter space ©. The notation considered
above is used for simplicity. However, more general situations where Z and Y are ma-
trices, leading to multivariate models, for example, can be handled similarly. Moreover,
let 1(6; Z,Y) be the log-likelihood function corresponding to the sample and

01(6,2,Y) _U6;2,Y)
50 a0

the score and information matrix, respectively, where F is an open convex subspace
of ©. Let 6, be the maximum likelihood estimator of @, that is, the value of @ such
that U(0;;Z,Y) = 0 and 6y € F, be the true parameter value. Let ET(-) denote the
expectation with respect to the vector Y given Z. Under some regularity conditions the
maximum likelihood estimator (MLE) is consistent and asymptotically normal. These
important properties of the MLE are based strongly on the fact that under the true
parameter value ET{U(0y;Z,Y)} = 0.

We are concerned with the situation that Z can not be recorded directly, but in-
stead we observe a surrogate X = (:1:1, . ,:L':n)/ having measurement error (Carroll et al.
(1995)). In this paper an additive error model

Ue,2,Y) = and I{6;Z)Y) = 0cF,

T =2; +u;, i=1,...,n

is considered, where the random errors uy, . . . ,4,, are mutually independent and also are
independent of Z and Y, each having normal distribution with zero mean and covariance
matrix X,,. This covariance matrix may be assumed known or estimated from validation
studies (Fuller (1987)). Thus, calling U(6; X,Y) the naive score function, we have that,
in general, E{U(6y;X,Y)} # 0, implying that 6, which solves U(#; X,Y) = 0 is not
necessarily a consistent estimator of 6.

Nakamura (1990) considers a correction for score functions. The corrected score
method depends on the existence of a corrected score function U*(6; X,Y) such that

(2.1) E{U*6;X,Y)|Y,Z}=U@$,2)Y),
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for all Y, Z and 6. Moreover, assuming U™ differentiable in F, we have a corrected
observed information

ou*(6; X,Y)

00 ’
It follows under the true model that E{U"(fp; X,Y)} = 0. Since U*(#;X,Y) is unbi-
ased, regularity conditions ensures the existence of a consistent sequence of estimators @
satisfying U” (9; X,Y) = 0. The following proposition showing the asymptotic properties

of @ under various regularity conditions have been established in Gimenez and Bolfarine
(1997).

r'e;x,y)=-

PROPOSITION 2.1. Let y’s be mutually independent and U*(0;X,Y) a function
satisfying property (2.1). Under some regularity conditions, there exists a solution @ of
the system of equations U*(8;X,Y) = 0 which is consistent and asymptotically normal
with mean Oy and covariance matriz n~ ', (6o), where

(2.2) 0.(60) = A" (60)T(60){A," (o)),
with

An(0) = —E{I (6:X,Y)} ZE{I* 0,2, v:)}
and

1 — . . /
T.(0) = - E E{U* 0z, y:)U" 0;z;,y:)' }-
=1

In cases where the corrected score function is obtained as U*(6;X,Y) =
ol*(0;X,Y)/86, where 1*(0;X,Y) is the corrected log-likelihood function such that
E{I*6;X)Y) | Z,Y} = 1(6;Z,Y), for all Y, Z and 0, the asymptotic properties of 6
have been described by Nakamura (1990). On the other hand, it may be possible to
find a corrected score function U*(#; X,Y) that can not be obtained as 9l* /08 and then
care must be taken when defining 6. The numerical application in Section 5 illustrates
this last situation and presents a model for which the corrected score method can be
employed without assuming X,, known or previously estimated.

The corrected score method depends critically on the distributional assumption of
the measurement error. Corrected score functions satisfying (2.1) may not necessarily
exist and finding them may not be always an easy task. These issues are studied in
details in Stefanski (1989).

Regularity conditions for proving consistency and asymptotic normality of 6 can be
found in Gimenez and Bolfarine (1997). These regularity conditions taking into con-
sideration the dependency of the matrices A,,(#) and T',,(#) on the incidental parameter
vector Z. It is not assumed that these matrices converge to any limit.

