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Abstract. One method of monitoring corrosion in an underground storage tank
involves placing a sensor in the tank and running it around the tank’s interior. As
it runs, the sensor records the local thickness of the tank. In this paper we consider
the problem of estimating the maximum pit depth by providing a confidence interval
that achieves both a specified confidence level and a specified degree of precision. A
particular model, the three-parameter beta, is considered, and a stopping rule for
determining the sample size is proposed. It is shown that the stopping rule achieves
the desired confidence level and precision, asymptotically as the precision requirement
becomes increasingly stringent. Moreover, the stopping rule is asymptotically efficient
in terms of sample size. The limiting distribution of the stopping rule is derived, and
simulation results are presented to supplement the asymptotics with finite sample size
behavior.

Key words and phrases: Corrosion data, precise estimation, extreme value theory,
stopping rule.

1. lIntroduction

Monitoring corrosion in underground storage tanks is an important environmental
concern, with significant budgetary and public health implications. A relatively new
method of assessing the degree of corrosion involves placing a sensor in the tank and
running it around the tank’s interior. As it runs, the sensor records the local thickness
of the tank. The tank’s original wall thickness at the time of manufacture is known, and
we will denote it by ¢. Current standards (J. Carnahan, personal communication) call
for sampling 15% of the tank’s interior surface area and replacing the tank if the current
average wall thickness is too small or the current maximum pit depth is too great (i.e.,
the minimum wall thickness is too small).

The 15% sampling requirement is clearly intended to produce sufficiently precise
estimates of the average wall thickness and maximum pit depth, yet the precision re-
quirement is not explicitly stated. Whatever the precision requirement may be, there is
no guarantee that it will be achieved using the 15% sampling rate, or any preassigned

sampling rate. Moreover, even if the preassigned sampling rate happens to achieve the
desired degree of precision, it is highly unlikely that it does so efficiently, i.e., with as

few observations as possible. Both precision and efficiency are important considerations.
Imprecise estimates may result in needless and expensive replacement of a good tank, or
else leaving in place a tank that presents a significant threat of near-term leakage. On
the other hand, running the sensor involves significant expense and one would like to
minimize this expense, subject to the precision requirement. A 15% sampling rate can
produce sample sizes well over 100,000.
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In this paper we will consider precise estimation of the maximum, since this prob-
lem has received much less attention in the literature than the analogous problem for
the population mean. We will formulate a stopping rule that is designed to provide a
sufficiently precise confidence interval for the maximum pit depth. The efficiency of this
procedure will also be examined.

One approach to the problem of estimating the maximum pit depth is to assume that
one has a sample of maxima and to use the sample to estimate the form and parameters
of the limiting distribution of the maximum. This approach has been used successfully
in many areas of application, for example in estimating the distribution of record flood
levels of a river. However, in the present situation only one maximum will be observed in
a given tank. While one could subdivide the observations into batches and then consider
the set of batch maxima as a sample, this seems rather artificial (note that in the flood
level case, by contrast, it is natural to group the observations by year). Instead, we will
assume a parametric model for the pit depths, derive the limiting distribution from it,
and then estimate the parameters of the model sequentially as sampling proceeds.

Let Y; denote the i-th pit depth (i.e., original wall thickness minus current wall
thickness) recorded by the sensor. Because the original wall thickness ¢ is known, we
will work with the random variables X; = Y;/t, which represent the pit depths as a
fraction of the original wall thickness. We will assume as a first approximation that
the X; are independent and identically distribnted (iid.), even though in reality some
spatial correlation may be present. The support of the X; is an interval [0, §], where
0 < 6 < 1; here ¢ is the unknown maximum pit depth in the tank. Our goal is to
construct a sufficiently precise confidence interval for 8, i.e., a confidence interval I such
that the width of I is at most 2d, where d is a prespecified positive number, and such that
P(@eI)~1-—+, where 1 — 7 is the desired confidence level. The idea is to determine
0 to within the desired tolerance d and to do so with sufficiently high confidence in the
determination.

