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Abstract. In this paper we consider the deconvolution problem in nonparametric
density estimation. That is, one wishes to estimate the unknown density of a random
variable X, say fx, based on the observed variables Y’s, where Y = X + ¢ with €
being the error. Previous results on this problem have considered the estimation of
fx at interior points. Here we study the deconvolution problem for boundary points.
A kernel-type estimator is proposed, and its mean squared error properties, including
the rates of convergence, are investigated for supersmooth and ordinary smooth error
distributions. Results of a simulation study are also presented.
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1. Introduction

The deconvolution problem in nonparametric density estimation has received con-
siderable attention in recent years. Deconvolution arises when direct observation is not
possible due to the measurement error or the nature of the environment. The basic
model is as follows. One wishes to estimate the unknown density of a random variable
X, but the only data available are observations Yj,...,Y,, which are contaminated with
independent additive error ¢, from the model Y = X + ¢. In density function forms, the
problem is to estimate fx(z) using data Y7,...,Y, from the density

(1) fr(y) = / fx(y — )dF.(z),

where F. is a known cumulative distribution function of €. The conventional kernel
estimator of f)(é), the I-th derivative of fx, is defined as

1 - z-Y;

(1) ]

I+1 Zg" ( )
nhi+ g h

if the function ¢x (t)/¢e(t/h) is integrable, where

(1.2) fP () =

1t 6K (D)
(1.3) O (z) = %/—oo(—zt)lexp(—ztx)mdt

* The research was supported by a grant from the Natural Sciences and Engineering Research Council

of Canada.
** Now at Department of Mathematical Sciences, University of Alaska Fairbanks, Fairbanks, AK

99775-6660, U.S.A.

612



NONPARAMETRIC DECONVOLUTION 613

with A = h(n) is the bandwidth (A — 0 as n — o00), ¢x is the Fourier transform of a
kernel function K (which needs to be chosen) and ¢, is the characteristic function of e.

There have been a number of papers in literature setting out various properties of
(1.2) with different rates of convergence relative to important discrepancy “measures”
and under variety of conditions on K, A and the smoothness of fx and F.. See, for
example, the work of Carroll and Hall (1988), Devroye (1989), Diggle and Hall (1993),
Fan (1991a, 1991b, 1991c, 1992), Liu and Taylor (1989), Mendelsohn and Rice (1982),
Penskaya, (1988), Piterbarg and Penskaya (1993), Stenfanski (1990), Stenfanski and Car-
roll (1990) and Zhang (1990), among others. Barry and Diggle (1995) considered the
problem of choosing the bandwidth for nonparametric deconvolution.

The above papers discuss the estimation of fx at its interior points. However, it is
of theoretical and practical interest to study the deconvolution problem for “truncated”
density functions at boundary points as well. Our motivation to study the problem stems
from our experience with the following application. Biometricians and ecologists often
needs to estimate the density or abundance of biological populations such as animals in
an area; see, e.g., the monograph by Buckland et al. (1993). Line and point transect
sampling are the primary “distance” methods that are employed in such situations.
In a typical application, an observer walks a straight path of length L, noting all the
animals seen (n) and their right-angle distances from the transect line (X). Given
varinus assumptions which can be found in Buckland et al. (1993), it can be shown that
an estimator of density of the animal population (D) is given by D = nfx (0)/2L, where
f x (0) is an estimate of fx(0) with fx being the probability density function of X, the
right-angle distance from the line. Note that the support of fx is [0,00). The preceding
formula of D is based on the assumption that the perpendicular distances are recorded
without error. From a practical point of view, however, it is reasonable to assume the
presence of measurement errors. So, the basic problem becomes an estimation problem
of fx(0) based on the Y’s such that Y = X +¢, where Y’s and €’s are the recorded right-
angle distances and the measurement errors, respectively. There are more examples that
would fit in with this paper such as lifetimes for survival data.