In order to simplify notation, U*(8;X,Y), I"(6;X,Y) and I*(6; X,Y’) are denoted
by just U* (), I" (6) and [*(#) respectively, in the remaining of the paper.
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3. Tests based on a corrected score function

In this section, we consider five different test statistics for composite hypotheses
based on the corrected score approach. The asymptotic properties of the proposed
statistics are based on the results established in the previous section. Let’s consider the
partition @ = (', X')’ € RP, where 9 is the s X 1 parameter of interest, representing the
object of the research and X is the (p— s) x 1 vector of nuisance parameters. Thus, given
the n observations (y1,21),..., (Yn,Zn), the main object is testing the null hypothesis
Hp : 9 = 1, in the presence of the nuisance parameter vector -A. It is assumed that
there exist positive definite matrices A(f) and I'(f) to which the matrices A,(#) and
I',,(8) weakly converge, respectively. Using notation typically associated with partitioned
matrices, we write

(A0 An®)) _(Tysl®) Tya(®)
@)= (Axfﬁ(o) Afi<0)> d P(""(rffﬁ(o) rfi(0)>*

with the partitioning dimensions following the dimensions of ¥ and A, respectively, that
is, Ay () is of dimension s X s and so on. In a similar fashion, we write

o= (5)

A Al A A ~
Moreover, let 8 = (3 ,)\l)’ and 8y = (1/16,/\(/))’ , consistent estimators of # satisfying

(3.1) U6 =0
and
(3.2) Us(6o) =0

The following testing statistics can be defined, with the suffix n abbreviated where
understood,

(3.3) Wi = n(gh — 1) Ay x (00) @ ~ %),

(3.4) Q1 = n"'U3(60)' Ay, (80)U7 (80),

where

(3.5) Ayyr(Bo) = Ayy(80) — Ayr(80)AS3 (B0)Ary (6o),

(3.6) Wa = n(1h — 9,)'Qy,, (00) (¥ — ¥p)

and

(3.7) Q2 = n"'U}(B0) Ay} (80)92, (Bo)Ay ) A (B0)U, (Bo),
where

(80) = A7 (60)T'(B0) A" (80),
with

A() = A.(0) = ZI* (6, v:)

and
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I 1 " * & ]
T(B) =Tn(6) = — > U (620, 3:)U" (6:71,3:)"
=1

If there exists a function W (8; X,Y) such that
E{W(@,X,)Y)|Z2,Y}=U@®,Z,Y)U(6;,2,Y),

Nakamura (1990) proposes a better variance estimator §(f), based on a variance de-
composition.

In the special case where the corrected score is the gradient of the corrected likeli-
hood I* (@), that is, U*(8) = 91*(8)/00, it is also possible to define a likelihood ratio type
statistic, which we write as

(3.8) L =2{1*(8) — I*(8o)},

where 6 is a global maximum of *(0), and 8o maximizes [*(@) under Hp. As shown
next, Wi, @1 and L are asymptotically equivalent. Wy and @2 are also shown to be
asymptotically equivalent.

THEOREM 3.1. Let 8 and 8y consistent roots of equations (3.1) and (3.2) respec-
tively. Then, under some regularity conditions and Hy, it follows

a) W1 —P 30 u;Vi, where Vi, ...,V are iid chisquare random variables with one
degree of freedom and p1, ..., pus are the eigenvalues of the matrix
(3.9) Ay 2 (80)S2y4(60),

where “—P” denotes convergence in distribution (Rao (1973)). Moreover, Wi is asymp-

totically equivalent to Q1 and L.
b) Wa—P x?%, where x? denotes a random wvariable distributed according to the

chisquare distribution with s degrees of freedom. Moreover, Wy is asymptotically equiv-
alent to Q».

The proof can be found in the Appendix. The following remarks are direct conse-
quences of the above results.

Remark 1. If the matrix in (3.9) is the identity matrix then W; —2 x2 as in the
classical case. Thus, if the product A(6o)S2(6p) is close to the identity matrix, then the
asymptotic distribution of L, W; and @Q; can be approximated by a x? distribution.

Remark 2. If A(fy) is a block diagonal matrix, that is, Ayx(6p) = O then (3.9)
reduces to 'y (6o) ;Jp(oo). This is the case when p — s = 0, that is, no nuisance
parameters are in the model.