We will assume that the X; have a three-parameter beta distribution with density

fo.0,8() = C(a, B)(z/0)* (1 —z/6)P71/6

for 0 < z < 6, where o, 8 > 0 and C(e,8) = I'a + B)/T(a)[(B). This is a fairly
flexible family for modeling the pit depths: as a and 3 vary, a wide variety of density
shapes and endpoint behavior can be achieved. Both o and 8 will be assumed to be
unknown. Previous research on precise point and interval estimation of a maximum has
been carried out by Graybill and Connell (1964), Ghosh and Mukhopadhyay (1975), and
Alvo (1978), all of whom consider the special case when a = 8 = 1 (i.e., the uniform
distribution) and by Mukhopadhyay et al. (1983), who investigate the case when 8 = 1
and o is known (a “power distribution”). In related work, Basawa et al. (1990) consider
sequential estimation of an autoregressive parameter using a first order statistic.
Because maximum likelihood estimation for the three-parameter beta distribution is
problematic (note that the likelihood is neither everywhere differentiable nor monotone

in 6), we will estimate 6 by the sample maximum M, = max(Xi,..., X,) and subject
to this choice we will estimate « and § by the method of moments. In order to formulate

a sensible procedure for precise estimation of 6, it is first necessary to know the form
of the limiting distribution of M,,. This can be obtained using well known asymptotic
results for maxima (see Galambos (1978) and Leadbetter et al. (1983) and the numerous
references they contain). In what follows, let Fy o g denote the distribution function
of the three-parameter beta distribution and let F, g denote this distribution function
when 6 =1 (i.e., the distribution function of a standard two-parameter beta distribution
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on [0,1]). Using 'Hopital’s Rule we have for z > 0,

(1.1) lim (1= Fp,a,p(6 = (tz)™)]/[1 = Foap(6 —71)]
= lim [1 - Fo p(1 = (6tz) 7)]/[1 = Fa,p(1 — (68) )]

t—o00

1 1
= lim w* (1 = w)P~ldw w* (1 = w)?ldw
= [/1—((%@—1 4 )’ }/[/1—((%)—1 S )
= lim [ (1 — (6t) 1) (B12) P (6) 472/ 1- (1 — (6) 7)) (61) 06 1472)

=z P
It follows from (1.1) and Theorem 2.1.2 of Galambos (1978) that as n — oo,
P((M,, = 6)/b, < y] — e~ (0",

for y < 0, where b, = 6— 0F_ | 5(1—1/n). This is an example of a Type III extreme value
dlstrlbutlon Another apphcatlon of I’Hopital’s Rule yields

(19) Jim[1 = F. p(2))/[Ca, B2 (1 - )P

i [ -] fio

= lim[-2*71(1 = 2)"7"]/[(a — D)z 72(1 ~ w)f’ - fz (1 -2) ) =1/8.
Since 1 — b,/8 — 1 as n — oo, (1.2) implies

1= lim (1/n)/[C(e, B)(1 - bn/0)*" (bn/6)" /8]

n—oo

= lim (1/n)/[C(a;, ) (bx/6)" /B).

Hence we can take
bn = 6]8/C(cx, B)]*/Pn~1/P

and therefore

n!/f (M, — )
SB/C e, B =Y

N e—(—y)‘;7

(1.3)

for y < 0. Note that the rate of convergence depends on 3 in the way one would expect:
the larger ( is, the flatter the density is near 6 and the longer one needs to wait to get
an observation that is close to 6.

(1.3) can be used to construct confidence intervals for 8, provided that o and 3 can
be estimated consistently. The wean and variance of the three-parameter beta arc

fo
a+p

and
0 62
T (a+B)2(a+B+1)
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Because we are estimating 6 by M, the method of moments estimates of & and 3 are

Brn = (My, — )—(n)[)_(n(Mn - Xn)/si - 1]/M,,
and

G = Xn|[Xn(M,, — Xy)/8% — 1]/ My,

where the sample mean X, = n™' Y7 | X; estimates 4 and the sample variance s3 =
n~t S (Xi — X,)? estimates 02, We will modify these to

