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Abstract. Let a linear regression model be given with an experimental region
[a,b] € R and regression functions fi,..., fay1 : [a,b] — R. In practice it is an
important question whether a certain regression function fqy1, say, does or does not
belong to the model. Therefore, we investigate the test problem Ho : “fyy1 does
not belong to the model” against K : “fy4+1 belongs to the model” based on the
least-squares residuals of the observations made at design points of the experimental
region [a, b]. By a new functional central limit theorem given in Bischoff (1998, Ann.
Statist., 26, 1398-1410), we are able to determine optimal tests in an asymptotic way.
Moreover, we introduce the problem of experimental design for the optimal test statis-
tics. Further, we compare the asymptotically optimal test with the likelihood ratio
test (F-test) under the assumption that the error is normally distributed. Finally, we
consider real change-point problems as examples and investigate by simulations the
behavior of the asymptotic test for finite sample sizes. We determine optimal designs
for these examples.

Key words and phrases: Asymptotically optimal tests, linear regression, F-test, like-
lihood ratio test, Gaussian processes, optimal designs, change-point problem, quality °
control.

1. Introduction
In practice, it is an important question whether the linear regression model
Ho: Y(t)=f(t)"B+e, tE€[ab

holds true, where f(t)" = (fi(t),..., fa(t)) is the vector of known regression functions,
d > 1, or whether we additionally need a known regression function fg41 for describing
Y (t). That means the regression model

K:Y(t)=ft)"B+ far1(t)Bas1 +e, tE [a,b]

holds true. For the models, we assume that 8 = (f1,...,044)7 € R? Is an unknown
parameter vector, 8g+1 € R is an unknown parameter, and ¢ is a real random variable
with

E(e) =0, Var(e) = 0® € (0,00) known or unknown.

* The work of the first author was partly and the work of the second author fully supported by the
Deutsche Forschungsgemeinschaft Grant Bi655/2-1.
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The set € := [a,b] C R is called the experimental region.
We investigate the problem of testing

Hy : fg+1 does not belong to the model, that is 8441 =0,

against
K : fg,1 belongs to the model, that is 8g41 # 0,

given n independent observations Y (t1),...,Y(¢,), where t1,...,t, € €. If Y(¢;), i =
1,...,n, is normally distributed, then it is well-known that the uniformly most powerful
size « test is a suitable likelihood ratio test (F-test). But under the weaker assumption
that the error variables €1, . . ., €, corresponding to the observations Y (¢1),...,Y (¢,) are
independent and identically distributed, nothing is known about this optimality to our
knowledge.

In the present paper, the test problem described above is treated asymptotically.
For this we consider the so-called residual partial sums limit processes; these are the limit
processes of sequences of stochastic processes defined by partial sums of regression resid-
uals (see MacNeill (1978a,b), and Bischoff (1998)). Under certain conditions, MacNeill
(1978b) derived an explicit form of the residual partial sums limit processes for general
linear regression residuals. This result has been generalized under weaker assumptions
by Bischoff (1998).

We show that the uniformly most powerful test based on the residual partial sums
limit process for the null hypothesis Ho against the alternative K is a linear integral
statistic. This result is derived in Section 4. Beforehand, in Section 3 we investigate the
model under the null hypothesis and give the mathematical background necessary for
our results.

It is worth mentioning that given a linear regression model, we have a bijection
between the vector of least-squares residuals and the corresponding residual partial sums
process; see formula (3.2). Hence, given a sequence of suitable regression models, the
corresponding residual partial sums limit process contains “limit information” of the
sequence of vectors of least-squares residuals. Thus, it can be said that we determine
the uniformly most powerful test based on the “limit information” of the sequence of
vectors of least-squares residuals; see Section 3.

Given a design (t1,...,t,) € [a,b]™, n € N, for the test problem given above, we
consider in Section 5 the well-known likelihood ratio test under the assumption that
the error vector is normally distributed, i.e. we consider the F-test. If the sequence of
designs suitably converges for n — oo, we can prove that the corresponding sequence
of likelihood ratio tests “converges” to the asymptotically uniformly most powerful test
based on the residual partial sums limit process. Hence, our result can also be stated as
the asymptotic optimality of the likelihood ratio test (F-test) for the above test problem
under a nonnormal error structure.

Moreover, we are interested in optimal experimental designs for the test problem
considered above. Note that we use the functional central limit theorem of Bischoff
(1998) for investigating the problem of experimental design. In Section 7, we determine
optimal designs of the uniformly most powerful test mentioned above for some examples.

The results of the whole paper are illustrated by real examples of quality control.
These can be described as change-point regression models. We introduce these examples
and a general change-point regression model of some interest in Section 2.

For the situation of the change-point examples, in Section 6, we investigate by
simulations the behavior of the asymptotic test for finite sample sizes.

Some technical proofs are given in the Appendix.
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2. Change-point model

In practice, it is an important question whether the linear regression model holds
true for the whole experimental region [a, b] or whether a change-point t* € (a, b) occurs.
If a change-point t* exists, then it is supposed that the regression model is given by

F&)TB+e if ¢ € [a,t7),
Y(t) = T .
f@) B+ farr,e(t)Bara +¢, if t €t

where (87, 84+1)7 € R%! is the unknown parameter vector of the regression functions
and fgy1,e ¢ [a,8] — R with fay1,-(t) = 0 for t € [a,¢*). In the present paper, we
assume that t* is known. In the sequel, we write fg11 for fa+1,. Note that, since t* is
known, b can be chosen in practice so that the period [t*, ] is suitable for the practician.
Our verification problem can be formulated as a test:

Hy : There is no change at t*

against
K : There is a change at t*.

It is worth mentioning, however, that some of our results do not depend on t*.
Then these statements hold true for unknown change-point t* as well. In forthcoming
papers, we will be concerned with the same problem as in the present paper but with an
unknown change-point. The basis of these forthcoming papers will be the results of this
paper.