The above discussion shows that a careful study of the deconvolution problem for
truncated densities should be of considerable interest in applications. To achieve the
above is precisely the objective of this paper. We shall assume that the support of fx is
[0, 00), although our estimator of fx can be easily modified for compact support cases
as well. Finite endpoints of the support add a degree of complexity to the development
of consistent estimators. In Section 2, we propose the estimator of fy. The asymptotic
properties of our proposed estimator are given in Section 3. We obtain expressions for
the mean squared error (MSE) of our estimator, including the rates of convergence, for
two types of error distributions: ordinary smooth and supersmooth distributions. We
argue that our rates are in the best possible form. Section 4 discusses the bandwidth
choice problem in the present context. The special case of f)((1 )(0) = 0 is examined in
Section 5. Finally, Section 6 contains results of a simulation study.

2. The estimator

In this section, we study the asymptotic properties of (1.2). The performance of
(1.2) will depend on the smoothness of the error distribution and of the density function

Ix.

AssuMPTION 1. (i) |@(t)| > 0, for all ¢. (ii) }((k) (z) is continuous on [0, c0).
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Condition (i) ensures that the estimator (1.2) is well defined. Condition (ii) is
analogous to that required in the ordinary density estimation. The assumptions on the
kernel K are stated on its Fourier domain:

ASSUMPTION 2.
(1) ¢k (t) is a symmetric function, having m + 2 bounded integrable derivatives on

(_OO’ OO);
(2) ox(t)=14+0(t|™) as t — 0,
where m is a positive integer.

Note that Assumption 2 implies that K is a k-th-order kernel satisfying

/_ Z K(t)dt =

)
/ t! K(t)dt =0, for 5=1,....m—1,
—00
)
/ tmK (t)dt # 0.
—00
Assume that a bandwidth A is used in (1.2), then for 0 < z = ¢h, ¢ > 0,

1 oo

2.1 Efél)($)=-2; g (—it)’ exp(~itz)bx (th)dx (t)dt

=/_c F (@ - hy)K (y)dy
= (@) / " K(dt - b () | @as
(k)
+ (—h)k- x)/ tR=LK (£)dt + o(hF~).

If the support of K is [-1,1], then for 0 < c < 1, [° K(t)dt <1, [° t/K(t)dt # O,

for j=1,...,k—1—1. Therefore, f3’ (z) is not asymptotically consistent for fx (z) for
any 0 < z < h. Such points are called boundary points. If the support of K is (—00, 00),
we can see that f,(f)(a:) is not a consistent estimator of f}(é)(x) for all x = ch, ¢ > 0.

Remark 1. From (2.1), it seems that an order (0,k — ) boundary kernel K which

satisfies
C
/ K (t)dt =
—00

C
/ HK{t)dt=0, for j=1,... k—1-1,
—00

C
/ =LK ()t £ 0,
-0 R

would be sufficent to guarantee the consistency of the estimator (1.2). Unfortunately,
such a kernel with asymmetric support (—oo,¢] would yield an unsymmetric ¢x (the
Fourier transform of K). This will make (1.2) take complex values.
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In view of the fact that
C
BA@) = 180 [ K- ) / Hat +
— 00

( ¢
+(—h)’“"‘1————(k i‘lcl)(iv)l)!/ t= VK () dt + o(hF ).

Ef%1(z) = fF 1 () / K(t)dt — (k)(x)/ tK (t)dt + o(h),

we define our new estimator as a linear combination of fr (l) R f,(Lk_l). That is,

(2.2) fO(z Z( Y a; i f (),

where ag,...,ax_;—1 are coefficients to be determined in order to remove boundary
effects.

It is easy to see that

c (k)
(2.3) Ef,(f)(z)=aof)((l)(m)/_ﬁK(t)dt—~-+ao( hyk— {k (l))'/ =LK (¢)dt

— ayh Y () /C K(t)dt + - --

(k) c
+a1(—h)’“—l———(kfl(jg)1)!/_ PR (H)dt + - -

F a1 (=R FED () / ’ K(t)dt

b WP @) [ @+ (b

—00

So, if ag,...,0k—;—1 satisfy

ao/ K(t
(2.4) jao/_oo t)dt—l—al/ K(t

JE I K (t)dt [E 2K (t)dt c
+ a1 (k‘—l—Q)! +~~+ak11/

ao

{ (k—1-1)!

then f;(ll)(x) has the usual bias expansion. Write

¢ EK(t)dt
bi:f‘—“’—,—L)——, i=0,1,...,k—1

¢!

