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Abstract. Let (X;,Y;) be a sequence of i.i.d. random vectors in R® with an ab-
solutely continuous distribution function H and let g (y), y € R™ denote the con-
ditional density of Y given X = z € A(F), the support of F, assuming that it
exists. Also let M(z) be the (unique) conditional mode of Y given X = z defined by
M (z) = arg maxy (9= (y)). In this paper new classes of smoothed rank nearest neigh-
bor (RNN) estimators of g (y), its derivatives and M(z) are proposed and the laws
of iterated logarithm (pointwise), uniform a.s. convergence over —co < ¢y < oo and
z € a compact C' C A(F) and the asymptotic normality for the proposed estimators
are established. Our results and proofs also cover the Nadayara-Watson (NW) case.
It is shown using the concept of the relative efficiency that the proposed RNN esti-
mator is superior (asymtpotically) to the corresponding NW type estimator of M(zx),
considered earlier in literature.

Key words and phrases: Conditional density, conditional mode, smooth rank nearest
neighbor estimators, law of iterated logarithm, uniform strong convergence.

1. Introduction

Let {(X;,Yi) : ¢ > 1} be a sequence of bivariate random vectors with a common
continuous distribution function (d.f.) H with an absolutely continuous density A and
marginal d.f.’s F' and G, respectively. Further let g, (assuming that it exists) denote the
conditional density of Y given X = z € A(F'), the support of X, and for each z € A(F),
let M (z) defined by

(L.L) M(z) = arg sgp[gm ()]

denote the conditional mode of Y given X = 2. Assume that M (z) is the unique mode
of g (y), —00 <y < o0.

While many researchers have studied the estimation of the unconditiona)l distribu-
tion, density and quantile functions and the mode, work on the estimation of the corre-
sponding conditional functionals started only recently with the pioneering work of Stone
(1977) and the papers of Stute (1986) on the weak convergence and a.s. convergence rates
of conditional empirical processes (see also Horvath and Yandell (1988) and Hardle et
al. (1988)). The estimators considered in the preceding papers were all of the usual un-
smoothed type. However, for the estimation of conditional mode M (z) as defined above,
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one needs a smooth estimator of the conditional density g.(y), —o0 < y < oo, which
itself must be smooth, at least in some neighbourhood of M(z). Additionally, when
the underlying functions to be estimated are smooth, it seems natural to devise smooth
estimators for their estimation. A smooth estimator of smooth g, of the Nadaraya-
Watson (NW) smooth type, was employed by Samanta and Thavaneswaran (1990) to
construct a class of smooth estimators for M (z). They also proved the a.s. consistency
and asymptotic normality for these estimators.

The object of the present paper is to propose a new class of smoothed RNN estima-
tors for the conditional density g.(y), its derivatives o )( ), —co<y<oo,j=12,...,
and the conditional mode M (z) and establish their respective laws of iterated logarithm
(LIL), asymptotic normality, uniform a.s. convergence rates over —oo < y < oo and
z € any compact C C A(F), as well as derive their asymptotic relative efficiencies w.r.
to their NW-type competitors. As will be demonstrated below, the proposed smooth
RNN estimators of g&j), j =0,1,2,... and M(z) are generally superior to their NW
counterparts studied in Samanta and Thavaneswaran (1990).

Consider the following smoothed estimators of the conditional density g.(y) =
gg(go)( ), —00 < y < oo, and its j-th derivative g(] (y) —assumed to exist and be
continuous— j = 1,2, ... defined by

(1.2) 952 (Y) = (naphy, Vin ()~ Zm(m Fr(Xa)) kg (4, ¥3),
= 0,1,2,..., —00 < y < oo, where Fn(:c) = n 'Y Iixi<a), kin(z, Fo(u) =
< W(2) — Fo(w)/an), kS @v) = kS ((y — v)/h), talz) = (nan)™' S0,

kin(z, Fp (X )), k1 and ko are suitable “smooth” kernel functions and {a,}, {h,} are
sequences of band WIdths with a,, h, — 0 but na, — oo and nh, — oo, as n — oo.
The estimators gm, j=0,1,2,... defined by (1.2) above, denote the successive deriva-
tives of the corresponding smooth RNN conditional empirical d.f. and shall be referred
to in the sequel as the RNN estimators of g, and its derivatives. Define now the RNN
estimator M, (z) of the conditional mode M (z), based on gns, by

(1.3) My (z) = arg szp[gm(y)J-

In the case of the NW type estimator M (x) of M(z), based on the NW type estimator
grz of gz (obtained from g,,(y) by replacing F,(z) and F,(X;) with z and X, respec-
tively; see Samanta and Thavaneswaran (1990)), the study of its asymptotics requires
the explicit existence of the marginal density f of X, while no such assumption is needed
in the case of the corresponding RNN estimators. The general superiority of RNN es-
timators over the corresponding NW estimators results from the fact that, in addition
to their relative robustness, the ratio of the aympotic variance of an RNN estimator to
that of the corresponding NW estimator equals f(z) in all cases, a quantity which is
usually less than one for most values of z. Additionally in situations where the observed
X-values are available only in terms of their ranks —relative to each other and the value
x  instead of their precise values, the RNN estimators g,. and (therefore) M, (z) are
definable while the corresponding NW types are not.