In the literature on “detecting change-points” in linear regression models, it is fa-
miliar to consider the residual partial sums processes or variants of it; see, for instance,
Gardner (1969), Brown et al. (1975), Sen and Srivastava (1975), MacNeill (1978a), Sen
(1982), Jandhyala and MacNeill (1991), Tang and MacNeill (1993), Watson (1995) and
the references cited therein. Change-point problems are mostly challenging if the change
is small. Small changes, however, can only be discovered in an asymptotic way.

It is worth mentioning that Bischoff (1996) is concerned with properties of cer-
tain change-point test statistics and the sample path behavior of residual partial sums
processes.

In Examples 2.1 and 2.2, we introduce two real problems of quality control.

Ezample 2.1. Let d =1 and f(t) = fi(t) =1, fa(t) = 1 y)(t) for t € [a, b], where

0, if t€]la,t*),
1, if teftb)

L 4 (t) == {

Thus the change of the parameter from 1 to B; + (2 can be described by the model
Y(t) = P14 Palpe py(2) + € tE[ab]

Such a model has been used in a quality control department of the German industrial
company GKN Sinter Metals for controlling the density of toothed wheels produced
during a certain period of time [a,b]. The engineers have taken an equidistant sample
in time and assumed that the random variables of the sample are independent. Usually,
the measurements can be assumed to be identically distributed, but if the machine is
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Fig. 1. Density of toothed wheels.

adjusted at time ¢*, it is known that a change in the mean of the measurements can
occur in t*. It can be supposed that the measurements are identically distributed after
the adjustment at the point of time t*. The engineers are interested in knowing after
the period of time [a, b], on account of the whole sample, whether a change does or does

not occur in t* € (a,b). By measuring the density, the controlled toothed wheels are
destroyed. So the engineers are interested in an vptimal test. The data are shown in

Fig. 1, where the point of time t* is at the vertical reference line.

Ezample 2.2. Let d=1and f(t) = fi(t) = 1, fa(t) = (t — t*)*, t € [a,]], which
means we have the following model, if a change occurs in ¢*:

Y(t) =61+ Be(t—t)  +e,  telabd],

where .
0, if ¢t <t

t—t9t =
( ) {t—t*, if t>t*.

Such a model has been used by the quality control department after another production
step in which the stability of the toothed wheels is controlled. During the production,
the toothed wheels were treated together with other oily work-pieces. After a while,
it arose that the oil of the other work-pieces had a negative influence on the stability
of the toothed wheels. From the point of time t* € (a,b), say, the machine used in
that production step has been reserved for the toothed wheels alone. The remaining oil
in the machine decreases from the point of time t*. So the above change-point model
seems to be a possible choice for the data. Again, the controlled units are destroyed, the
sample is taken equidistantly, and it is assumed that the measurements are stochastically
independent. The engineers are interested in an optimal test, given the measurements
in the period of time [a,b]. The data are shown in Fig. 2, where t* is at the reference
line.

Example 2.3. Letd=2and fi(t) =1, fa(t) =¢, fa(t) = (t—t*)", t € |a,b|, which
means we have the change-point model

Y(t)=p1+ Bt +Bs(t—t")" +¢,  t€[a,b].

Such a model and similar, more complicated models are investigated in detail as exam-
ples.
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Fig. 2. Stability of toothed wheels.

3. Notation and preliminary results

Let f1,..., fq : € — R be known measurable regression functions, where £ = [a,b] C
R is the experimental region. As usual, we write f(t) for (fi(t),..., f4(t))",t € €. Let us
consider a triangular array t,;, 1 <7 < n, n € N, of arbitrary experimental conditions,
ie t,; € £ For each n € N, we assumc that tp; < tny < -+ < tnn. (bnl, .., lnn) 18
called an (exact) design (for n observations). Note that we do not assume t,; # tnit1.
Corresponding to this array of experimental conditions, we have a triangular array of
random variables Y,;, 1 < j <n, n € N, defined by

d
Yoj = Y Bifi(tng) + €nj,

i=1

where B = (B1,...,84)" € R? is the unknown parameter vector of interest and €, =
(€n1s---1€nn) " i a vector of stochastically independent and identically distributed real-
valued random variables with E(e,;) = 0 and Var(e,;) = o2 € (0, 00).

Let n € N be fixed. In the usual matrix formulation, we have

(3.1) Y, =X.0+en,

where X, is the model matrix corresponding to the design (tn1, .. ., tnn), i.e. the (s, 7)-th
component of X, is f-(tns). Then, for B to become estimable, rank(X,,) must be equal
to d. We assume that rank(X,) = d for all n > no and, in the sequel, we consider
n > ng only. Given model (3.1), the best linear unbiased estimation for X, 8 is given
by the least-squares estimation pry Yn = Xn (X, Xn) ' X,] Y, and the corresponding
least-squares residuals vector is given by

T
Tn = (""nl, ces a""nn) = erTJ;Yn = prxiem

where pry, = X, (X, Xn)7' X, and prys = I, — X,,(X1 X,,) "' X,, are the orthogonal
projectors onto range(X,) and onto the orthogonal complement of range(X,), respec-
tively. The aim is to give a limit theorem for the sequence

n
Tn1, Tnl +7'n2,~-a E Tnj
J=1

neN



ASYMPTOTICALLY OPTIMAL TESTS 663

of the partial sums of the least-squares residuals. For this, we need the functional
T, : R" — C[0, 1] with

[nz]

To(a)(z) = }:a + (n2 — [p2) a1, 2 €[0,1],

where @ = (a1,...,a,)" € R™, [s] = max{n € Ng | n < s} and Z?zl a; = 0. Thus we
obtain

(3.2) (Tn(rn) (%) T () (%) ,...,Tn(rn)(l))

n
= Tal,"n1 +Tn2, -, _S_ Tnj
Jj=1

neN

Note that (o/n) 1T, (r)(2), 2 € [0, 1], is a stochastic process in C[0, 1].
Next, each (exact) design (tn1,...,tan) € €™ uniquely corresponds to a discrete
probability measure P, on £ by

1 n
(3.3) Pn=_ > Py
=1

where Py;) denotes the one-point measure in . In the sequel, we identify an exact design
with its representation as a discrete probability measure and we call each probability
measure on £ a continuous design. Further, we do not distinguish between a design
and its representation as a distribution function F,, say, corresponding to P,. For our
results, we need that the sequence of designs F,, converges uniformly to a continuous
design Fp, say

(3.4) sup |F,(t) — Fo(t)] = 0 for n — oo.
t€[a,b]

To avoid misunderstand, we repeat that each probability measure Fy on the experimental
region as well as the corresponding distribution function Fp are called continuous designs;
but this does not imply that Fp is continuous. In this paper, distribution functions
are defined as right-continuous functions; hence, within our context, the class of all
distribution functions is given by

(3.5) F:={F :a,b] —[0,1] | F is increasing and right-continuous, F'(b) = 1}.
We put
d
([ron@m@) = [ 1050 F@ =
£ i,5=1 £
and assume that
(3.6) rank(J) = d.