Then (2.4) can be written as

bo 0 0 ap

bl bo s 0 a
(2.5) : : : :1 — e,

br—1-1 brp—i—2 -+ bo Qk—i—1
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where e; = (1,0,...,0)T, T indicates the transpose of a vector or a matrix. Denote the
matrix of the left-hand side of (2.5) by ST. Then

(2.6) (ag,al,...,ak_l_l) = els 1

Note that S, is invertible since f_coo K(t)dt # 0. Therefore, for z > 0, the boundary

corrected estimator of f)(é)(:c) is

o
(27) ff(zl) (a:) = (040,&1, ceey a‘k-—l—l) Dla‘g(la _h" ceey (_h)k—l_l) " . (m)
el

()

A(1+1)
= el'S71 Diag(1, —h,..., (=h)*F"H | 77 ()
“’“‘”( )
e (52 )

(I4+1) (
In
= ej S Dlag(l —h, ...,(._h)k—l-—l) nhz+2z

e (254)

0 (x—YJ)
n” \ —F—
h
(+1) (2 Y;
1 = Tt —9n (“*)
—_— - h
7 126150
nhit = :
-Y.
—1)k—i-1 gk n (T J
(-1 g —

Remark 2. For the case that the support of fx has a right endpoint b, boundary
points are b — ch, 0 < ¢ < 1, if the support of the kernel K is [-1,1]. The estimator
(2.7) can be modified to this case simply by replacing the integral interval (—oo,¢] in
the entries of S, by [—¢, 00), see circa (2.5).

3. Asymptotic results

In this section, we study the asymptotic properties of the estimator (2.7) proposed
in Section 2. For this purpose, we need following lemmas.

LEMMA 1. Assume that Assumptions 1 and 2 hold with m = k—1. Further assume
that ¢x has a bounded support [—Moy, Mo for some positive constant My. Then, for
x =ch, ¢ > 0, we have

(3.1) Ef{(z) - £ (z) = (~h)F T 57182 £ (1)1 + o(1)),
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where S* = (bg—1,bk—i-1,---,bo) 7.
x—Y;
Eg) <——h J)

(1+1) [T — Yj)
) . _E (___
Ef0(z) = el 5, o h

hl+1
_)k-lm1 gk [T T Y;
(-1 In —

Proor. Note that

I 7
= hl+161
R o P (@) = kb 1§D (@) + - 4 (=r)E gy £ (@) + o(hF )]
o W20 I () by £ (@) 14 (i 1bk_l_1fx’(z)+o<h’°—l—1)1
(—1)k=t=Lpk by p - “(z) hby £ () + o(h)]
(1
S thf()z()(:)E)
1 0 by - bp_i_ Ri+2 pi+1
= s |0 e B @t o)
. - ‘:: . ~ : k
0 0 by (_1)k lhk“f}(()(x)
l(l)
_hf( + )( )

=el(1,8718)) (14 0(1))

( )k—lhk—lf(k)(m)
= [fQ(z) + (~h)F el S718: £ (2))(1 + o(1)).

Therefore,
BFY (@) - £ (2) = (=) el ST1S2 AP @)1+ o(1)).

This completes the proof of Lemma, 1.

Remark 3. For estimating f)(é) , the kernel needs to be only of the order (0,k — 1),
not of the order (0, k) as claimed by Fan (1991a).

We now discuss the variance problem. Fan (1991a) defined two classes of errors and
showed that the variance heavily depends on the tail of the distribution of error variable
€. The two classes of errors are defined as follows:

I. ¢ is supersmooth of order g, if

dot| exp (=t /) < |b.(8)] < da|t|Pr exp(—[t1F /), as t— oo,

for some positive constants dy, dy, 3, v and constants (g, 51, and
II. ¢ is ordinary smooth of order 3, if

dolt| ™ < |¢e(t)| < dift| ™,  as t— 0o,

for some positive constants dy, d; and .
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First, let’s discuss the supersmooth error case. The following lemma is a direct
result of Fan (1991a, 1991b).

LEMMA 2. Assume that Assumptions 1 and 2 hold with m = k — 1. Further
assume that € is supersmooth of order 3 and ¢y has a bounded support [— My, Mp] for
some positive constant My. Then, by choosing the bandwidth h = w(logn)~? with
w > Mo(2/7)YP, for z = ch, ¢ > 0, we have

(3.2) Var fV(z) = o(h2*-1),
When the error is ordinary smooth, we have the following lemma.