The paper is organized as follows: In Section 2, the assumptions and the main

theorems along with certain standard results needed in the sequel are stated, while

in Section 3 proofs of the main results are presented. The RNN estimators gﬁfx), j=

0,1,2,... and M,(z) are compared with the corresponding NW estimators g,(f:,:) , J =

0,1,2,... and M} (z) in Section 4.
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2 Assumptions and preliminaries

In this section, the required assumptions and some standard results are stated, to
be referred to in the sequel as and when their need arises in proofs.

AsSUMPTIONS. For given j =0,1,2,
AL (i) the conditional density g,(¥), —oo0 < y < o0, of Y, given X = 2 € A(F),

has (j + 3) bounded continuous non-zero derivatives g(J = g(o A in a neighbourhood of
any specified y; and g(0 e)( ), £ =1,2, is bouded continuous in a nelghbourhood of M(x)

and ¢%? o M(z) # 0 for all z € compact C' C A(F), where g&7(y) = amlayj 9z(v); (ii)
E|Y|" < oo, for some 7 > 1; (iii) the uniqueness condition: for a compact interval C' C
A(F), M’ : C — Rand any € > 0, there exists § > 0 such that sup, .o |M(z)-M'(z)| > ¢
implies sup,ec gz © M(z) — gz o M'(z)| > 6 holds. (iv) there exist 6;, 6, > 0 such that
infrec f(z) > 61, infoec |98 0 M(2)] > 62;

AIL. the kernel functions k¢, £ = 1,2, (i) are bounded, symmetric around zero and
satisfy [ ke(t)dt = 1, [thke(t)dt =0 and f t2ke(t)dt < oo; (ii) have bounded continuous
non-zero derivatives upto thlrd and (j + 3)-th orders, respectively; (iii) have compact
support, (say), [-1,1] and satisfy Ltt_,ilky/)(t) =0,0<j<j+3

A III. the bandwidth sequences {an}, {hn} satisfy (i) 0 < an, hy — 0 with b, = Olan,)
and na2hLt% (logn)~! — oo as n — oo; but (ii) nadhlt? = O(1) and na,h3*% = O(1)
as n — o00; (iii) nanht®’? ¥ (logn)~! — 0o as n — oo; and

A.IV n(aph,)* — oo for some A > 1.

The conditions A.IT imposed on k; and ko are satisfied by a variety of kernels
and we give two examples below for either k; of ka: (a) k(s) = (2m)~Y/2(1 — s2)~3/2.
exp{—s2/2(1—s?)} if |s| < 1 and = 0 otherwise; (b) for an m > j, k(s) = ¢ (1 — s2)™ if
|s| < 1 and = 0 otherwise, where ¢, is chosen so that [ k(s)ds = 1. They are probability
kernels and the one in (a) is just a transform of the standard normal density.

We need the following for proving the main results in Section 3. Let {kp(n) : 7 >
1} be a sequence of bivariate kernel functions, each element of which is a function of
bounded variation on [a,b], @ = (a1,a2), b = (b1, b2) with the n-th element indexed by
r(n) = (r1(n),m2(n)) € R™ such that the j-th component of 7(n) is associated with the j-
th component in the domain of ky(,), 7 = 1,2. Now, set S, (r(n)) = >0, [Kp(n) (X5, i) —
Eﬁr(n) (Xz, Y)] with Ur(n),s(n COV(IQ,.(n (Xl, Yi) ﬁs(n) (Xl,Yi)) = Ur(n),r(n) and
@(n) = (2no? ) log, n)/? with log, n = log log n.

For proo% of the following Proposition 2.1 —an extension to the bivariate case of
a theorem of Hall (1981)— the reader is referred to Theorem 3.1 of Mehra and Rama
Krishnaiah (1997):

r(n

PRrROPOSITION 2.1. Suppose (i) log4nf|df<ar(n) (E)l/’rwf,(n) logan — 0 asn — oo
and

(ii) lime—o Umsup, o Y mer. |r(m)rn) /05my — 1| = 0 where T = {m : jIm—n| <
ne}. Then, limsup,,_, . £{p(n)} 19, (r(n)) = 1.

Main results. We state below the main results, the proof of which are deferred to
Section 3.
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THEOREM 2.1. Under the conditions A.I(i), A.Il and A.III(i) and (iii),
(i) for each z € A(F) and y € R,

(2.1) 92(1) = 99 )] = 00 (V)T In + ez (Vo + Cai (W) + o(775)

for j = 0,1,2,... where 7}; = [logyn/nanhi*¥)V2, aui(y) = |lkull2|65ll2/9:(9),
k2 = [k2(t) dt czj(y) and c;(y) as in Lemma 3.2, below and Limsup, £In =as. 1;
(ii) addztwnally, if AI(ii), (iv) and AIIL(ii) also hold, then

(2.1a) sup |99 () — 09 ()| = O(7wy),
mEC,yER(l) a.s.

where T, = (logn/na, k)2, for each j =0,1,2,....
From Theorem 2.1(i), we can immediately conclude the following:

COROLLARY 2.1. Under the conditions of Theorem 2.1(i) and A.III(ii),

. 2log,n \ /2
lesup:t(—%g) 9522 (v) — (y)lazgazy(y)

n—00 Tunlin
foreach j=0,1,2,..., 2 € A(F) and y € R,

THEOREM 2.2. Under the conditions of Theorem 2.1 with AIII(i) for j = 2,
AIII(ii) for j =1 and additionally A I(iii), (1) for each z € C,

2logyn
nan,h3

-1/2
(2.2) Limsup+ ( > My (z) — M ()] = oy o M(z);

n—oo
nd (i) furtherif, A.1(ii), (iv) also hold, then su2p$ec | My, (z)— M ()| =a.s. O(Tn1), where
= (log n/nanh)"/? and o3 (y) = 0a1(y)/19s” o M (2)).