Note that the above integral is defined pointwise. In the sequel, similar integrals are
defined accordingly. It is obvious that (3.6) is fulfilled if and only if the regression
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functions fi,..., fa are linearly independent in Ls(Fp), where Lo(Fp) is the Hilbert
space of square integrable functions with respect to Fp.

Remark 3.1. Given a continuous design Fp, we can construct, in a natural way,
a sequence of designs (Fy,) by F, = %Z?zl Py, .y converging uniformly (according to
(3.4)) to Fo: For example, we can choose t; = Qo(%), 1 < i < n, where Qg is the
right-continuous quantile function of Fy (this means Qo(z) := sup{t € [a,b] : Fo(t) < z},
where sup(@) := a). In a similar way, Sacks and Ylvisacker (1966) introduced designs
for regression models with correlated errors.

Now we can state the functional central limit theorem of Bischoff (1998). We use
integration by parts for obtaining our formula instead of that given in Bischoff (1998).

THEOREM 3.1. Let the regression functions f1, ..., fq be continuous and of bounded
variation. Let the conditions (3.4) and (3.6) be fulfilled for fi,..., fa, the sequence of
designs (Fy,) and the continuous design Fo. Then (ov/n) 1Ty (r,) converges weakly in
C[0,1] to the Gaussian process By g, defined by

BNM@=Bw—<Lf@%AﬁQTJ (/f B(Fdr)).

where B is the Brownian motion on [0,1] and Fo,,(t) = min{Fy(t), 2}.

It seems to be worth mentioning that all integrals are to be understood as p-integrals,
where p is a signed measure. For example, let us consider for i € {1,...,d} fixed

/ﬁ RdM—ﬁ@BmMD‘LM%mMMQ

where integration by parts is used. The left-hand integral can only be interpreted as
a Riemann-Stieltjes integral, but the right-hand integral can be understood as a u;-
integral, where y; is the signed measure corresponding to the function f; of bounded
variation. In this sense, we can consider all integrals as y-integrals.

Ezample 3.1. (Examples 2.1 and 2.2 continued) In the case where d = 1, f(t) =
fi(t) =1,t € &, it is easy to see by Theorem 3.1 that, independent of the design Fp, the
Brownian bridge is the limit process

B¢ py(2) = B(z) —z-B(1), z€][0,1].

In the sequel, we need the covariance function of By, p, given in the following lemma.
The proof of this result can be found in the Appendix.

LEMMA 3.1. The mean and the covariance function of the Gaussian process By, g,
stated in Theorem 3.1 are given by

m(s) =0, sel0,1],
and

K(s, 2) = min{s, 2} — ([5 f(t)Fo;s(dt)>T -1 (/5 f(t)Fo.,z(dt)> sz e01],

respectively.
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Using the notation of Theorem 3.1, we call (0+/n) T, (r,) the residual partial

sums process of f and the exact design F,,. By g, is called the residual partial sums
limit process of f and the continuous design Fp.

4. Asymptotic considerations for the regression model
We want to test whether a function fg1; does or does not belong to the linear
regression model by observing n € N independent responses at the design points ¢,; €
€ =a,b],i=1,...,n. Under the null hypothesis Hy, we assume that the model
Yoi = f(tai) B+em, i=1...,n
is given. Under the alternative K, we assume that the model

Yoi = f(tns) "B+ Jar1(tni)Bast + €niy  i=1,...,7

occurs. So, for the exact design F,, corresponding to (tn1,...,tnn) € [a,b]™ we get the
following linear models

(4.1) Y,=X,B+e, under Hj
and

(4.2) Y,=X.B+€ under K,
where

€n = (€n1,...,€nn) | with E(e,) =0=(0,...,0)T € R",

Cov(en) = 0°I,(I, the n x n — identity matrix) and
€nl,-..,Enn independent and identically distributed,

Xn = (fr (tm'))?;dl,k=1 is the model (design) matrix under Ho,

Xn = fk(tni))?ij';:l is the model (design) matrix under K,
B=(B1,.-,BaBar1)" € R
We assume that the assumptions of Theorem 3.1 for f = (f1,...,f4)", (Fn)nen given

above and for Fy, say, hold true. Let us consider the residual partial sums limit processes
for both models Hyg and K under the null hypothesis Ho. If (4.1) is true, then we obtain

Bf,Fo(Z) = nlingo(a\/ﬁ)_lTn(er;} ()(nf3 + en))
Next, we assume that (4.2) is true. Noting that 7T}, is a linear operator, we get
Tn(erﬁ'- (XnB + en)) =T, (prx# (Xnﬂ + én)) + ﬁd+1Tn (erﬁLfn),

where

gn = (fd+1 (tnl)a LR fd+1 (tnn))T'

The proof of the following result is contained in the Appendix.



666 WOLFGANG BISCHOFF AND FRANK MILLER

LEMMA 4.1. Let us assume that conditions (3.4) and (3.6) are satisfied. Further,
let f1,..., far1 € La(Fp) be of bounded variation on &, let fi,..., fa be continuous and
let far1 be right-continuous on €. Then it holds true that

1 -
Tn (Eer;}gn> n_go h
in (C[Oa 1]7 ” ’ Hoo)a where

h(z) = th),f fdt1 (Z)

= [ s Bucta) - ([ 0P a1 )TJ-l ([ 1050 Fa(d)) .