LEMMA 3. Assume that Assumptions 1 and 2 hold with m = k—1. Further assume
that € is ordinary smooth of order 3, and
(i) |¢£”(t)tﬂ+l| = 0(1), as t — oo,
(i) ¢(t)t? — a as t — oo for some constant o # 0,
(iif) [¢[**F~ 1|¢K(t)| — 0 and [ [ox(t) + |8 (B)[][t}P+F2dt < oo,
(iv) f_ [f_ exp(—itu)(— zt)J“tﬂ(bK t)dt][ffooo exp(—itu)(—it)" B dy (t)dt]du <
00, forOSg,mSk—l—l. Then, for £ = ch, ¢ > 0, we have

(3.3 Var (@) = — 20 EL TS M (57 ea (14 o(1)),

where M = (mjm)osj,msk_l_l and

Mijm = o /oo [/oo exp(—étu)(—it)j“t%K(t)dtJ

(2ma)? /oo /oo
: [/:: exp(—z'tu)(—z't)m“t%;((t)dt] du.

Proor. Note that

~ 1 _
Var f{(z) = W?TSC !

' (COV ((—1)j9$f+j) (-I_h—yl> (=17 (m —hYI )))
0<j, m<k-1-1

(87N er.

Also observe that

= (—1)™+ [Eg,(fﬂ') (9«“ —hY1> gli+m) <5” —hY1>
-V r—Y;
_b(l+J) Pt (11 m) .
s () ok (552

o B () =) [ K@ ow)

for 0<w<k-1-1.

Simple algebra leads to
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Since e is ordinary smooth, there exist positive constants c1, M and (3 such that | (t)| >
c1|t| ™ for |t| > M. By (iii), for any 0 <r <k —1—1, we have

) ne e ek (0)]
(3.5) APl (u)|527r/oo PXODI

hP |tk (2)] -5 [t 48 | pe ()]
— ———dt+ h —_ ot
=9 [/mth |ge(t/h)] * /]t|>Mh 2

45T b ()]t + 5— Itl’””ld);{( t)|dt

KB
27 min | P (t)] /_oo
=0(1).

<
- 2cqm

Also, by integration by parts and assumptions (i) and (ii1), we have

B+ (4 P iy e (it 2D
6 W= | [ i) explcin) P
_h—ﬁ_ tl+'r‘¢K(t) (1)
<zl |50 |
chf
=

. /°° [(r + DEHT () + 479 (D)8 (t/h) + 47 i (1)L (/B /B
oo EXODE

< _{/ [da |70 g (0] + dale] 7185 (1) 1t
[t[=Mh

|ul
+ds /
[t>Mh

hB
+
min |@e ()} [t|<Mh

6D (1) et /1) +tl+r¢x<t>¢§”<t/h>/h|dt}

416 (/)

BB+ dt

tl+T‘+ﬂ—1¢K (t)

[(r + 1tk (2)

[&
S TR
|ul

where ¢, dy, dy and d3 are some positive constants, which may take different values at
different places.
But, (3.5) and (3.6) imply that [h#g% 7" (w)|? < 1357 Therefore,

00
(3.7) / |hﬁgy(ll+r) (u)]2du < 00, for 0<r <k-—-1-—1.
—00

By applying the Lebesgue’s Dominated Convergence Theorem together with (3.5) and
assumption (ii), we obtain

o0

1
(3.8) RP g () — — exp(—itu)(—it)! Tt (t)dt
2ra J_ o
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By Lemma 2.1 of Fan (1991b), (3.6), (3.7) and (3.8), for 0 < j, m <k —1 -1, we have

N[z m [ ZT— Y
(3.9) Eg{*? (‘Tl> gt )<-—h—>

/ / 449 ( Z—v> gl (‘”_‘%ﬁ) Fx(w)dF.(v)du

—h/ / gD (W) gl (v) fx (x — v — uh)dF, (v)du

~ g || [ ety axnel
: [/_o; exp(—itu)(‘it)mﬂtﬁsﬁf((t)dt] du(1 + o(1))

= P 14 0(2)

Combining (3.4) with (3.9) leads to

cov ((-1yig (5210 (gt (2572)) = 200, 14 o)

Hence

. f _
Var fil(z) = —hazll—iﬁ% 1S M(STH ey

This completes the proof of Lemma 3.