(1.4) B = (M} — X0)[Xn (M, — X3)/s% — 1)/ M,
and

(1.5) &nIXn[Xn(M; —Xn)/sfz_l]/M:;v

where

M, = My + My [~ 10g(1/2)Bn /C (G, Bn)] /P 1/Fn

M;; is an asymptotically median-unbiased version of M,. It turns out that this modi-
fication produces better simulation results than those resulting from use of 3, and &,.
Because these estimates as well as M, are consistent and C is continuous, we have

n'/B(M, — 6)

e = )P
My [Bn/C (G, Br)]1/Bn <y e (-

(1.6)

for y < 0. Moreover, from (1.2), for n sufficiently large and 6 < 1/3 we have

(1.7) P[M, <8 —6n"% = P[M,/8 <1-n""
<[1-C(a, B)(1 = n~0)*" =% /(20))"
< [1=Cla, Byn™/(4B)]",

so that the series -
> P[M, <6—6n"F
1

converges and hence by the Borel-Cantelli Lemma

(1.8) P[M, <6—6n"%.0]=0.

Using this result and the Law of the Iterated Logarithm for X, and s2, it is easy to

check that

(1.9) Bu—B=on™) as.
for every € € (0, min(1/2,1/8)), and it follows that
(1.10) nt/B-=1/8 = expllog(n)(8 — Bn)/(BBn)] = 1 as.

Combining (1.6) and (1.10) yields

’rﬁl/ﬁ"(Mn T 9) _ < y| — e__(__y)ﬂ
A{n[ﬂn/c(dmﬁn)]l/ﬁ" -

(1.11)
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for y < 0, and hence for any v € (0,1), if 0 <7y <72 < Lsatisfy o —n1=1-1,

(112) I = [My + Man ™52 (B, /C (6, Ba)] /P (~ og(2)) /P,
My + M™% (B, /€ (6, Bu)) P (~ log (1)) /7]

is an approximate 100(1 — v)% confidence interval for . Two special cases are v; =
v/2,72 = 1 —~/2 (equal tail probabilities), and v1 = 7,72 = 1 (lower endpoint M,,
reflecting M,, < fa.s.).

Because the width of the interval in (1.12) is random, there is no nonrandom sample
size that can ensure that the width is no larger than 2d. We must therefore resort to a
stopping rule to determine the sample size. Based on (1.12), define the stopping rule 7y
by

(1.13) T, = first n > 2 such that

M B/ C (ém, Ba))M/P7((— Log(m)) /P — (—log(2)) /%] 4+ 0™ < 2dn/Pn,

where the n~! term is added to ensure that sampling does not stop too soon (see Chow
and Robbins (1965), Chow and Yu (1981) and Sriram (1987) for similar considerations).

Then thc confidence interval

(1.14) I, = [Mr, + Mz, Ty~ /P Br, /C(6,, Br,)] /P7a (— log(v2)) M Pra,

Mg, + Mg, Ty~ P4 (Br, /C(ax,, Br, )| PTa (— log(m))/Pra)
has width at most 2d. It remains to show that the confidence level of this interval is
approximately 1 — - and that the sample size Ty is efficient. These issues are addressed
in the following theorem.

THEOREM 1. Define

ng = (24)P6%(8/C (0, B)(~ log(m))'? ~ (~ log(x2)) /7).

Then as d — 0,

(1.15) Ty/ny— 1  a.s.

(1.16) Plelr,]—-1—~

and

(1.17) E(Ty)/ny — 1.
Remarks.

1. (1.16) states that the proposed procedure achieves the desired confidence level
as well as the desired precision, asymplotically as d — 0, i.e., as one requircs morc
and more precision. Rounding n}; to the nearest integer yields the smallest n such that
width(Il,)/(2d) — 1 as. as d — 0. It is therefore the smallest nonrandom sample
size that would, if it were known, provide the desired precision and confidence level
(asymptotically). (1.15) and (1.17) state that the stopping rule 7, is asymptotically
efficient for small values of d in the sense that it is equivalent to the ideal but unavailable
ny.
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2. One interesting feature of the procedure is that the power of n in the normalizing
constant b, namely n~'/# is unknown and must therefore be estimated. This is different
from the usual situation in sequential, and for that matter nonsequential estimation:
typically the power of n is known and in most cases it is n~1/2 as one would expect.

3. de Haan (1981) gives a general, nonparametric approach to constructing (non-
sequential) confidence intervals for the minimum of a function. The present approach
is parametric, with the attendant advantages and disadvantages. It makes fuller use of
the model assumptions but at the same time is valid only for the three-parameter beta
distribution.