Thus, under the alternative K, we recognize that for a fixed and sufficiently large
sample size 7, (01/n) 1T, (pr x L X, B+€,) is approximately distributed as B4+1v/no " h+
By r,. Hence, for obtaining an asymptotic test, we assume that (0/n) " Ty (pry.Yy)
is distributed as Bq41v/no " h + By g, in C[0,1], where n is fixed. Then the hypotheses
corresponding to (4.1) and (4.2) can be stated as

Ho:fRa1 =0 against K :Bay1 #0.

Remark 4.1. The above discussion shows that, for each n € N, we need a
reparametrization of the parameter space for getting a limit distribution under the al-
ternative. To this end we consider the random variable

Y:z = gnﬁd+1/\/ﬁ + XnB + €

for testing

Hy:Bgs1/vVn=0 against K :Bgr1/vn#0.

Note that the above test problem is the same as the original one for each n € N. By the
above considerations, we obtain

(0v/R) Tn(prxaY5) B Bas10 th+ By, (for n — o),

D
where = denotes weak convergence.

Remark 4.2. A uniformly most powerful test cannot exist for the test problem
considered above. But for the one-sided test problem

Ho:B4+1 =0 against K : (441 >0,

an asymptotically uniformly most powerful test exists as Theorem 4.1 shows.
For this test problem, we call a test statistic 6, : C[0,1] — {0,1}, n € N, an
asymptotically uniformly most powerful size & test (based on the residuals) il

(4.3) 6n((o+/n)~ T, (prx.Y7)) LA §(Bat10 h + By g,)  (for n — oo0),

where 6§ : C[0,1] — {0,1} is a uniformly most powerful size « test for Hy : Bg4+1 =
0 against K : 8441 > 0 observing Bqy10 1 h+ By ,. Note, that for the above definition,
T prxs (R") — To(prxs (R™)) C C[0,1] is a bijection.
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The above statement (4.3) implies that the power function of &, converges pointwise
to the power function of § for every continuity point of . If the power functions of On
and of § are increasing with respect to B44+1 and the power function of 6 is continuous
and tends to 1 for 8411 — oo, the convergence of the power functions is uniform. Note
that the above conditions are fulfilled by the following test given in (4.4).

The proof of the following theorem is given in the Appendix.

THEOREM 4.1. Let us consider the test problems (4.1) and (4.2). Let the conditions
of Lemma 4.1 be fulfilled and let g(t) = 1, t € €, be a linear combination of fi,..., fd.
Assume that fi,. .., far1 are linearly independent in Lo(Fp). With the notation

1/2
Yy i= Y psas = (= [[BE-Dfon @)

the following is valid:
(a) An asymptotically uniformly most powerful size o test for Ho : Ba+1 = 0 against
K : B441 > 0 is given by

(4.4)  “Reject Hy & Sy pruis(om) = T / yn(Fo(t-)) fara (dt) > =11 = a)”,
E

where yn(2) = (0v/n) ' Tn(prxrY,)(2) and ®7'(1 — @) is the (1 — a)-quantile of the
N(0, 1)-distribution.
(b) The test statistic is asymptotically normally distributed with mean Bay1v/no ™"

Y, and variance 1. The test is consistent.

o
Remark 4.3. In the notation of Remark 4.2, the test statistic in (4.4) is given by
§(u) = 6n(u) = 1{Spy f,fur (v) > @71 - )}, weC[01]
Remark 4.4. (a) The result of Theorem 4.1 holds also for the test problem
Hoy: Bgr1 <0 against K : (g4 > 0.

(b) For obtaining an asymptotically uniformly most powerful unbiased size « test
for the test problem

Ho:fay1 =0 against K : 8441 #0,

we have to change (4.4) into

(4.5) “Reject Ho < |7, / yn(Fo(t*))de(dt)‘ > o (1 - %) K
£

(c) If 0% is unknown, then without altering the asymptotic distribution, 0? may be
replaced by a consistent estimator.

Remark 4.5. In the case of a heteroscedastic error, similar results can be obtained.
Such models will be investigated in forthcoming papers; see, for example, Bischoff et al.
(1999).
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For calculating Sg, f,f,,,, the following formula for T g, can be useful.
LEMMA 4.2. Under the assumptions of Lemma 4.1 and Theorem 4.1, we have
Tr = (Jo —ag J ag)"/?,
where Jo := [; fay1(t)2Fo(dt) and ao := [¢ f(t)far1(t)Fo(dt).

The proof can be found in the Appendix.

*

Ezample 4.1. (Example 2.1 continued) Let us consider: d =1, f(t) = fi(t) =1,
f2(t) = 1 (), t € €. Let Fp be an arbitrary continuous design with s := Fp(t*—),
then

. ) / LR (df) — 2(1 — 5) z(s=1), if z€]0,s),
Fo.fi.f2(2) = 0z (dt) — 2(1 — 5) =
ofnta [t*,b] : s(z—1), if z€]s1],
Tr = (s(1-))"/%

‘I'he optimal test statistic Sg, f, f, stated in Theorem 4.1 is given by

Sk firfa () = —TRu(F(t*=)) = —(s(1 = 5)) "% -u(s), weC(0,1].

From the data of the quality control department, we have Sg, ¢, f,(yn) = 3.93, where o
in the computation of y, is replaced with the square-root of the usual variance estimator
under the Hy-model. Then the p-value of the two-sided test of Remark 4.4 (b) is 0.0001.
Thus, the null hypothesis is rejected for all relevant o used in practice.

Ezample 4.2. (Example 2.2 continued) Let us consider: d = 1, f(t) = f1(t) = 1,
fa(t) = (t — t*)*, t € €. Let Fy be the uniform distribution on €. With the definition

p:= (t* — a)/(b— a) we have
hey,fu.52(2) = /g(t — t*)" Fo;z(dt) — (/g(t - t*)+F0(dt)> z

t—t* t— ¢
ip1(2) ( [t*,(b—a)z+a] O — @ ) ( ) b =@ )

- ﬂbl——a)““””(z)((b— 0)z — (" = a))? = (b — t")%2)

= (b~ a) 5 (1 ()(= = p)* — (1= )%2).