THEOREM 1. Assume that the assumptions of Lemmas 1 and 2 hold. By choosing
the bandwidth h = w(logn)Y/? with w > My(2/7)/?, for x = ch, ¢ > 0, we have

(3.10) E|fP(z) - £ ()2 = R2E-D{T ST1SI PP (2))2(1 + o(1)).

THEOREM 2. Assume that the assumptions of Lemmas 1 and 3 hold. By choosing
the bandwidth h = dn~Y QKO+ g~ 0, for z = ch, 0 < ¢ < 1, we have

(3.11) E|fP(2) - £ (@) = {** O[] ST1 8P (2))?
+d 2R (2)(1,0,. .., 0)ST M (S ey = BR=0)/2+B)+1) (1 4 o(1)).

The above two theorems are direct consequences of Lemmas 1, 2 and 3. The proofs
are omitted.

Remark 4. Fan (1991a) showed that the rates in our Theorems 1 and 2 are optimal
in the case that the estimated density fx (z) has support (—00,00). As it is obvious that
the deconvolution problem can’t be easier for a truncated density than for a density with
support (—o0, 00), the rates in Theovreins 1 and 2 are also optimal.

Remark 5. When the error is supersmooth, the rates of convergence are too slow
to be practical. However, there are some situations in which the rates of convergence can
be greatly improved. One situation is when the noise level of the supersmooth error ¢ is
small, the rates of convergence will be comparable to that from ordinary smooth error,
see Fan (1992). Another case is when the data are only partially contaminated, as it is
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very common in practice. More specifically, assume that the data are 100p% (0 < p < 1)
contaminated. Namely,

(3.12) Y =X +e¢

with P(e = 0) =1 — p and P(e = &) = p, € is a random variable having a supersmooth
distribution and with the characteristic function ¢z(¢). Assume that Re($z(t)) > 0, for
all ¢, where Re(-) is the real part of the expression. Then the characteristic function of

€ 1s

(3.13) ¢e(t) = (1 = p) + poe(t).

It can be proved that (3.13) satisfies the conditions of Lemma 3 with 5 = 0. Sdo, the
model (3.12) is a special case of Theorem 2.

4. The local optimal bandwidth

When the error is supersmooth, the convergence rates of the density estimator is
extremely slow. Since the local bandwidth choice does not change the rates of conver-
gence, we shall not discuss the bandwidth choice problem for supersmooth errors in this

paper.
In the following, we shall only consider the bandwidth choice problem for ordinary

smooth errors. By (3.1) and (3.3), for z = ch,
(4.1) MSE(f{,2) = B¢ Vel 571821 (1) ()

1 - —_—
" WfY(x)e:{Sc LM[STY ey

For x = h, the asymptotic MSE of f,(ll) is

(4.2) MSE(f, h) ~ h2E=DeT 571871218 (0)]2

o (0T ST MIST e,

t o ma Y

Assume that the local optimal bandwidth is adapted at x = h. Then

- - 1/(2(k+8)+1)
_ | 20+8)+ 1)eT S M[S7 ) er fy (0) =1/ (k8 +1)

2k — )T S 8112 (0))2

43) &

Since h defined by (4.3) is only optimal at = = h, this A will not be a good choice of
bandwidth for points other than z = h, especially for the points x = ¢h, 0 < ¢ < 1.
For the points = ch, ¢ > 1, we assume that this A is not far from the optimal global
bandwidth. At the points z = ch (0 < ¢ < 1), we suggest the use of a bandwidth
variation function. Denote b(c) the bandwidth variation function which satisfies b(c) > 0
for 0 < ¢ < 1andb(l) =1. At z = ch, assume that the bandwidth A(c) = b(c)h is used.
From (4.1),forz =ch (0<c < 1)

. _ _ _ « k
(09 MSB(F®, 2) = oo E-0m-D[T st 50, RIHD (o))
1
bl R B R A 1Y

(O)e{sg/},(c)M [Sc'/},(c)]Tel.
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In general, the uniformly optimal b(c) which minimizes (4.4) is not available since
(1,0,...,0)S-1S* has a zero for some 0 < ¢ < 1. One way to get around this prob-
lem is to obtain the optimal bandwidth variation function at = = 0, i.e., b(0) which
minimizes (4.4) for ¢ = 0, and define

(4.5) b(c) = b(1) — (¢ — 1)(b(0) — (1))

as the (suboptimal) bandwidth variation function. For more details on the choice of
bandwidth variation function, see Zhang and Karunamuni (1998). This issue will be
further discussed in Section 6.