Remark 3. If Ayx(6o) = 0 and s = 1, then (3.9) equals the ratio I'yy(80)/Ayy (60)
which can be seen as a correction factor of the usual x? distribution.

Remark 4. In the estimation of matrices I'(@p) and A(6p) any consistent estimator
of fp can be used. Notice that, if the statistic (1 is used then the obvious choice would
be @y, since in this case, the parametric model has only to be adjusted under Hy.
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Table 1. Empirical size for a 5% nominal level.

o2 L Wi @
0.0 56 120 6.6
0.1 57 122 6.9
0.3 56 126 6.8

0.5 44 104 64

Remark 5. We need to compute quantiles of the distribution of > ;_; #;V;, where
[i; are the eigenvalues of the consistent estimator of the matrix Ay (00)Qyy (60). In the
case where p > 1, some algorithms in Marazzi (1980) and Griffiths and Hill (1985) can
be used. Another approach would be to simulate from the distribution of >;_, & V;.

Remark 6. In the special case that s = 1, writing fi; = ]\Wp, A(éo)f2¢¢ (8o), we have

1% b — )2 n=U%, (6p)?
A—1=n@——QpPL:W2 and g—le AlpEO)A = Q.

ta yy (6o) B Ay a(60) 2y (6o)

Thus, Wi /p1 = Wa and @Q1/f1 — Q2 are asymptotically distributed according to the X3
distribution.

Remark 7. Regularity conditions in Theorem 3.1 are those assumed in Proposi-
tion 2.1 (Gimenez and Bolfarine (1997)), and the convergence of matrices A,, and I',.

4. Simulation study

In this section we perform a Monte Carlo simulation study for comparing the em-
pirical power and size of the test statistics L, Wi and @ presented in Section 3. The
simulation study is based on an exponential regression model for lifetime data.

A set of independent random variables T = (T1,...,T) is generated for each
repetition. T is a vector of realizations of an exponential distribution with parameter
exp(a + Bz) and the null hypothesis of interest is 8 = 0. The true covariate is generated
as a standard normal and the error variable as a normal distribution with mean 0 and
variance o2. The parameter ¢ in this study is set equal to zero and 1000 replications
are run for each simulation. Note that according to the Remark 6 in Section 3, for this
model, Wo = Wi /fi; and Q2 = Q1/ft1. When s > 1, W; is not equivalent to W2 and
@1 is not equivalent to Q2. Moreover, is not difficult to prove that for the exponencial
model, with s > 1, Q2 coincides with the so-called naive score test of Tosteson and
Tsiatis.

The simulations are performed for several values of the error variance (02 = 0,0.1,
0.3,0.5). Table 1 displays the empirical levels of the tests for a 5% nominal level. Even

for a small sample of size 20 the empirical sizes of the likelihood ratio and score tests are
very close to the nominal levels. The same does not happen with the Wald test. There are

some evidences from simulation studies in the literature that in general, distributions of
the likelihood ratio and score statistics approach their limiting distributions considerably
more rapidly than the distribution of the Wald statistics (Lawless (1982)). This fact and
a small sample size used in the simulation study might explain the poor empirical size of
the Wald test. Moreover, the Wald test is known to behave aberrantly in some models
(Hauck and Donner (1977)).
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Fig. 1. Power curves for the tests L, W1 and Q1. a) 62 = 0.0, b) 62 = 0.1, ¢) 62 = 0.3, d)
2
oy = 0.5.

An adjustment was performed using the empirical distribution of the statistics such
that the empirical size is corrected with 5%. That is, a critical value is determined for
each test statistic such that the empirical size of the three statistics coincides at 5%.
Then, the empirical power of each test is the proportion of samples in which the test
statistic exceeds its critical value, under the different values of parameter 3. Figure 1
displays the empirical power of these three tests for the values 02 = 0,0.1,0.3,0.5,
respectively. It can be observed that Wald test is losing more power than the other
two as the error variance increases, then we can not recommend the Wald type test.
Moreover, it seems that likelihood ratio test presents a better performance than the
score test. The critical value is obtained as 3.84/i, as considereded in Remark 6 of
Section 3.