Further, analogously, we have

o (s~ [soman)')

= -0 (- <1+3p))
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Thus, the optimal statistic Sg, s, s, stated in Theorem 4.1 is given by

u(lt):Z)dt:—T;Ol(b—a)/:u(z)dz, u € C[0,1).

Sk () =-TE /
[t+,b]

From the second data of the quality control department we have Sg, ¢, ¢, (yn) = 1.85.
From the engineers’ prior knowledge we can assume that the stability of the toothed
wheels cannot deteriorate if the residuary oil decreases. So we take the one-sided test of
Theorem 4.1 (a). The p-value is 0.032. Thus, the null hypothesis is rejected, for example,
for a = 0.05.

Example 4.3. We are concerned with the last model d = 1, f(t) = fi(t) = 1,
fa(t) = (t—t*)*, t € €, once more. But now we consider the design Fy that puts masses
% at the points @ and b. Then, by simple calculations, we get

—b—a(l—p)z, if z<l,
2 2
hFD:flaf2(z) = b—a 1
— 1- — if >~
2 ( p)(l Z), 1 z—27
1 « b—a
Tr=26-1)="5%0 ),

1
SF01f1,f2 (’LL) = —2u (5) ) u € C[O: 1]'

Thus, the test of Theorem 4.1 rejects Hy if and only if

[n/2]
SFo,f1,f2 (yn (%)) = —'a%—ﬁ Z Tni + (g - [';—L]) Tn,n/2+1 | = @_1(1 — a)
=1

holds true.
5. The likelihood ratio test (F-test)
In this section, we consider the original one-sided test problem
Hy:Bg+1 =0 against K : (441 >0
for a finite sample under the additional assumption that the error is normally distributed
€n ~ N, (0,0%I,).
For simplifying the notation, we suppose that 02 € (0,00) is known. Further, we use
the notation of Section 4 and assume the conditions of Theorem 4.1. Let U = ImX,,
U:=ImX,, W:=UnNU" and let §, be the last column of X,,. Thus &, := &, — pryé,
is a vector of W. Then the likelihood ratio test is given by

(5.1) “Reject Ho < Cp(Yn) > ®(1 — a)”,

< =T
where Cp(Y,) := (0ll€,]) '€, Y n. The likelihood ratio test corresponds with the “F-
test” for known o2. Thus, the test given above is uniformly most powerful in the class
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of all tests based on the residuals, see Arnold (1981), p. 108, in case €, ~ N,(0,02%I,).
Without supposing any distribution assumption, we call the test given in (5.1) the “like-
lihood ratio” test. Our aim is to compare the “likelihood ratio” test asymptotically with
the test given in Theorem 4.1.

We can express the “likelihood ratio” statistic Cy,(Yp,) in terms of the corresponding
residual partial sums process. The following result is proved in the Appendix.

LEMMA 5.1. Let us assume that condition (3.4) is satisfied and let f1,..., fat1
be of bounded variation on € and linearly independent in Lo(Fy). Let fi,...,fq be
continuous and let fg+1 be right-continuous.

(a) For the “likelihood ratio” statistics, Cn(Y n) = SF, ¢, furr (Un), hold true, where
Yn(2) = (U\/ﬁ)_lTn(erT{Yn)(z)-

(b) We have the pointwise convergence

S frfasr (W) = Sk f.fas (W),  u € C[0,1].

THEOREM 5.1. Consider the test problems (4.1) and (4.2). Let the assumptions of
Theorem 4.1 be fulfilled. Then the “likelihood ratio” test

(5.2) “Reject Hy < Cn(Yn) = Sr, £, fusr (Un) > @71 (1 — )"

for Hy : Ba+1 = 0 against K : Bgy1 > 0 is an asymptotically uniformly most powerful
size o test.

Proor. If up, — wuo, uo, un € C[0,1], we have Sg_ f f,.1 (Un) — Sk f 401 (%0)
because of Lemma 5.1 (b) and because |Sg, f¢,,, | is bounded. So Theorem 5.5 of
Billingsley (1968) implies that

— * D -
SFn:fafd+1 ((U\/E) 1Tn(er,{~Yn)) - SFo,f,fd+1 (ﬁd+1a 'h + Bf,Fo)'

Thus, the assertion of the theorem follows from Remark 4.2 and Theorem 4.1 0.
Remark 5.1. Theorem 5.1 holds also for the test problem

Hy: Bay1 £ 0 against K : B4 > 0.

Remark 5.2. The difference between the two asymptotically uniformly most pow-
erful tests (test (4.4) of Theorem 4.1 and the “likelihood ratio” test (5.2)) is only that
the test of Theorem 4.1 uses Sg, ¢ r,,, and the “likelihood ratio” test uses Sg, r ¢, , as
statistics for finite samples.

Example 5.1. (Examples 2.1 and 2.2 continued) From the data of the quality con-
trol department, the values of Sg, f, , (yn) are only slightly different from the values of
SFo.f1,f2 (yn) computed in Examples 4.1 and 4.2. The rounded values (3.93 and 1.85) are
the same.
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Table 1. Probabilities of rejection of the two-sided size a test (4.5) for the situation of Exam-
ple41l: £€=[0,1),d=1, fi =1, f2 = L+ 1j(t), t* = 53/70, n = 70 under Hp : “f2 = 0” and
certain alternatives B2 > 0. 108 simulations.

distribution B2
a  of the error 0 .25 5 75 1
.01 normal .009 .043 203 .524 .829
.01 negative Gumbel .009 .040 214 545 .829
.05 normal .049 .145 434 769 .949

.05 negative Gumbel .049 .149 453 776 .942

Table 2. Probabilities of rejection for the one-sided size a test (4.4) for the situation of Ex-
ample 4.2: E=[0,1], d=1, fi = 1, fa = (t — t*)¥, t* = 54/83, n = 83 under Ho : “fa = 0”
and certain alternatives B2 > 0. 10 simulations.