5. The case of f)((l)(O) =0

In this section, we shall consider estimation of fx(z) by an order (0, 2) kernel. For

the estimator defined by (1.2) with [ = 0, we shall denote f(o) by fn. Since for z = ch,
c>0,

(2) c
(5.1) Efn(z) = fx(z / K(t)dt + 2()h2/ t2K (t)dt + o(h?).

-0

Intuitively, we can define

1 - z-Y;
(5.2) falz)=1 nh[°_ K(t)dt;gn( h j) 220
0 x<0

as the estimator of fx(z) at = ch, ¢ > 0, where

_ 1= Pk (t)
(5.3) 9n(y) = 5 /_oo exp(- @ty) Do (/) dt.
It is easy to see that the asymptotic bias of f} at z = ch is
+ (2)(95) 2 [ 2 2
5.4 E -—————h t t .

When the error e is supersmooth of order 3, we can show that (see proof of Lemma 2)
for x = ch,

exp(|Mo/h|” /) _ 4
(5:5) Var f(z) £ O <nh2+2wol[ffoo K(t)dt]2> = ok

THEOREM 3. Assume that the assumptions of Lemmas 1 and 2 hold with k = 2
and | = 0. Then by choosing the bandwidth h = w(logn)*/# with w > My (2/v)*/8, for
z = ch, ¢ > 0, we have

2

(2) T c
59 B - s =1 B [ [ ] o)
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When the error ¢ is ordinary smooth of order 3, we can show that (see proof of
Lemma 3) for z = ch,

1 T—Y)
Var £ () = nh2[[°_ K (t)dt? Var gn (T)

with

(5.7) Vargn (‘” — Yl) = f”(‘”)_ /OO UOO exp(—itu)tﬂqSK(t)dt]zdu(l+ o(1)).

h 2ra?h?h-1 [ | o

Therefore, by Parseval’s identity we obtain from (5.7) that

58)  Vor£6) = s O | R+ o)

THEOREM 4. Assume that the assumptions of Lemmas 1 and 3 hold with k = 2
andl = 0. Then by choosing the bandwidth h = dn=/(A+5) 'd > 0, for = = ch, ¢ > 0,

we have

R (2) c/b(c)
(5.9) ElfP(2) - (@) = {d44[ fc[/bi% (K)(lt) e [ / t?K(t)dt}

fr(z) 28 2 —4/(28+5)
27ra2[fc/b(c)K( ) dt)? / t7 oK ()] dt} +5)

2

For the ordinary smooth error case, we still need to choose a bandwidth variation
function for the points £ = ch, 0 < ¢ < 1. Denote the bandwidth variation function
by b(c) which satisfies b(c) > 0 and b(1) = 1. Under the assumptions of Theorem 4, at
z = ch, the explicit form of the asymptotic MSE is

(5.10) MSE(f;,z) = b(c)*h* 12 @) /C/b(c) 2K (t)dt 2
| " 4l K (8)dt)? | J-oo

fy(z) 23 2
t dt.
" nb(c)2ﬂ+1h2ﬁ+127ra2[f6/b(c)K(t dt]Q/ |k (1)l

Assume that the local optimal bandwidth is chosen at x = h, then

(5.11)

00 1/(28+5)
y - [ 2841 75 Plex () Pdify (0) —1/(28+5)
ama2[[1 12K ()at)2[f P (0))? |

Similar to Section 4, a suboptimal bandwidth variation fuunction b(c) will be employed
for any point z = ch, 0 < ¢ < 1, where b(c) = b(1) — (¢ — 1)(b(0) — b(1)) with

_ [f_loot2K(t)dt]2 1/(2845)
(5.12) b(0) = {m} |
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6. Simulations

Ezxzample 1. Let X have a standard exponential distribution with density

exp(-z) x>0
0 z < 0.