Tnl

THEOREM 2.3. (i) Under the conditions of Theorem 2.1(i), and A.IV, for each
zeC,yeRY and j=0,1,2,...

(2.3) (nan kLY 2 (g50) (y) — g9 () — 2 N (D (y), 02, (y)),

where b9 (y) = Limp oo (nan ht29) /22 cq;(y) + h2cl i ()], provided the limit exists,

—00 < bgj)(y) < oo (ef . AIIL(ii)); and (ii) under the conditions of Theorem 2.2(i) and
A1V, for each z € C

(2.3a) (nanh)'?(My(z) = M(z)) =2 N (b}, 052 0 M(x)),
as n — 0o, where ¢zj, ¢, 05(-), 05(-) and by = Mo M(:J:)/ggf) o M(z) are as in

Theorems 2.1 and 2.2.

Remark 2.1. Theorems 2.1 and 2.3 have been stated explicitly only for the RNN
estimators of conditional density, its derivatives and the conditonal mode. These results,
however, hold also for the NW versions of these estimators. The proofs are implicit
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in the ones provided in this paper for the corresponding RNN estimators. This is so
because in the NW case precisely the same arguments (with appropriate modifications)
apply without the need to handle the “higher order” terms (see the proofs in Section 3)
which appear while dealing with the RNN estimators.

It is worth noting that our methods do bring out some improvements in the rates
of a.s. convergence over those achieved in Samanta and Thavaneswaran (1990). They
showed using a, = h, and higher order kernels k¢, £ = 1,2 which satisfy Lt|5j—c0

|82k(j/)(s)| =0 for 0 < j' < j, that sup, |g$w)( )— 2y Y =as O(7h5), as n — oo, where

= (logn/nh2+37)1/2. On the other hand, the methods of the present paper use only
probabﬂlty kernels, with compact support, and only ko satisfying a similar condition
Lt|s|_,1k( (s) = 0 0 < j’ < j, but establish a better uniform a.s. rate of convergence by
showing sup, Ig (y) (J)( ) =as O(Tnj), as n — oo, for every j = 0,1,2,..., where

Tnj = (logn/nh2*2)1/2] whose rate of convergence to zero is faster than that of 7,3,
ji=0,12.

Remark 2.2. The choice of {a,} and {h,}. From the representation obtained in
Theorem 2.1, one may determine the “optimum” bandwidth sequences {a,} and {hy} so
as to maximize the a.s. rate of convergence of [g(J ) (y)— géj) (y)] or equivalently minimize

its (so termed) asymptotic “span”, defined by
(2.4) S(an, hn) = 005 (y)7a; + lezj (W)lan + Iz, (W) A2,

where 71, = |logy n/na, hi ]2 and c,(y) and c}; (y) are given by (3.10a) and (3.10b).
Using the standard differentiation technique, one obtains

* (1425)/4(3+5) (5+25)/4(3+3
21) e = () ()™ 7 e
' Y

1+2j)0z; 4lcz; (y)l
. 5/4(3+7) 1/4(3+j
(24b) By oy = [ LT 20)0w(®) <4|cm-(y>|> PHED st
. n,0pt — " )
’ 4lez; (y)l 925 (y) "
where \, = [log, n/n]'/2. Thus the optimum bandwidths a, opt and ki opt are both of
1/(343)

the same order Ay , as n — 00. The above “optimum” values have been obtained
under the conditions of Theorem 2.1(i), without the Assumption A.III(ii). This last

condition is necessary for Theorem 2.3, otherwise the limiting mean bgj)(y) in these
would tend to oo invalidating the assertion of the theorem. Thus the slowest assumable
order for {a,} and {hy} for each Theorem 2.1-Theorem 2.3, and also for Corollary 2.1,
to be valid is & [An (logy n)~1/2)V/ (3+3) = =1/ (6420) (1, =1/8),

3. Proofs

We need the following lemmas to establish the main results. Consider the following
Taylor’s expansion which is valid in view of the smoothness Assumption A.II(ii). For

each z € A(F) and y € R, let v (y) = ta(2)(6%(v) — ¢ (v)) and k) (z, F(u)) =
k9 ((F(2) — F())/ay). Then by setting pr(y,v) = k& ((y — v/ks) — n1¥399) (),

(3.1) vQy) = a;thy D) / /A ki (€, Fo (1)) P (v, v)dHn (1, v)
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= 0[] o, F(@)pnel, o) (w,0)
+ 0272y (4) // an(m,u)k&)(m,F(u))pnm(y,v)dHn(u,v)
+ (2nadplti)-t // an(x,u)QkF)(An)pm(y,v)dHn(u,11)

=JD @)+ I () + ISh ), (say)

where H, = n™! PRy Iix,<a,ve<y) Un(z) = n1/2[Fn(I) — F(z)], an(z,u) = Up(z) -
Un(u), Apan lies between F(z)—F(u) and F, (x)— F,, (uv) and A, = {u : |Fp(z)—F,(u)| <
an}. We shall first prove a lemma below concerning the rates of a.s. convergence of
Jffze( ), £€=2,3,7=0,1,2,... uniformly in z € C and y € R:

LEMMA 3.1. Suppose the conditions of Theorem 2.1(i) hold. Then, as n — oo,
uniformly iny € RY andz € C C A(F), (a) IJffze( )| =a.s. 0(75;), (b) Jr(ljz)e( ) = 0p(77;),
3=0,1,2,...,£ = 2,3 where 7}; = (nanh)t29)71/2 (logy n)/? and 7)), = 77 (logy n) ~1/2.