distribution Ba
a  of the error 0 1 2 3 4
.01 normal .010 .080 .319 .679 .920
.01  Gumbel .013 .08 .321 .677 918
.08 normal .050 242 .508 .883 084
.05 Gumbel .055 .242 592 .884 .985

Table 3. Probabilities of rejection of the size a test (5.2) for the situation €& = [0,1], d = 1,
fi=1, fo=(@t—t*)t t* =54/83, n = 83 under Hp : “B2 = 0” for certain observation sizes n.
108 simulations.

distribution n

of the error 25 83 250 1000 oo
negative Gumbel .039 .045 .047 .048 .05
Gumbel 060 .055 .053 .052 .05

6. Simulations

In this section, we investigate by simulations the behavior of the asymptotic test used
in Examples 4.1 and 4.2 for finite sample sizes. For these examples, the error distribution
of the data does not seem to be normally distributed. An extreme value distribution
seems to be more appropriate. Therefore, for Example 4.2 we consider the standardized
Gumbel distribution with mean zero and variance one: G(s) = exp(— exp(—sm/v/6—7)),
s € R, v = Euler’s constant. For Example 4.1 we consider the “negative Gumbel
distribution” 1 — G(-s), s € R.

For the model of Example 4.1 (fi = 1, fa(t) = 1 3j(t)) and the situation of the
quality-control data, i.e. n =70, tn; = i/n,2 = 1,...,70, t" = 53/70, & = [0,1] and Fy
the uniform distribution on the points ¢,;, ¢ = 1,...,70, we simulate the probabilities
of rejection of the two-sided test given in Remark 4.4 (b) for the cases a € {.01,.05},
B2 € {0,.25,.5,.75,1}. The simulations are done with the error N(0,1) and with a
negative Gumbel distribution error. Our results in Table 1 are based on 108 simulations.
We do not assume that o is known. Hence, for our simulations, we have to estimate o
for computing the test statistic.
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For the model of Example 4.2 (fi = 1, f2(t) = (¢ — t*)*) and the situation of the
quality-control data, thatisn = 83, t,; = i/n,i =1,...,83,t* = 54/83,& = [0, 1] and Fy
the uniform distribution on the points t,;, i = 1,..., 83, we simulate the probabilities of
rejection of the test given in Theorem 4.1 for the cases a € {.01,.05}, B2 € {0,1,2,3,4}.
The simulations are carried out as above. For this example, we have used the error as
N(0,1) and a Gumbel distribution, respectively. The results shown in Table 2 are based
on 108 simulations.

We conclude this section with some simulations for increasing sample size. We
investigate the model of Example 4.2 once more. For Fj, the uniform distribution on
the interval [0, 1], we simulate the probability of rejection under the hypotheses (82 = 0)
for o« = 0.05. We use the sample sizes n € {25,83,250,1000} and the Gumbel and the
negative Gumbel distribution. The rounded results based on 10® simulations for the
statistic (4.4) and the statistic (5.2) are the same. They are shown in Table 3.

7. Design of experiments for change-point problems

In the previous sections, we have considered the test problem for an arbitrary but
fixed asymptotic design F. Under weak assumptions, we have derived the asymptotically
uniformly most powerful size o test in Theorem 4.1 for a given design F. If we want to
compare the (asymptotic) power of two tests with respect to two different designs F, Fy,

we have to look at (Y, /Y r,)? (see Theorem 4.1 (b)) because of

~Bat1vV10 T = —Bar1v/n20 ' Th, & ne = (T /Tr)* .

So, if we choose the design Fb instead of the design Fj, we need (asymptotically)
(Yr, /Y F,)? times the number of design points in order to get (approximately) the same
power. The ratio (Y, /Tr,)? is the asymptotic relative efficiency of the test with design
F relative to the test with design F5.

Ezample 7.1. (Example 2.2 continued) Let us again consider: d = 1, f(t) =
fi(t) =1, falt) = (¢ —t*)T, t € €. Let Fy be the uniform distribution on &, and
let F be the measure that has masses § at the points a and b. Let p := (t* —a)/(b— a).
By Examples 4.2 and 4.3 it follows that

(tr/YR) = 5(1-7)(1+3p)

For the data of Example 2.2 (p = .651) we have (Xr, /T r,)? = .344, so we need only 34.4
percent of the number of design points if we use Fy instead of Fy for getting the same
power. This is very important in practice especially if the measurements are expensive.
Moreover, (Yr, /Tr,)? < § holds for each p € (0,1).

In the previous example, we have seen that the design has a great influence on the
power of the test. In this section, we look for the best choice of FF € F, where F is
defined in (3.5). Theorem 41 shows that, given F' € F, the power of the optimal test
is characterized by T p. Thus, the “optimal” design maximizes the functional T p with
respect to F' € F. So we get the following definition:

DEFINITION 7.1. Let the test problems (4.1) and (4.2) be given. Then a design
Fy € F fulfilling

(7.1) II'EIE&}(TF = TF‘O
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is called an asymptotically optimal design (for testing Hy: “the function fuy3 does not
belong to the model” against the alternative K: “fq41 belongs to the model”).

By Lemma 4.2, we know that
Tr=(Jo—ad J 'a)'/?, Fe7F,

where Jo = [, fay1(t)2F(dt) and ag := [, f(¢)fas1(t)F(dt). With the definitions f=
(fi,- s far1)" and egy1 := (0,...,0,1)7 € R we can write

-1
Yo ( ([ 777ar) )

Solutions of the maximization problem (7.1) are known for the following special regression

functions fi,..., fa+1:

(a) f(t) =71, 5=1,...,d+1, t € [a,b], see Dette (1994) and Dette and Studden
(1997),

(b) f2j+1(t) = COS(jt), .7 = 0: cevy [(d - 1)/2]a f2](t) = Sin(jt)7 .7 = 15 ceey [d/2]:
t € [a,b], see Dette and Haller (1998).

For the special change-point models considered in our cxamples, we are able to determine

optimal designs.