It is also of interest to determine the limiting distribution of the stopping time Ty
and its rate of convergence to n)j. To do this it is first necessary to derive the limiting

distribution of ,Bn We know from the Central Limit Theorem that
(1.18) (X — 82— 02)T =4 N(0,Zp 0 p)

as n — oo, where the entries in the asymptotic covariance matrix g o 5 are 011 = 02,
019 = 091 = Cov(X1, (X1 — p)?), 092 = Var((X; — p)?). We can write

X, v (Xu-—w +u(9—M?§)

(1.19) M: 6 M 6Mx

and
2 2 2 _ 42 2002 _ (M*)2
(Mz)? 62 (Mp)? 02 (My)?
Let H denote a random variable whose distribution is the limiting distribution of
n'/B(M* — 6). In what follows we may take H to be independent of the multivari-
ate normal distribution in (1.18) (see Tiago de Oliveira (1961) and Rosengard (1962)).
From (1.18)—(1.20),

v 2 o\ T
(1.21) pmin(1/2,1/6) (ﬁ B _Sa "_)

n

T
uH 20%H
—d I1/821/2)N(0,%1,0,8) — I(1/8<1/2) (72‘ )

where I denotes indicator function. Let W denote a random vector with components
W1 and Wy whose distribution is specified by the right side of (1.21). (1.4) and the delta
method yield
(1.22) nmin(t/21/8)(5, — )

—q (60— (6 —3u)/0® + W1 — [u8(u — 6)? /0¥ |W,.
Let S denote a random variable with distribution given by the right side of (1.22). Then

we have the following theorem, in which the need to estimate the rate of convergence of
M., to 8 accounts for the log(n}) term (see (2.21)—(2.27) below).

THEOREM 2. Asd— 0,
(1.23) B(ng)™n /2D (Ty — )/ log(ng) —a S

The proofs of Theorems 1 and 2 are given in Section 2. Section 3 gives simulation
results for the procedure.
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2. Proofs

PROOF OF (1.15). From the definition of Ty,

~ . ~ A A 3 1/8
(2.1) Mz, [Br,/Clé,, Br )P [(~ log(m))/P7a — (~ log(y2))/Pra) < 2aT, /"
Because &n — a , Bn — B8, My, — 6 a.s. and Ty — 0o a.s. as d — 0,
(2.2) ar, — «, ﬁTd — 0B, Mg, — 6 as.

It follows from (2.1) and (2.2) that
(23) lininé(dT,’"™) > {66'/%(~ log(m))"/®  (~log(12))/?]}/20(e, £)/®  as.

Similarly, the inequality

(2'4) MTd*-l[:BTd—l/C(deA_l,,BTd_l)]l/BTd-l A »
[(=log(m))/Pra=t — (= log(m2))PTa1] + (Tg — 1) 2 2d(Ty — 1)*/Pra=s

yields
(2.5) limsup[d(7y — 1)1/BT4‘1]
d—0

< {86 ((~ log(m))'/? — (~log(12))/]}/2C (e, B)"/Pas.

Because (T; — 1)/Ty — 1 as., (1.15) now follows from (2.3), (2.5) and (1.10), noting
that since 7y — oo a.s. (1.10) holds a.s. with n replaced by T, or Ty — 1.

PROOF OF (1.16). It suffices to show that Tj/ﬁT‘i (Mg, — 6)/Mg,(Br,/C(ér,,
Br,))/P7a has the same limiting distribution as n'/8(M,, — 6)/6(3/C(a, B))*/#, i.e.,

1/Br, _
(2.6) P Td (MT“A ) _ <y| o e (v’
MTd (IBTd /C(de ; IBTd))l/ﬁTd

for y < 0. Fix € € (0,1). In what follows we will for convenience of notation treat
(1 —€)ny and (1 + €)n}; as integers. Because M, < My41 < @ for all n, we have

(27) 8(6/C (e, ANYA =Y

<P [(1 + e)YB(ny) P (M _gyns, — 6)

T,'" (Mg, — 6
P[ o (M, )< (1-eny <Ty<(1+e)ny

<Y

8(6/C (e, B))/P

Ly e wP-a/(te)
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Similarly, since Ty/n} — 1 a.s.,