PROOF. We tirst consider J) m3(y) Since k() vanishes for values outside |—1, 1],
the expansion (3.1) holds with integration restricted to A, = {u : |Fp(z) — Fp,(u)| < an}
and further by Stute (1982) we have a.s. on A,

(3.2) |F(z) - Fw)| < |Fa(2) — Fa(w)| +n~jan(z,0)] < can

for some positive constant (generic) ¢, not depending on z € C, and sufficiently large
n, the last inequa.lity following in view of the assumption that a, > (n~'loga;!), so
that A, C B, = {u : |F(z) — ( )| < can}. Writing Vi, (u,v) = n'/?(H, — H) o
(w,v), Bn(u,v;2,y) = Vi(u,v) — Vulu,y) — Vol(z,v) + Vo(z,y) and wy(an, bn; Br) =

SUP |z —u|<cran |ﬂn(u v; £, y)|, we have from (3.1),
l[y—vl<c2hn

33 W= e [ ol wk? )
- [ [ kol 0)aVa,) — K990, )
(2nadplti)= // (z,u) k( A (Ap)Pnz(y, v)dH (u,v)
= J'r(zjz)Bl(y) + Jr(gc)32( ) =o(ry;) for j=0,1,2,
since from (3.1), by Stute (1982, 1984) and the use of (3.11b) as for (3.8) below,

(34)  sup |0 ()] < ex(n®/ el by t) " sup (2, )
z’y a.s. n
: [wn(ana Fn; 571) + h’}z_l-j |g:$cj) (y)' S;lp ian(ilt, u)” a_._;. O(T;j)a
3.5)  sup|JY < c(nadh )" sup o (z,w)h2Ha, = o(T,),
oy nz32\Y B n ) as. nj
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as n — oo. Now again from (3.1), J, 1(13:22( ) can be expressed as

38 a0 [ / (2, WK (2, F (4)) P (3, 0) Vi 11, 0)
+n Y2720y (1"'7)// Qn (2, u) k( )(z, F(u))pne (y, v)dH (u,v)
= T2 ) + Tl (v) = o(my),
where the last equality follows since, by using the same reasoning as for Jfllz)g,l (v),
(3.7) supIJ(J2 | < n~tay;2h; (1+9) sup | an (2, 1)

n

. [wn(am hn;IBn) + h111+J'g§:J)(y), S;lp |an(m,u)]] = 0( ng)

and, upon setting z,(t) = F~1(F(z) — ta,),

(3.8) sup|JPh,(y)| < n~H2a; h sup |a (2, 2a (t)]
T,y

< [l

as n — o0, in view of the fact that [ pno(y,y — hn$)dGy, (1)(y — hns) = O(RZH) for
j=0,1,2,... (see (3.11b) below). This completes the proof of part (a). The part (b) of
the lemma can be proved by using the following in-probability bounds

(39)  n?sup{Ha(u,) ~ Hu,v)] = Op(1),  sup|Un(z) ~ Un(u)] = Op(a}/”

[ a2 = 81 )0 = )| = 0(7),

and steps similar to those in (3.4), (3.5), (3.7) and (3.8). This completes the proof of
the lemma. O

We now establish the asymptotic behaviour of J,(ljxl( ) in (3.1) for each case j =
0,1,2,... in the following lemma:

LEMMA 3.2.  Under the conditions of Lemma 3.1, we have, for each x € C C A(F),
y€A(G,) C RY and each 7 =0,1,2, as n — oo,

(3.10) (i) JEAW) = I (2,y) + cxs(v)ar + ez () ha + o(Ty),
(i) = J,(IJ)(:I:,y) + cpi(y)al + ¢k iy Vh2 + op(T, i) §=0,1,2
(i) ta(z) = 1+t (2) + O((logy n/na})'/?),

where the last order terms in (3.10) (i), (") and (ii) are uniform in z € C and y € RM,
Jr(l]z)l (y) 45 yiven by (8.1),

(3103,) J,sj)(il,‘,y) = (anh#j)_l // kln(ma F(u))pnm(yav)d(Hn - H) © (U,U),
Cai(y) =27 f@)GPIY (Yo (kr)  and  ciy(y) =27 g0 (y)pa(ke),
by () = 7 [ ban(o, F@)A(E — F)o (), pafl) = [ k(s)as.
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PrOOF. To establish part (i), we first prove the equivalence of J, G) o b0 J,(li)l, ie.

(3.10b) TSI W) = T W)l = olmy),
as n — 0o, where J,(li)l( ) is J,(ljm)l( ) with integration over the whole space R(?) instead

of A,. To achieve this, note that on the set AS N By, for large n
> |F(x) = F(w)] 2 |Fa(2) = Faw)| = (lan(z,0)l/v/7) > an(l = chl/2H7,5)

for some ¢ > 0, not depending on z € C, by Stute (1982), so that using the transfor-
mations u = F(F(z) — ant) = z,(t) and v = y — hns = yu(s), we have 1 > t >
(1 chl/P¥7.) on ASN B, j=0,1,2,.... We thus obtain

3.11) I W) - I ()l

< n"l/Qa;;lh;l_J

/ ki (t) / pm(y,yn(s))d[Vn(xn(t),yn(s))J‘
AsNBy

—1y—-1—9
+ay hy

/A <NB, Fa (f) {/p’””(y’y"(s))den(t)(yn(S))} andt
=0 () +€5h0)  (say).