(6.1) fxla) = {
Let the error distribution be double exponential with density
1
(6.2) felz) = 7 exp(—V2[z]), —oo<z< 00,
and the characteristic function
2\~
(6.3) de(t) = (1 + 5) .

Therefore 8 = 2, a = 2. For x = ch, the boundary corrected estimator f, of fx defined
by (2.7) is

(6.4) fnlz) = T K(L) aF 2 { / K(t) dtg(0)< )

—/_OO tK (t)dtglH) <—hYJ—>}

where g(o) and g(l) are defined by (1.3). For the Gaussian kernel

K(e) = e (- 7)

we have
(65 W) = oo (-2) (1-T52).
By simple algebra, the local optimal bandwidth at = h defined by (4.3) is
1/9
15 <2N(1)2 + 5 —m eip(l))
(6.6) h= -

256V (V3 4 1) (N(1)2 . ND 1 (1)>

2 2./2m exp(]_) 2 exp

where N(1) = P(Z < 1), Z ~ N(0,1). Similarly, we can obtain b(0) which minimizes
(44 atc=0:

1/9

[21\7(0)2 + 55;} N(21)2 - 2\/% - 27reip(1)} |
[2N(1)2+ ° } [N(0)2 —lr

27 exp(1) 2 2r

(6.7) b(0) =
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Fig. 1. Estimates of exp(—z).

Table 1. MSE values at some points from different methods for Example 1.

=00 2=05 z=10 z=15 z=20

Usual estimator 0.4350 0.0201 0.0055 0.0048 0.0046
with fixed

bandwidth

Boundary method 0.0657 0.0139 0.0059 0.0048 0.0046
with fixed

bandwidth

Boundary method 0.0328 0.0130 0.0059 0.0048 0.0046
with bandwidth

variation function

In Fig. 1, we compared the performance of the conventional estimator (without boundary
correction), the boundary corrected estimator without use of a bandwidth variation
function and the boundary corrected estimator with the use of a bandwidth variation
function for estimating density (6.1). The sample size was 100. The bandwidth variation
function we employed in our simulation is given by (4.5). Ten typical estimates of density
(6.1) were plotted in each case. In each graph the solid curve represents the true density
curve. It is obvious that our boundary corrected estimator corrects the boundary effect
of the conventional estimator. It can also be seen that the use of the the bandwidth
variation function greatly improves the performance of the boundary corrected estimator.

Table 1 represents the MSE values for the three methods at z = 0.0, 0.5, 1.0, 1.5
and 2.0 for this example. The bandwidth used was 0.5474, and b(0) = 1.4259. We
also calculated the mean integrated square error (MISE) from the above methods. The
results were the averages of 100 repetitions for the sample size n = 100. The MISE
values from the conventional estimator, the boundary corrected estimator without use
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Fig. 2. Estimates ot {(2m)" */? exp(—z?/2).

Table 2. MSE values at some points from different methods for Example 2.

=00 zz=05 z=10 =z=15 z=20

Usual estimator 0.2099 0.0453 0.0088 0.0072 0.0058
with fixed

bandwidth

Boundary method  0.0385 0.0183  0.0087 0.0073 0.0058
with fixed

bandwidth

Boundary method  0.0352 0.0183 0.0087  0.0073 0.0058
with bandwidth

variation function

Generic boundary  0.1533 0.0180 0.0092 0.0072 0.0058
method with fixed

bandwidth

of a bandwidth variation function and the boundary corrected estimator with the use of
a bandwidth variation function were 0.1151676, 0.0309845 and 0.0263469, respectively.
The preceding values show that the boundary corrected estimator with the use of a
bandwidth variation function performs the best, followed by the boundary corrected
estimator without use of a bandwidth variation function. The conventional estimator
was the worst among the three. The MSE values in Table 1 also shows the same behavior
of the three estimators near the endpoint.