5. A comparative calibration model application

The results obtained in the previous sections are now illustrated by considering the
comparative calibration problem which is presented in Jaech (1985). See also Kimura
(1992). Such experiment aims at comparing different ways of measuring the same un-
known quantity z in a group of n subjects. In Section 5.1, we derive Wald and score
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statistics for testing hypotheses for the comparative calibration model. In Section 5.2 we
report an application of the proposed statistics to a data set considered in Jaech (1985).

5.1 The linear calibration model
A model usually considered in the literature for p different methods (Barnett (1969),

Kimura (1992)) is

(5.1) Y, =a+ Pz +e,

(5.2) T; = 2Z; + Uy,

for i = 1,...,n, where y; = (Yi1,---,¥ip)’, & = (Eil,_:..,eip)’, are p-random vectors
with &; ~"d N(0, 2), where & = diag(o?,...,03), u; ~14(0,02), @ = (a1,...,qp)" and
B = (61,...,8p). Expression (5.1) considers that the additive and multiplicative bias
corresponding to method k are ay and B, respectively, k = 1,...,p. Expression (5.2),

assumed by Barnett (1969) and Kimura (1992), indicates that one of the methods mea-
sures the unknown quantity z; without bias. In order to make the model identifiable,
we consider the situation where A\, = o}, 2/62 k=1,...,p, are known and taken without
loss of generality equals to one, i = 1,...,n, that is, a,% =02=¢,k=1,...,p

Interest centers on testing the hypothesis that the methods are measuring the quan-
tity 2z without bias, which means that

" (3)-()
s 1p
where 1, = (1,...,1)" and we can use the Wald or the score statistics based on the
corrected score function defined in (3.6) and (3.7) respectively. In order to evaluate the
expressions of these statistics we have initially to obtain the corrected score estimator
and its corresponding asymptotic covariance matrix. Maximum likelihood estimation is

discussed in Kimura (1992) and Bolfarine and Galeas-Rojas (1995).
The unobserved log-likelihood for the model (5.1)—(5.2) can be written as

n

06;2,Y) = 1(8;2,5)

=1

where [(6; 2;,y;) = — % log(2m)— £ log ¢— % (y;—a—PBz) (y,—a—Pz), with 0 = (o/, F, ¢)’
of dimension 2p + 1, leading to

U(o7 Zi le) - (Ua (0a Zi$yi)/7 Uﬂ(oa Ziy Zli)l¢ U¢,(0, Zi,Z]i))l

with
1
Ua(oa Zi:yi) a(yz —a—ﬁzi))
1
Uﬂ(ﬁ Zhyz) ¢(yz _a_ﬁzi)ziy
U¢‘(0a Zi’yi) :__¢+_(yz a_ﬁzi)l(yi_a_ﬂzi)a
for i =1,...,n. Thus, considering

U*(oi xi;yz) (U (0 xlvyz) U,)[;(07x21yz)l’U;(o)x'hyz))l
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with

(5.3) U0, 21,9;) = ;wi —a- pu),

(5.4)  UBziy) = ;wi —a— fz)a; + B,

(55) U(,b(e xwyz) 2¢2 (yz a-— 131‘7') (yz a - ,3.’)2'1) - _¢( :3+p)’

for i =1,...,n. It follows that
E[U*(oj xz;y;) | Zi)yi] = U(0) Zi’yi)) i = 1»' B (D

which implies that U*(6; X,Y) = 37, U*(8; z;,¥;) is a corrected score function. It can
be observed that,

ol*(6; z;,y;) D

5 2% ﬁ(yz a—Bz:) (y; — a— Pz;) # U6, 2i,y,),

implying that the corrected score function can not be obtained through differentiating
the corrected log-likelihood.
Al A

Solving U*(6; X,Y) = 0, the corrected score estimator 6= (&,B,¢) is obtained as
the solution to the following system of equations:

(5.6) a=jy-— Pz,

(57) Sa: - ,BSa:w +,3¢ =0,

(5.8) ¢= (ﬂﬁ—l— ) Z(Sykyk +'6k va — 205k $yk)
where

I g
yzﬁzyi: x:ﬁzxz
=1 i=1
1 « _ _ 1 < .
S:cy = ;Z(-’L‘i_m)(yi—y), Spz = ;Z(Z'I—SL') ’
: i=1

Z(m Dy -9

The solution of the system of equations (5.6)—(5.8) can be obtained easily by using
an iterative method. Let (™ = (,Bgm), NN A;,m))’ be the solution of (5.7) at step m, in

the step m + 1 the algorithm proceeds as follows:
1: Find ¢(™+) = ¢(B(™)), according to (5.8).