7,/" (Mr, - 6
(2.8) P 55 /cg( T“ﬁ))l/)ﬂ <y; 1—eny <Ty < (1+e€)ny
1— VB )Y (Mg ons — 0
> p| L2 9(;”/‘2(6! (ﬂ))‘ijﬁ’ 179 < (- < Tu < (L o
(1 B 6)1/ﬁ(n2)1/ﬁ(M(1+e)n§ - 9)
ZPl oscame =Y
L em (=P +e)/1-e),
Since

l/ﬁ(MT _ 9)
2670, )P =Y

+0(1),

Tl/ﬁ(M . —0) ) *
=P ’VH(dﬁ/C(a?ﬁ))l/ﬁ <Y (l - 6)nd <Ty < (1 + e)nd

it follows that

T8 (Mr, - 6) P
2.9 limsup P | -4 4 <yl < e (=P A=9)/(1+e)
(29) S 9(B/C @, B = Y| S
and
L. le/ﬁ(MTd—H) (B
<yl > e~ (9P 0+/(1-0)
(210 limint P | 5570 e = Y| 7 © '

Letting € — 0 yields
P

1/ﬁ(MTd —6) Ly e (v
56/, B =Y '

-1/B+1/Br,

Combining this result with 7, -1, ér, — o, ﬁTd — B, Mg, — 0 as. and
continuity of the gamma functlon finishes the proof of (1.16).

PROOF OF (1.17). In view of (1.15), it suffices to show that {dPTy : d < 1} is
uniformly integrable (u.i.). Let G(a,b) denote

[b/C(a,5)]"/*[(—log(m))"/* = (— log(72)) "]
and note that 7} is the first n such that
M G(Gin, Ba) + 12 < 2dnt/P.
By the Marcinkiewicz-Zygmund inequality, for e > 0, s > 2, and 0 < § < 1/2,

(2.11) P[| X, — u| > en™%] < (const)n—(1/2=9)

and
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(2.12) P[|s2 —o?| > en™%] < (const)n~3(1/2-8),

From (2.11), (2.12) and (1.7) it is easy to show that for 0 < 6 < min(1/2,1/8),

(2.13) P|6 — o > en™%] < (const)n~s(min(1/21/8)=6)
and ’
(2.14) P18, — B| = en~%] < (const)n~s(min(1/2,1/8)=6),

Because G has continuous derivatives of all orders at (e, 3), it follows that for 0 < 6 <

min(1/2,1/6),
(2.15) P[|G(én, Br) — G(a, B)] > en™%] < (const)n~s(min(1/2.1/8)=6),
For A >1,d <1, and n(d,\) = [\d~#] , where [ ] denotes greatest integer, we have

(2.16) P[Ty > n(d, )] < P[Ty > n(d, \), G(bn(any Bugany) < 2G(o, B),
|1/:Bn(d,/\) - 1/8| < n(d,X)~°)
+ P[G(Gn(arys Bua.ny) > 2G(a, B)]

+ P(11/Bugany — 1/8] = n(d,X)~°]
= [+ IT+IT1,

say. It follows from (2.14) and (2.15) that

(2.17) sup IT = O(n(d, ,\)—s-min(1/2,1/ﬂ)) - O(/\—s-min(l/Q,l/ﬁ))
d<1

and

(2.18) sup III = O(n(d, /\)—s(min(l/2,1/ﬁ)—6)) — O(/\—s(min(l/2,1/ﬂ)—6))
d<1

as A — oo, for every s > 2 and 0 < § < min(1/2,1/8). Moreover, since M, < 8 for all
n’

(2.19) supl < P[2AY/A-mdN™* gi=1=-Br@ Nl < 929G (q, B) + n(d, \) Y.
<1

It is easy to check that
AV/B=n(d\) 7 g1=[1=Bn(d. ) "] _,
as A — oo, uniformly in d < 1, so we have

(2.20) supl =0
d<1

for A sufficiently large. It follows from (2.16)-(2.20) that
{dPTy:d<1} isui,

proving (1.17).
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Remark. Note that this argument actually shows E(T7%)/(n})? — 1 for all p > 0.