Example 2. Let X have a half normal distribution with density

2
(6.8) fx(z) = \/;exp(—wQ/?) z>0

0 xz < 0.
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We shall still use the double exponential error and the Gaussian kernel as in Example 1
above. For z = ch, the boundary corrected estimator f,} of fx defined by (5.2) is

n

1 z-Y;
(6.9) fa(z) = m > g <—71_> :

J=1

where g{) is defined by (6.5).
By simple algebra, the local optimal bandwidth at = h defined by (5.11) is

1/9
(6.10) h= 15‘/2_7FeXp(1)N(_\/§)2 n=1/0,
64 [N(l) - —m}

Similarly, we can obtain 5(0) which minimizes (5.9) at ¢ =0:

NQ) = s 17
b(0) = (0] .

In Fig. 2, we compared the performance of the conventional estimator (without boundary

correction), the generic boundary method (which does not take the assumption f )((l )(O) =
0 into consideration), the boundary corrected estimator without use of a bandwidth
variation function and the boundary corrected estimator with the use of a bandwidth
variation function for estimating density (6.8). The bandwidth variation function we
employed in our simulation is given by (4.5). Ten typical estimates of density (6.8) were
plotted in each case, again the true curve is given by the solid curve.

Table 2 gives the MSE values for the four methods at z = 0.0, 0.5, 1.0, 1.5 and 2.0
for this example. The bandwidth used was 0.5334, and 5(0) = 1.0411. For this example,
we again calculated the MISE values for the four methods. The sample size and number
of repetitions were the same as in Example 1. The MISE from the conventional estima-
tor, the generic boundary method, the boundary corrected estimator without use of a
bandwidth variation function and the boundary corrected estimator with the use of a
bandwidth variation function were 0.08803471, 0.07092552, 0.04961943, and 0.04835677,
respectively. Again, we see that all the boundary corrected estimators perform better
than the conventional estimator. The generic boundary method is better than the con-
ventional method, but is much worse than the other two boundary corrected methods,
especially near the endpoint.

The performance of the boundary corrected estimator with the use of a bandwidth
variation function is very similar to that of the boundary corrected estimator without use
of a bandwidth variation function. This is because b(0) = 1.0411 in this case. Therefore,
for a density function satisfying f )((1 ) (0) = 0, the use of the bandwidth variation function
is not necessary.

Ezample 3. The Wooden Stakes data set described in Burnham et al. ((1980),
pp. 61-63), was obtained from a line transect sampling experiment in a sagebrush desert
in which wooden stakes had been placed at a known density, D (see Section 1 above).
Although a fixed width transect was used, it was wide enough to ignore the estimation
complications of truncation (Buckland et al. (1993)). The true form of fx, the pdf of the
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true perpendicular distances X; from the transect line, was unknown and varied from
observer to observer. The sample data Y; on perpendicular distances for the sample size
n = 68 stakes found are shown in Table 6 of Burnham et al. ((1980), p. 62). The actual
value of D was known to be 0.00375 stakes/ha, with the line length L = 1000m and
width of 20m. So, the actual value of fx(0) is given by the formula fx(0) = 2LD/n =
0.1102941.

For this data set, we computed the value of fx(0) using the four methods discussed
in Example 2 above. We assumed that the error distribution is double-exponential. The
half normal mode] fits the data quite well. Therefore, we also made the assumption that
fx(z) = (2m0?)~1/2 exp(—2%/20?) for > 0 and 0 otherwise. As a result, the value of
the bandwidth defined by (5.11) was 2.635. The computed values of fx (0) from the usual
method, generic method, the boundary corrected method without bandwidth variation
and the boundary corrected method with bandwidth variation were 0.05299, 0.17630,
0.105978 and 0.105815, respectively. Thus, both the boundary corrected estimators
estimate the actual value of fx(0) somewhat accurately. Incidentally, the maximum
likelihood and the Fourier series estimates (Burnham et al. (1980)) of fx (0) are 0.104299
and 0.114803, respectively.

We also computed fx(0) assuming that fx has an exponential form as in Exam-
ple 1 above, and again with the error distribution is double-exponential. The computed
valnes of the canventinnal estimator, the boundary corrected estimator without band-
width variation and the boundary corrected estimator with bandwidth variation were
0.05409039, 0.178819 and 0.1749348, respectively. It appears that these values are quite
off from the actual value as we expected.
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