Now for the first term in (3.11), note that by the boundedness of the integrand, the
Assumptions A.IT and Stute (1984), we have for some constants ci, c2 > 0,

(3.11a) sup €7 (y) < en™ 2 b jwn (Gn, B Ba) = 0(77j)-
z,y a.s.

Further, for the socond term §nm2, upon using integration by parts and then applying
Taylor’s Theorem to G, (¢)(y — hns), the middle integral equals

(3.11b) /kgﬂ (8)d{Gz, 0y (y = ) = Ga iy ()}
J+1 .
= Y- G0 w) [ stard(s)+ Oni)
_ h3+1 () ( )+O(hf‘t+2),

@n(t)

as n — oo, the result following by noting that fsj“dkgj) (s) = (=1)3*1(5 + 1)! and
fsj'dk(j)(s) =007 <L j by the Assumptions A.II(i)—(1u1). Substituting (3.11b)
results in the expression for §n12 in (3.11) and using the fact that A¢ N B, C Ay, = {t:
1>t>(1- chit'® +JTM}, we obtaing for some constant co > 0

C .
(3.11c) sup |§m2( )| < hl—ij (/ dt) hglﬂ = O(hl‘HTm) o(Thi)s
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as n — o0o. The use of (3.11a)—(3.11c) in (3.11), yields the required equation (3.10b).
Now to establish (3.10), we now express j,(fz)l (y) as

(3.12) (anhit9)7t [// ki (2, F(u))pna (y,v)d(H, — H) o (u,v)
4 / o (2, F(w))us (4, 0)dGou (0) dF ()

= Jy(lj) (iE, y) + Tnmj (y),

where Tna;(y) = Elkp(n)(X1,Y1] is evaluated in (3.18)—(3.18c) below. Hence part (i) of
the lemma follows from (3.10b) and (3.12). Further using the probability bounds given
by (3.9a) in place of a.s. bounds, (3.10)(i’) can be established following steps similar
to those in (3.11) to (3.12). Now to prove part (ii), note from (3.1), upon obtaining
a result of the type (3.10b) and followed by one term Taylor’s expansion and suitable
transformations and splitting of integrals, that

(313)  tn(z) = a7t / ki (2, F(w))[dF () — d(Fy — F) o1
+n-1/2g22 / an (@, W)Y (A (W)[AF (w) + d(F, — F) o 1]
An
= L+t (z) +en1(z) +ena(z)  (say),

where, using the same reasoning as for (3.4)—(3.8), it follows that sup,ccleni(z) +
6n2(x)] O((logy n/na2)'/2), as n — oo. The proof of part (i) thus follows from (3.13).
a.s

The probf of the lemma is complete. O

PrROOF OF THEOREM 2.1. To establish part (i) we shall first prove the LIL for
J9(z,y) given by (3.10a). In Proposition 2.1, set n(&)(Xl,Yl) = (aphlti)~!

kin (2, F(X1))Pna (4, Y1) and op(n)r(n) = cov(ﬁ(J) (X1,Y1), ,(31, (X1,Y1)). Now

r(n)

(3.14) ExY)

r(n)

= (anhltian bty x/ kin(z, F(u))
' kl"fl’ (x7F(u))pn$(y: 'U)pn’a;(y, U)dH(uv U)ﬂ

(X].’Yl)nr( /)('Xlayl)

where the middle integral —say, I,(u)— can be expressed as

(3.18)  In(u) = /[h(”(y,v) Rt gD (D[RS (y,v) — RL 7 99 ()]dG (V)
/k(”(y,v)kw(y,v)dGu(v)— hit gl ( y)/k (y,v)dGy (v)

- k9 (y) / s (4, 0)AGu (o) + Wi e (60 (1)

= en1(w) +en2() + ena(WhiT b7 (g5 ()%, (say)
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with €p1 (u) —after the transformation v = y — hps, integration by parts, the use of
Taylors expansion and the Assumption A.II(iii)— given by

(3.152)  em(u)= — / k3 (8)kS) (sho/ho )Gy — i) — G (y)]
_j+1 ehnG(oe ! V4 k(j) he lh 1 k(j+1)
= SV FEEO) [ SHE ) + (/e = D)

=1

Olhn /b — 1)?}dk (s)
J+1

1 .
Z (y)/_ls’“'ké’)(S)
: d{k“)(s) + (b b = 1)8kF TV () + Olhn/ b — 1)%} + O(RIF?)

Jj+1
ZZ( )hnG(OZ()

— ¢

{2/sek§j)(s)dk£j)(s)+ (Z: - 1>

X { / s (s)dk (s) + / sV (5)dkS T ()

+ / s%gﬁ(s)kgj“)(s)ds] + O((hn/hny — 1)2)}

O(h%*).