2: Find ,Bém"'l), k=1,...,p, as the solution to (5.7), that is,

Ay = —Sm c=1,.

— g(m+1)’ ala

An estimate of a follows directly from (5.6).
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The system of equations (5.6)—(5.8) has multiple roots. Therefore a careful choice
must be made in order to pick a consistent root. Taking the naive estimate as an initial
guess, an appropriate root is usually obtained after two or three steps in the numerical
process (Stefanski (1989)).

It follows from the assumptions

n

(5.9) Zziizigp<oo and %Z(zi—2)2ﬂ>u2<oo,

i=1 i=1
that

A.(0) 2 AB) and T,(0) >10),

where

L (AL, (0,-1)®p
(5.10) A@B) = = BB+p |,

¢ 0 o

9 — 1 [ (A+2B)BB + (A+ B)I, (C®pB)
©=3 (@ ap) %w%ﬁ+ﬂﬁ+§>

with

(1 p AN _ (0
A_(u V2+#2>’ B_(U ¢>’ ¢= (ﬂ“ﬁ+1>’

and I, the p-dimensional identity matrix. It follows from Proposition 2.1 that b =
(@, g, ¢)', solution of (5.6)—(5.8), is consistent and asymptotically normal with a mean
vector 8 = (&), B}, ¢o)’ and covariance matrix n~1€Q, = n~ 1A T AL

According to the notation of Sectlon 3, Y= (a ,B)" is the parameter of interest
and A\ = ¢ is the nuisance parameter. = (& N3 ¢3)’ is the unrestricted corrected
score estimator, that is, is the solution of the system of equations (5.6)—(5.8) and o =
(0,1, $o)" is the restricted estimator under Hp, such that, from (5.8)

The Wald statistic W, described in (3.6) can be written as
Wa = nld, (B - 1,) ', 00)&, (B - 1,)7',
where
g L[ @A Wil +68)
O B = G\, +80)7 20, +88)7 + e+ 8

with

ot [:/2 " 2p(p — 1)¢] _

vi+¢ (B'8+ p)?
By using (5.2) and (5.9)

(6.12) iLu and S —¢ D% as n— oo,
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N

so that, Q;}p is obtained by assigning Z and S;; — ¢ to u and v?, respectively, in the
right hand of (5.11). Thus, we have

(5.13) Wa= ;5”; & (I, + 1p10) e+ 226 (I, + 1,1) 1 (B - 1,)

(S:m: - éO)

R 2 ]
+ (8- 1,) [# (T, + 1,15) 7 + 5 (Ip +71,1,) 71 (B - 1,)}

where 7 =1 — ___(p;p{g)—%_
The score statistic Q2 is given by
Q2 =m0 B0 AG, (0002 (Bo) Ay, U7, Bo),
where from (5.3) and (5.4),
. n y— 1,2
(514) U (00)27( _ ~ _ ),
¥ ¢0 Sa:y'l‘my— lp(Sxx—¢0+$2)
and from (5.10),

(5.15) Ay, =¢A"')1,),

where A lz%("_ﬁ‘ 2.

v
Q2 can be rewritten, according to (5.11), (5.12), (5.14) and (5.15), as

=2
- =\ I\ — T A I\— - =
(5.16) ng{(y—lpx) [(Ip+1p1p> B R O R P
0 zz
21 _ s o —lgn 1 s
- gm_[swy + 2§ — 1p(Sas — do +2%)) (I, + 1p1y) Y5 - 1,7)