—1/2

Ezample 7.1. Let d =1 and fi(t) = f(t) = 1. For an arbitrary F € F and an
arbitrary function f5 : £ — R of bounded variation, by Lemma 4.2, we obtain:

2
2 _ 2 _
TF—/gf2(t) F(dt) (/; f2(t)F(dt)) .
Further, we assume that

argmax fo(z) #0,  argmin fa(z) # 0.

\

One can show that each Fy € F with mass % at the points arg mingeg fo(z) and with

mass 3 at the points arg max,c¢ f2(z) solves Equation (7.1); the assertion can be proved
by the same technique used in the following example.

If we especially choose fa = 1+ 4(t) (Example 2.1), the optimal designs are given
by the set of all Fy € F with Fy(¢*—) = 1. Note that in the set of optimal designs, there
exists a design that is independent of the change-point ¢*, namely the design F{ that
puts equal masses % at a and b. So this design together with the optimal test, is even
optimal in the case that the change-point is unknown!

If we choose fa(t) = (t — t*)* (Example 2.2), then for a known change-point t* €
(a,b) a design Fy € F is optimal if and only if Fo(t*~) = 1 and Fy(b—) = 3. The design
Fy is again an optimal design in the case where the change-point ¢* is unknown.

Example 7.2. Let us consider the case [a,b] = [0,1], t* € (0,1) and d = 2 with
the regression functions fi = 1, fo(t) = t, f3(t) = ((t — t*)*)*, where k > 1. T% is
maximized by the design Fy that has masses 1—53, %, 5 at the points 0, s, 1, respectively,
where s is defined by

i if k=1,
I AR s LAl A N I DS
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This result is proved by using an equivalence criterion; see, for example, Silvey (1980),
p. 45, or Pukelsheim (1993), p. 176. For Fy being optimal, we have to show that

(7.2) (fa(z) — ag J7H(f1(2), f2(2))T)? < Jo — ag T ao

holds for every z € [0,1], where Jo := [, fas1(t)2Fo(dt) and ao := [; f(t)fa+1(t)Fo(dt).
For the design Fy given above, we have

Jo = 5((s = 1)+ 20— )%,
1
%s((s—t*)+)k+§(1——t*)k s s(1+s)/2

Simple calculations yield

Jo—ag J lag = = (s(1 — t*)* — (s — t")F)2.

mH

So we can evaluate the difference of the right and the left-hand sides in (7.2) as follows:

(7.3)  Jo—ad T ag — (((# — t) M)k —af T71(1,2)T)?
(1 —t*)*2(s(1 — t")F = (s — t*)F — (1 — t*)k2), z €[0,t%),
=9 A=tz - (z -t
(2=t — (1 =tz 4+ s(1 =) = (s = t*)F), 2z € [t*,1).

In the case where k = 1 (that means s = t*), it is easy to see that this expression is
nonnegative for every z € [0,1]. In the case where k£ > 1, some elementary calculations
lead to the same result. So (7.2) follows.
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Appendix

Proor oF LEMMA 3.1. m(s) =0, s € [0,1], is obvious. Next, for simplifying the
notation, we define

(A1) = [ 5O Focldt)
We have
K(s,z) = Cov(B(s), B(z)) — Cov (B(s),v;rJ‘l Lf(t)B(Fo(dt))>
— Cov (B(z),v;rJ—l / f(t)B(Fo(dt))>

+COV<TJ /f B(Fy(dt)),v] J~ /f Fodt))>
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For every m € N, let a < 1 < -+ < Tmm < b be a partition of £ with sup}”zz{xmj —
Tmj-1} — 0 for m — oco. Then we have

Cov( /f B(Fy(dz) ))

= Cov ( s ,n}ganf (Zmi) (B(Fo(Tms)) — B(Fo(fﬂmi—l))))
=1

= Jim_ > f(amo)(minfs, Fo(zm)} ~ min{s, Fo(zm-1))
i=1

= lim > F(@mi) (Fos (@mi) — Foss (@mi-1))
i=1

- / £(2) P (dz) = v,
£

Cov (/f (z) B(Fy(dz)), /f YB(Fy(dy)) ) /f z) T Fy(dz) =

Thns, the assertion of the lemma. follows. M

and

PrOOF OF LEMMA 4.1. We define F,.,(t) = min{F,(¢),z} and 1, = (3}, €
R"™, where y; = 1, if i < [n2], Vns+1 = nz — [nz] and v; = 0, if ¢ > [nz] + 1. For each
z €10, 1], we have

T, (%prx,fsn) (=)
-7, (%5,,) (2) = T, (%Xn (%X,TX,,) - (%X,Ign» (2)
(b)) s (e

=/fd+1(t)Fn;z(dt)

(s (f7r0mm) ([reiovonion)

s / fa+1(t) Fo,-(dt)

- ([ #0Fuutar ) ([so7srm dt))_l ([fns@r@).

The last pointwise convergence (for each z € [0, 1]) holds true because (3.4) implies the
weak convergence of I}, to Fyy and F},; to Fy,;, respectively, if fg4, is continuous. But if
we assume that fz1 is of bounded variation, then the convergence can be seen as follows:
It is easy to show that the product of two functions of bounded variation has this property
as well. So we get by integration by parts for signed measures (cf., for example, Hewitt
and Stromberg (1969) p. 419) and by Lebesgue’s dominated convergence theorem:

/ far1 () f(t) Fr(dt)
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= Fasn (0)F(b) - /E () (Fasn ) ()
" f (5)F(B) — / Folt=)(fars £)(dt)
£
/fd+1 (t)Fo(dt),

where the convergence F,(t—) — Fy(t—) follows by assumption (3.4). Next, we show
uniform convergence. For the first integral -

/fd+1 nz_FOz)(dt)‘z sup LFnz( ) FOz( _)fd—}-l(dt)

z€[0,1]

sup
z€[0,1]

< sup / | Fra (t=) — Foga (¢ fasa ] (dt)
z€[0,1]

/ ot £ 1] (dE) "2 0

I

holds true. The uniform convergence of the second integral can be shown in the same
way. O

LEMMA A.l. Let K(-,-) be the covariance function of By g, given in Lemma 3.1,
let the assumptions of Lemma 4.1 be fulfilled, let fi,..., fa+1 be linearly independent
in La(Fy), and let g(t) = 1, t € &, be a linear combination of f1,..., fa. Let h be the
function deﬁned m Lemma 4.1. Then it holds true that

8) Jo K (= fa+1(Qo(ds))) = h(2),

( ) h#OmC[O 1].