Similar treatment, coupled with the use of fsj“dkéj)(s) = (=1)9*1(j + 1)! and fsj’
dké’)(s) =0 for 0 < j' < j, yields

(3.15b) na(u) =h}l7“jg;j)(y)/k(’)( JA{Guy — hns) — Guly)}

J+1

—hifj )(y) Z nG(Oe {(_1)e/sedk§j)(s)} + O(h:fjhzl”)

= ~h IRt gl (y)g“)( ) + O(hLFIR2H),
n+1

(3.15¢) ens(u) = —h gl (y) Z P GO0 ( {( 1)¢ /_ 11 s"dkéj)(s)} + O(hLHIRIT?)
= —h;“hifﬂg;ﬂ(wga“( )+ Okt hy?),
From (3.14), we obtain by setting u = z,(t) and using Taylor’s expansion,
(3.16) Bk (X1, YR, (X1, Y1)] .
= (BT [ k()00 (6) + (anfaw — Dk (1)
+O((an/an — 1)) In(za(t)) dt,

where I, (z,(t)), obtained by using (3.15a)—(3.15c¢) in (3.15), is given by
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i+l 1.0
—1)tE o
(3160) 1) = 3 ool
{2/3%(” )dk$ (s) + (A /by — 1)
< [/ 159 ()08 (5) + /SE+1k§j)(8)dkgj+1)(s)

+ /s%gﬂ‘)(s)dkgﬂ')(s)] + O((hnhns — 1)2)}
T OUIF?) = (o hn)H(209) 09 (y) — (69 (9))?) + O(RLFHZH),
From (3.16) and (3.16a), by setting n’ = n we obtain
(3.16b)  E[xY)))* = (anh2t¥)” / ki (t)

Z( 1) h’nG(O 8)( )2/Sekgj)(8)dkgj)(8)

=1

+O(hi*?) — h2+% (200 ()99 (y) — 99 (v)) + O(KE+™) | dt.

Now (3.16b), upon further Taylor’s expansion of the integrand on the right around ¢ and
some simplification, yields

(3.17) B[k = (anhit®) 7 k|3 (-2 (k) g0 (9) + O(hn V an)]
= (anhE ) ko |3 15513 92 (v) + Ol V ap)]

the last equality following since w(kgj)) = - fskéj)(s)dkéj)(s) = (1/2)||k(])||2. Also note
that, again using transformations u = z,(t) and v = y,(s) and then Taylor’s expansion
of the integrand around ¢ and s, we obtain

(3.18) Elkip(ny(X1,Y1)]
_ (anhlti)! / / Fra (2, F) k) (9, v) — k199 (1)|dH (u, v)

2
_ gyt [ b ap iz (k1)
(7] [ K9 00Ga — hos) = Gl +
[ HOUCE w — hns) 6O} + 0] - 99
: (J)+E(J) (J)(y)
where proceeding as for (3.11b) and using [ ska(s)ds =0

(3.18a) e = h U [gw(y)%‘,z—'l)'h;ﬂ / SUTDEY T (5)ds
§i !

_ _1)i+3 . .

+ gg?*?)(z/)(('lJr—)?))hﬁ3 / SO (s)ds + O(hg)]
= gD (y) + h2¢2;(y) + O(hS),

(3.18b) €% = aZeq;(y) + O(a2h2),
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so that from (3.18) to (3.18b), we obtain
(3180)  Elkegn)(X1, Y1)] = h26,(9) + a2cas(y) + O(hS) + O(a2h).
From (3.16), (3.16a), (3.17) and (3.18c), it follows forthwith upon simplification that

I(O'r(n),r(n’)/o'z(n)) - 1] = O(|hn/hn' - 1| v Ian/an’ - ll)v

as n — oo. Consequently, the conditions of Proposition 2.1 are satisfied, yielding the
following LIL for J{(z,y) given by (3.10a):

(319)  Limsup+(2logyn/nanh}t) 2790w, 5) = [hills (K 2/0:(w).

n—oo

Further, by Dvoretzky et al. (1956), we obtain from (3.10) and (3.10a) that sup, .o
lt(ny (2)] < sup, [nY2a;! [ ki (£)d[Uy 0 2o (t)]| =as. O(logyn/na2)/?, which yields

1/2

(3.19a) sup |tn(z) — 1] = O(logy n/na?) a.s. m — 0o.

zeC

Now using notations of (3.1) and (3.10a) consider the identity in (3.19b) below: for
eachz € C and y € R

(3.19b) 9@ ) — 9P (y) = v (y) — TV (=, y)(tn(w_) —1) - (W9 () - TP (z,y))
(tn(z) = 1) /to(z) + D (2,9) - (tn(z) — 1)2/ta(z)
=0 (y) +en1 (3, 9) + n2(2,y) + enslz, y),

where by Lemma 3.1(a), Lemma 3.2(i), (3.19), (3.19a) and inf,cc |tn(z)] > 0 a.s.,
enp(,y) p = 1,2,3 are all almost surely o(7;,;), as n — oo; in fact, they are uniformly

soinz € C and y € RY | in view of (3.21a) below. Thus from (3.19b) and Lemmas 3.1
and 3.2(i), it follows that

(3.19¢) 93(y) = 99 (y) = TP (2,y) + coj(y)an + i (y)h3 + olryy),

the order term being uniform in z € C and y € R(l), as n — o0, form which in view of
(3.19) it follows that

(320) g% — 9P (W) = 0ai (W) In + e (W)ah + ()i + ol77)),
where Lim sup,,_,o, I, = 1 with either of the signs. Thus, part (i) is proved.

Part (ii): In view of Lema 3.2(i), the boundedness of c;; and cj; and the identity
(3.19Db), it suffices to establish

(3.21) sup |9 (@,y)| — O(7y) and
z€CyeA(Gz) a.s.