1 R
+ g—[smy + 29— 1,(Sex — do+ 2%)] (Ip + #1,15) " [Soy + 7§

- ]-p(S:m: - (%0 + j2)]}

5.2 Numerical results

The data set considered next is taken from Jaech (1985). The densities of 43 cylindri-
cal nuclear reactor fuel pellets of sintered uranium were measured by different methods.
Full details of the experiment can be found in the reference just mentioned. We use the
data corresponding to three methods: Method 1, a geometric method based on weighting
the pellet and finding its volume by measuring the pellet diameter and length and other
two methods named Method 2 and Method 3. The Method 1 measures the true quantity
without bias. In particular, we want to test the hypothesis that the Methods 2 and 3

are measuring with no bias the quantity z.
Returning to our comparative calibration problem with n = 43 and p = 2, we have

the following statistics
T =4.397, ¥y=(4.370,4.436)
Spp = 0.04391, 8., = (0.03449,0.03933)" and

S - 0.04013 0.03483
LA 0.06442 /-
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Solving the system of equations (5.6)—(5.8), we obtain corrected estimates:

& = (—0.21963, —0.79769)’,
B = (1.04381,1.19029)"  and
$ = 0.01397.

The values of the Wald and score statistics given by (5.13) and (5.16), are W =
10.46 and Q2 = 10.62, respectively. Comparing with a chi-squared distribution with four
degrees of freedom, we can conclude at a 5% level that Methods 2 and 3 are measuring
with bias the density of cylindrical nuclear reactor fuel pellets of sintered uranium.
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Appendix. Proof of Theorem 3.1

Replacing f\(bo) and f‘(bo) by A(8y) and T'(8) (denoted just by A and I to simplify
notation), in the expressions for Wy, @1, W and Q», asymptotically equivalent statistics
are obtained. We denote these statistics by W, @7, W3 and Q3, respectively, and find
their asymptotic distributions.

The proof of a) is considered first. Taylor series expansion of U* (@) about 6 yields
LU (80) = —=U"(0) + I.(6") /(B — 6
7n (0)_ﬁ (0) +1,,(6")v/n(0 — 6o),

where I, (6) = L 7, I' (6, z;,v;) and ||0" — | < [| — || Since

T n

(A1)

(A.2) .0 2 A
and
(A.3) V(8 - 80) = 0,(1)

(see Proposition 2.1), it follows from (3.1), (A.1), (A.2) and (A.3) that
1
vn

From (A.4) and a similar expansion about 8o, it can be verified that

(A.4) U* (80) = Av/n(B — 8o) + 0p(1).

(A.5) do = X+ AT{ Ay (& — ).
Thus, it follows that
. 1 Y
(A.6) vV — ) = ﬁAﬁj.,\Uzp(oo) + 0p(1),

with Ayy.x as defined in (3.5). Moreover, replacing (A.6) in the expression for W7, it

follows that . .
Wy =n"'U;(80) Ayy 2Uy(60) + 0p(1),
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that is, W' = Q} + 0,(1), so that W} and Q} are asymptotically equivalent.
Now, if U*(8) = 91*(6) /90 then Taylor series expansion of [*(fg) about 8 yields

2{1"(66) — I*(8)} = —n(8 — 80)'I,,(6*)(6 — 65),
where 8" is such that [|§* — 8] < [|@ — 8o]|. Thus, (A.2) and (A.3) implies that
(A7) 2{1" (60) — I"(8)} = —n(8 — 80)' A8 — 8o) + 0, (1).
From (A.7) and the analogous expansion about g, it follows that
(A.8) L= 2{1*(?{) ~1"(80)} = n(8 — 6o)' A(B — 65)
= n(Ao = 20) Az (Ao — Ao) + 0p(1).

Replacing (A.5) in (A.8) and considering that Ay, = Ay, we can write

L= n(7zl - 1/)0)/A/¢¢.A("Aﬁ —1g) + op(1).

Thus, L = W} + 0,(1), that is, L and W} are asymptotically equivalent. Tn order to
derive the distribution of these statistics it is easier to deal with Wy. From Proposition

2.1, it follows that
V(@ — 6) 2 N,(0,9),

so that, in particular

(A.9) V[ — o) 3 Ny(0,9y).

Then, a) follows from (A.9) and some results for the quadratic form of normal variables

(Rao (1973)).
To prove b), it follows by using (A.9) that

" - —1,5 D
W3 =n(y - ¢0)/Q¢11p(¢ =) = X?-
Moreover, it can be shown that the statistic
* — * /D -1 —1 -1 * /D
Q3 =10y (00) Ayy Qg AU (6o)
is asymptotically equivalent to Wy
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