ProOOF. (a) We use integration by parts for signed measures (cf. Hewitt and
Stromberg (1969) p. 419) for the following result:

- min{s, 2} fa+1(Qo(ds))

[0,1]

= —/ sfa+1(Qo(ds)) — / zfa+1(Qo(ds))
[0,2] (2,1
= —zfa+1(Qo(2)) + /[0 ] fa+1(Qo(5-))ds = 2fa1(Qo(1)) + 2fa+1(Qo(2))
= /[0 ]fd+1(Q0(s~))ds— 2far1(Qo(1))
- /g Farr () Fo (@) — 2 fagr (Qo(1)).
Further, by Fubini, we get

_ /0 . [5 £(£) Fos(dt) fa (Qo(ds))
- / £(Qo(2=))dz farr (Qo(ds))
[0,1] J[0,s]
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- / far1(Qo(ds)) £(Qole—))dz

[0,1] Y [2,1]
- /[ Fas3(@6(0) ~ fora @ul) S (@l )i
- [5 (Fars (Qo(1)) = Farn (6) £(8) Fo(de).

So we obtain

(A.2) fﬁ&@Fhﬂ@d®m=h@Hﬁﬂd%UDGJTJAfM%Mﬂ—Q7

[0,1]

where v, is defined in (A.1). Without loss of generality, we assume that fi = 1 and
{f1,..., fa} is a set of orthonormal vectors in Ly(Fp) (In the general case, we can choose
a d x d-matrix A of full rank and put g(t) := A - f(t) so that g = 1 and {¢1,..., 94} is
a set of orthonormal vectors). So we obtain J = Iy and [, f(t)Fo(dt) = (1,0,...,0)".
Because of v, = (z,...)" we see that the second summand in (A.2) is zero.

(b) Obviously,

PO) = farr ) = FOTI " [ Fan()f(&R(@s) #0 w La(m)

by the assumption that fi,..., fo+1 are linearly independent in Lo(Fy). Hence, the
assertion follows since h(z) = [, p(t)Fo,z(dt). O

PROOF OF THEOREM 4.1. (a) Given y ~ vh + By, g, and given the test problem
Hy : v = 0 against K : v > 0, it follows by Luschgy ((1991), Proposition 1 and the
following considerations) that the uniformly most powerful test statistic is given by

—1/2
" ( / h(z)u(dz)) - / w()pldz), e,
[0,1] [0,1]

where p is a signed measure being the solution of

(A.3) K (s, z)u(ds) = h(z).
[0,1]

Note that K (s, 2) is the covariance function of By g, given in Lemma 3.1 and h is given
in Lemma 4.1. Lemma A.1 (a) yields that the signed measure p induced by the function
— fa+1 © Qo which is of bounded variation solves (A.3). Note that the assumptions (A2)
and (A3) of Luschgy (1991) are satisfied because we have a solution of (A.3) and & # 0in
C10,1], see Lemma A.1 (b). Note further that YT g, is well defined and positive because
g Fa i)s the norm of h in the reproducing kernel Hilbert space considered in Luschgy
1991).

The signed measure induced by fg+1 0 Qo is the image measure of the signed mea-
sure induced by fg41 under the mapping ¢ — Fy(t—). So it follows, from Hewitt and
Stromberg ((1969), p. 180), that

(A4) /M w(2) fas (Qo(d2)) = /g w(Fo(t—)) fasn (d)
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for u(z) € C[0,1] (especially also for u(z) = h(z)).
(b) The assertions of (b) follow directly by (1.3) in Luschgy (1991). O

PROOF OF LEMMA 4.2. We have (cp. the proof of Lemma A.1 (a)):
[ [ 1 OFse@en(@o(d) = [ £0)(a(@o(1) ~ fars ) Fala)
0,11 JE £
Analogously, we can show that
S L et @@ 13(@0(d2) = [ fara S (@o(1) = fann (Do)
[0,1]
Hence, using (A.4), we get

T3 =~ | h(2)fanr(Qold)

[0,1]

= _ / ﬁ Far1(t)Fo,z(dt) far1(Qo(dz))

(/{01]/f ) Fo,z(dt) fa+1(Qo(d2)) ) </ fata(t) Fo(dt)

= —/gfd-}-l (t)(fa+1(Qo(1)) = far1(t)) Fo(dt)
]
+ ([ 100ur(@01) ~ e @Fs(a0) 7 [ fasa(or10) Fola).

Similarly, as at the end of the proof of Lemma A.1 (a), we recognize

fa+1(Qo(1 (/ fag1(t)Fo(dt) </f YFo(dt) ) </ fa+1(t)f (t) Fo(dt) )) 0.

Thus, Lemma 4.2 follows. O

PrOOF OF LEMMA 5.1. (a) The “likelihood ratio” statistic can be written in the
following way:

12Tz \—1/23T - - _
Cn(Yn) = 071 €n€n) /26, Y0 = (076 prx 1 €,) T2 (0v/n) e prxs Y
One can show that the following two equations hold true:
lEn erJ-E = / h’F ffd+1( ( ))fd+1(dt) T%'na

(o3/m) 1€ pry LYy = / Y (Fa(t=)) fasa (db).

Hence, the assertion of part (a) follows.
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(b) We have

T2, / Fars (£)° F(dt) (/ FOF )T, (dt))_lan

= / far1(t)?Fo(dt) — ag Jlag = T,

where an := [, f(t)far1(8)Fn(dt), n € NU{0}. The convergence can be shown in a
similar way as in the proof of Lemma 4.1 in this appendix. Further, it holds true for

u € C[0,1):
lim [ w(Fa(t-)) s (dt) = /8 w(Fo(t=)) faz (d).

n—00 £

So the assertion of part (b) follows. O
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