(3.21a) SUp  enp(2,y)| = 0(rn;) a5 m— o0, p=1,2,3;
zeCyeA(Gy) a.s.

but (3.21a) is implied by (3.21) in view of (3.19a). The proof is thus reduced to the
establishment of (3.21). To this end, let {b,} and {c}} be two sequences of reals such
that b, — oo and ¢}, — 0 as n — oo, say, b, = (anhh¥’/n)71/" (see A.I(ii)) and
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¢t = (anh:t9)®2. Now set An; = {B((ze,e);ch); € = 1,2,...,N;} for a finite set
of suitably selected balls with centers at (z¢,y¢) and radii cj,, covering the compact set
C X [~bp, by, where N; =~ [4b*b,, /mcy?] with C =: (—b*,b*) (say), [] denoting the integer

part. Now expressing

(3.22a) sup  [JP(z,9)l = sup I (zy)+ sup  |[JP(z,p)
zeC,ycRM) z€C,|y|<bn z€C,|y[>bn
=:Jn1 + Jn2,

(322) Ju < max  sup {9 (z,9) = I (@e, ye)| + 1T (e, ye)l}
1<LSN; (z,y)eB(ze,ve)

=: Jn11 + Jn12,

where, from (3.10a), |J,(1j)(w, y) — flj)(wg, ye)| can be split up as

(3.220) [(annt ) | [ Fin@, F@){prs(0:9) = aslae, )

+ {p‘nw(yeav) — Pn,z, (yev U)}]
' d(Hn - H) ° (uvv) + (anhvlz+j)_1

- / (n (2, F()) — kv (@0, F)pr (ur, 0)d(Ho — H) 0 (1, )
< {c1(anh29) " y = yol + e2(a2hEH9) "Lz — o} sup [Ha(u, v) — H(u, v)]

< ccp(aphit?) ™! sup | Hy (u,v) — H(u,v),
u,v

and hence by the above construction, (3.22b)—(3.22¢), Kiefer and Wolfowitz (1958) and
the fact that the last quantity in (3.22c) does not depend on ¢,

(3.23) P(Jp11 > ¢17nj) < Plsup |Hp(u,v) — H(u,v)| > (anh,lfzj)l/zcnnj]

< cexp[—c?na,hLt% Tﬁj]

<enp~iTh

for some suitable 6; > 0, upon adjustment of constant c;. Further, upon setting
Zi(z,y) = w3, (X.,Y) noting that |Zi(z,9)| < c(ahht)™t as., Var(Zi(zy)) =
(anh*2) 71 (s 13 - 165713 92 () + Olan V ha)] (see (3.17)(3.18¢)), and

(3.23a) Jn12 < max + O(h2 v a2),

-1 ) _ '

it follows by applying Bernstein inequality to {Z;(z¢,ye);1 <7 < n} that

1425 (. . .aNa
(3.23b) P(Jniz2 > can;) < 2Nj exp [ CeNanhy T2 (CoTnj — C7a2) }

2c5+2/3- co(caTnj — c702 ) hn

Now, setting ¢3 = 26(cg/cg) for a § > 0 and adjusting constant ¢ so that § > [1+ {(2+
3r)/r}] =: (1 +n), denote 82 = (6 —n — 1) > 0. Then from (3.23b),

(3.230) P[Jnm > T2] < CNj’I’L_6 = C’rL—1—527



LIL’S FOR ESTIMATOR OF CONDITIONAL DENSITY AND MODE 643

the last inequality following since N; = O(n") as n — oo, in view of (a,hht7)™! = O(n)
by the Assumption A.IIL(i).

Now we deal with the term Jpy in (3.19a): Since kéj) has compact support on
[-1,1], ly — Y1| < hy, implies y — hp, < Y7 < y + hy, so that, whenever |y| > by,
Y, < —bp+hp < =by/2 or Y > by — hy, > by /2 for sufficiently la,rgen> ng (say) Thus,
K (= Y /ha)] < B9 TY] > B/2) 5. and g = supy yiog, 19 (@ 9)] <
ksl - 151 - (nanhkt)=1 S50 I(Yi| > b,/2). Now setting Y;* = I(|Yi| 2 by/s) and
pn = EY; = P(|Yi| 2 bs/2] < 27057 E|Y;| < cb;™ by Markov inequality, 8 = [k [[|55” |
and applying again Bernstein inequality to {Y;*},

(3.24)  PlJn2 > c3Tnj] < P -12 > ) > (a h,lz+j0_1037'nj—cb;{r)}

< 2exp _cllnanh}lﬂ {caTn; — (cB/n)}?
20%¢19 + c130{caTn; + cf/n}
< cexp[—ciananhlt? {catn; — O(n™ 1)} < en™17%,

for some 83 > 0 (by adjusting constant c3), in view of the above construction with
bn = (anhit’/n)~1/7. From (3.22a), (3.22b), (3.23), (3.23c) and (3.24), it follows that
Y st Plsup.co,enm [J9) (2, y)] > coTn;] < 00, where cg = ¢1 + ¢3 + 3. Thus by B.C.
Lemma, (3.21) follows. The proof of Theorem 2,1 is complete. O

PRrROOF OF THEOREM 2.2. In view of uniqueness of mode M, (z), by Taylor’s ex-
pansion of g' o M, (z) around M (z) we obtain
(3.25) 0= gt) o Mn(z) = gt} 0 M(z) + (Mn(z) — M(2))g) 0 My (x)
for some M) (z) lying between M (z) and Mp,(z). This leads to

(1) M (2) M’
(3.2521) Mn(w) _ M(:E) — gnx o ( ) 14 ( OM((z)) gnx © n(l‘))