PROOF OF THEOREM 2. We have

(21)  (2d)PTPe — (2a)ny > ME,GP(ay, Br,) - 0°GP (o, B)
and )
(2.22) (2d)° (Ty — 1)P/Pra=1 — (2d)Pn;

< [Mry—1Gégy—1, Bra—1) + (Ty — )7 = 6°GP (o, B).

It follows from arguments similar to those used to prove (1.16), together with various
uniform continuity in probability results (see Woodroofe (1982), Section 1.3), that (1.18)—
(1.22) hold with n replaced by either Ty or T — 1. It follows from this observation and
the delta method that

(2.23) T;ni“(lﬂ’l/ﬁ) (M:,quB(de,,BTd) — 60°GP(«, B)) converges in distribution
and
(2.24) (Ty - 1)™in(/21/5) (qud_lGﬁ(&Td—laﬂTd—l) — 6°G* (0, B8))

converges in distribution.

We also have

(2.25) Ty~ T)'P% = Ty[1 — exp(log(Zu)(8/Br, — 1))
~ Ty log(Ta) (Br, — B)/Br.,

so that

(2.26) BT/ 2By _ IPe) log(Ty) 54 S.
Combining (1.15), (2.21)—(2.24) and (2.26) yields

(2.27) BT /21BN () _ %) [og(Ty) —a S.

In view of (1.15), this completes the proof of Theorem 2.

3. Simulation results

A small simulation study was carried out to examine the performance of the stop-
ping rule Ty for nonasymptotic values of d. Observations were generated from a three-
parameter beta with o = 8 = 2 and 6 = 1 (note that the value of 8 does not actually
matter, as the performance is invariant under rescaling). v was set at 0.05, corresponding
to 95% confidence, v, was 0.025, 2 was 0.975, and the values of d were 0.0100, 0.0095,
0.0090, 0.0085, 0.0080, 0.0075, 0.0070, 0.0065, 0.0060, 0.0055, 0.0050. This represents a
range of desired precision from 1% down to 0.5%. These values seem appropriate given
the serious consequences of imprecise estimates. Due to the rather large sample sizes that
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Table 1. Coverage frequencies, average sample sizes, and n, with standard errors in parentheses.
d Coverage Freq.  Average Sample Size ny
0.0100  0.8825 (0.016) 2408.82 (34.53) 2586
0.0095  0.8800 (0.016) 2678.81 (33.72) 2865
0.0090  0.8725 (0.017) 3000.35 (35.69) 3192
0.0085  0.8850 (0.016) 3331.33 (40.26) 3579
0.0080  0.9125 (0.014) 3827.40 (40.75) 4040
0.0075  0.8825 (0.016) 4387.94 (48.87) 4597
0.0070  0.8800 (0.016) 5048.52 (50.24) 5277
0.0065  0.9025 (0.015) 5020.11 (53.64) 6120
0.0060  0.9350 (0.012) 6969.06 (52.28) 7183
0.0055 0.8900 (0.016) 8231.75 (65.17) 8548
0.0050  0.9075 (0.014) 10076.48 (72.61) 10343

resulted, only four hundred repetitions were conducted for each value of d. Table 1 sum-
marizes the coverage frequencies, average sample sizes (i.e., estimated expected values of
Ty) and ideal sample sizes n);. Standard errors of the estimates are given in parentheses.

Several things stand out from the simulations. The average sample sizes are rea-
sonably close to the m; values, indicating that the stopping rule is doing a good job
of choosing the sample size. The average sample size is in all cases below n}j, but the
discrepancy is small: the ratio of the two quantities ranges from 0.931 to 0.974, with the
higher ratios occurring for smaller values of d, as one would predict from Theorem 1. All
of the coverage frequencies are below the desired 95% value. They range from 87.25% to
93.5%. Even when the standard error is factored in, it is clear that the actual coverage
probability is somewhat lower than the nominal value. Still, the degree of confidence
that is attained is fairly high. Preliminary simulations with larger values of d and hence
smaller expected sample sizes showed much worse performance; in particular, the method
does not seem to work well unless it produces sample sizes in the thousands or tens of
thousands. These sample sizes are still well below those that can occur when the 15%
sampling rate is used, so the procedure produces definite gains in efficiency.
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