(1)

gna o M(z)
= ———(1 +0o(1)) as.,

o W
as n — 00, the last equality following since |[gz o M(z) — g,(fm) o M!(2)]] < ||g ”oo
|Mn(z) — M(z)| + supec yert) 9 (y) — 9 (y )—> 0 by Theorem 2.1(ii) for j = 2

provided we establish (3.25d) below, the order term in (3.25a) being clearly uniform
in z € C, since in view of the Assumption A.I(iv), Theorem 2.1(ii) with j = 2 implies

Lim inf,, . inf co Ig,(fz) oM, (z)| > 0 a.s. The assertion of part (i) of the theorem is then
an immediate consequence of A.I(i) and Theorem 2.1(i) with j = 1, since g Mo (z)=0

by definition.
It remains to prove (3.25d). For this note that by definition g,, o M,(z) =

SUDyen(G,) Inz(y) and g 0 M(z) = supPyep (g, 92(y), so that
(3.25b)  |gz 0 Mp(Z) — g © M(z)]
= | — Gnz © Mn(x) + 9z 0 Mn(m) — gz © M(I) + gnz 0 Mn($)|
< sup |gne(y) — g=(¥)|+| sup Ggna(y) — sup gz(y)
YEA(G2) yEA(Ga) YEA(GL)

<2 sup |gno(y) — 9z(y)l-
yeA(Gz)
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Also by using two term Taylor’s expansion around M () and g VoM (z) =0, groM,(z)—
ge 0o M(z) = %gf) o M!(z)[M, (z) — M(z)]?, so that in conjunction with (3.25b), this
implies

(3.25¢)  sup |My(z) - M(@)? <4 sup  |gns(y) — g=(y)l/ inf |9 (M) (2))]-
zeC z€C,yeRM zeC

Upon taking limit, as n — oo, on both sides of (3.25c), by virtue of the Assumption
A.I(iv) and Theorem 2.1(ii) for j = 0, it follows that

(3.25d) sup [ Mn(z) — M(z)| = O(r,f”),
zTE

as n — oo. This completes the proof of part (i). In fact, (3.25d) proves part (ii) also
partially (in establishing a rate of convergence to zero, but a rate that is slower than the

rate achieved in part (ii)).
To prove part (ii) beyond (3.25d), namely, concerning the stated faster a.s. rate
of convergence to zero of sup,cc |[Mn(z) — M(z)|, note from (3.25a) that, in view of

gél) o M(z) = 0 and the Assumption A I(iv), this a.s. rate equals that of sup,c¢ |g£}m) o
M(z)| = sup,ec |g7(11w) o M(z) — g;(cl) o M(z)|, which by Theorem 2.1(ii) (for j = 1) is

O(7p1) a.s., as n — oo. This proves part (ii). The proof is complete. O

PROOF OF THEOREM 2.3. Note from (3.1), Lemmas 3.1(b) and 3.2(i") and (3.19)
that, for sufficiently large n and j =0, 1,2,

tn(2)[99) () — 99 (y)] = T (2, y) + caj(v)a2 + & (y)hE + op((nanhy ) 71/?),

or equivalently,

- . 1 — . , .
(3:26)  ta(@)y/nanhn (o8 (v) - o )] = <= 3 (2 = BZ) + 80 (w) + 0n()
i=1
by A.III(ii), where from (3.10a), Z%) = (anhy) =Y 2kin(2, F(Xi))Pne(y, Yi) with
aizj (y) = Var ijl)
. R . 212

= [130) [9(5) = B0 )P0y = hus)dsdt — B

= 0u) [t [ B(6)ds +0(a2) + OME) = 2,0,
as n — oo. Therefore, for § = 2/(A — 1) > 0, we have (see A.IV)

S B1Z8) — BZDPY =046 n(ayha) (4672

. : = O([n(anhn)*]7%/2
(Zf VarZ3)) /2 T (n T} Var Z,0) 602 (el 70

which tends to zero, as n — 0o, by the Assumption A.IV, so that the Liapunov condition
is satisfied. Hence the assertion of part (i) is proved in view of (3.10) and (3.26),

Part(ii) is an immediate consequence of part (i) with j = 1 and (3.25a). The proof
of the theorem is complete. O
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4. Concluding remarks

In this section we find the asymptotic relative efficiency of the RNN estimator
M, (z) of conditional mode M (z) with respect to the competing estimator M} (z) of
Samanta and Thavaneswaran (1990). For this we compare the asymptotic variances of
M (z) and M, (z) and obtain the asymptotic relative efficiency ARE(My, M,). Now
from Theorem 2.3 (ii) we have upon setting M(z) = yo, that for sufficiently large n,

Var(Mn (z)) = (nanhi)_lgx(yo)/kf(t)dt/kél)(8)2d8/(9§2)(yo))2,

and from the results of Samanta and Thavaneswaran (1990), we have for sufficiently
large n,

Var(M;(z)) =~ (nanhi)‘lh(wvyo)/kf(t)dt/kél)(S)zdS/(h(O’”(%yo))27

Since gz(yo) = h(z,yo)/f(z) and g& (y0)? = (K (z,10))2/(f(x))?, we obtain
ARE(M;;, M,) = Var(M,)/ Var(M}) = f(z).

Since f(x) is usually less than 1 for unimodal densities f(z) when z is not too close to
the centre, for such values of  the RNN smooth estimator of M(z) studied in this paper,
in addition to being “robust”, is also superior in the sense of ARE to the corresponding
NW smooth estimator studied by Samanta and Thavaneswaran (1990). The preceding
conclusion clearly applies also to the RNN vs. NW estimators of g, and its derivatives

¢ =12
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