Ann. Inst. Statist. Math,
Vol. 52, No. 3, 574-597 (2000)

A UNIFIED APPROACH TO SECOND ORDER OPTIMALITY CRITERIA
IN NONLINEAR DESIGN OF EXPERIMENTS

HOLGER DETTE! AND YURI GRIGORIEVZ¥*

! Fokultat Jiir Mathematik, Ruhr-Universitdt Bochum, {4780 Bochum, Qermany
2 Fakultit fiir Angewandte Mathematik, Technische Universitit,
630092 Novosibirsk, Russian Federation

(Received March 17, 1998; revised June 14, 1999)

Abstract. Inthenonlinear regression model we consider the optimal design problem
with a second order design D-¢riterion. Qur purpose is to present a general approach
to this problem, which includes the asymptotic second order bias and variance criterion
of the least squares estimator and criteria using the volume of confidence regions based
on different statistics. Under assumptions of regularity for these statistics a second
order approximation of the volume of these regions is derived which is proposed as a
quadratic optimality criterion. These criteria include volumes of confidence regions
based on the u,- representable statisties. An important difference between the criteria
presented in this paper and the second order criteria commonly employed in the
recent literature is that the former criteria are independent of the vector of residuals.
Moreover, a refined version of the commonly applied criteria is obtained, which also
includes effects of nonlinearity caused by third derivatives of the response function.

Key words end phrases: D-optimal design, nonlinear regression model, second order
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1. introduction
Let
(1.1) y=n{0) + &= (n(z*,8),....n(z", ) +¢,

denote the common nonlinear regression model with the observed vector y € R”, the
vector of unknown parameter ¢ = (6*,...,06™7T € © C R™, m < n, and the random
vector £ = (£%)7_; with 1.i.d. components *. We suppose that ¢* has a symmetric
distribution not depending on @ with expected value zero and variance o2. The set ©
is a convex open set and for fixed z = (z!,...,2")7 the mapping & — 7 is supposed to
be continuous with continuous third (or fourth) order derivatives (if required) such that

the rank of the n x m matrix

ana a=1,..,n 1
=1,....n
(1.2) F=r0) = (Bei) = FDR
t=1,....m
is m for all @ € ©. Here n°(8) = n(z*, 0) denotes a-th component of the vector n(8),
z% € X is the a-th value of explanatory variable and X is the design space with sigma
field containing all one point sets and containing at least m points.

* This work was done during a visit of the second author at the Department of Mathematics, Ruhr-
Universitit Bochum, Germany.
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Following differential geometric convention we denote for a matrix A = (A4, j){:11|’_'_'j,’,?f

with 4;;, A¥ and A} simultaneously the elements of A and the matrix A itself (i.e.
A = A;; = AY = Al); the specific meaning will be clear from the context. We will
also make substantial use of Einstein’s rule; for example A% By, = A;; B’* denotes the
matrix AB (and simultaneously the element in the position (i, k)) and A;; B = AYB;; =
trace(ABT).

A design &, is a probability measure on X (or on its s-field) and the matrix

Mij = My, 6) = fX Fy(z,0)F;(z, 0)dén(z)

(where F(z,6) = z2:n{z,6)) is proportional to the Fisher information matrix provided
some conditions of regularity are satisfied (Borovkov (1998)). If £, puts masses ng/n at
the points z(,y, ¢ =1,...,7, 2% € {z@1), ..., @)} then the experimenter takes n; obser-
vations at each z(;) and the matrix M;; is proportional to the inverse of the asymptotic
covariance matrix of the least squares estimator u,, = nl/ 2(gn — @). This estimator of
the unknown parameter # € © is obtained from the condition

(1.3) 5(6n) = nf §(7), 8@ =y~ (&)1,

where |[-||? = {-,-) and the inner preduct {-,-) on R" is defined with respect to the matrix
1164 (here and throughout this paper &, = %% = 6% denotes Kronecker’s symbol and
simultaneously the identity matrix). For the sake of simplicity a function g(#) evaluated
at the %east squares estimator 8 = 6, will be denoted by §, e.g. § = S(én) (by (1.3)) or
7 = () (by (L.1)).

A D-optimal design of experiment maximizes the determinant of the matrix M,;
and a design £, is called locally D-optimal for given n if

(1.4) M (&7, )] = max [M(n, ).

The statistical interpretation of the criterion (1.4) is that a D-optimal design mini-
mizes the first order approximasion of the volume of the ellipsoid of concentration

(15) Cl—a = {B €06 | M%J(Enaén)u::u'; < ng%—a(m)}

where xj_,(m) denotes the (1 — «)-quantile of the x? distribution with m degrees of
freedom. In the regular case we have

(1.6) P{eCiyt=1—-a+o(l), n—o

(see Rao (1965)). Locally D-optimal designs for nonlinear models have been studied by
nuinerous authors {see e.g. Chernoff (1953), Box and Lucas (1959), Ford et al. (1992)).
Hamilton and Watts (1985) demonstrate that this first-order approximation can often
be quite poor and introduce a second-order volume approximation. Whereas the D-
optimality criterion works with a tangent plane approximation, the second order criteria
take into account the curvature of the expectation surface. The theory of optimal de-
sign with respect to these criteria is not so well studied and only in development (see
Hamilton and Watts (1985), Pazman (1989), O’Brien (1992), Grigoriev (1993), Pronzato
and Pazman (1994), O'Brien and Rawlings (1996)).
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In this paper we discuss a unified approach to a class ¥ of second order optimality
criteria which could be used for the construction of optimal designs in nonlinear regres-
sion models. This class can be divided into two subclasses, say ¥ = ¥, U &,. The first
subclass of criteria, say ¥y, is motivated by the asymptotic second order expansion of
the bias and covariance matrix of the estimator Uy, €.

(1.7) Eup =b,n~ 12 L o(nY),
(1.8) Varup, = o®A 4+ o*Ayn~ 4 o(n™1),

where A is the inverse of the information matrix M;; and the vector b,, and the matrix A,
will be defined in Section 2 (see Box (1971), Clarke (1980), Ivanov (1982, 1997), Grigoriev
and Ivanov (1987a), Grigoriev (1994), O’'Brien and Rawlings (1996)). We propose the
second order approximation of Wilk’s generalized variance of convex combinations of
the variance and the adjustment to it as a second order optimality criteria for nonlinear
regression models.

The second subclass of criteria, say ¥, is obtained from a second order expansion
of the volume of the confidence region

(1.9) Clea ={0 €0 | T, <0’xi_,(m)}],
where the statistic T}, is representable in the form

(1.10) Tn = Ton + Tian™ V2 4 Topn~! + 0,(n~1)

such that T,, % x2(m), n - 0o. Our main results give the second order expansion of the
volumina of C1_, for a broad class of statistics T}, which we call up,-representable with
c-property. This class contains the Kullback-Leibler, modified Wald and a modification
of Rao’s statistic. The resulting second order criteria are similar to the criterion of
Hamilton and Watts (1985}, who based their approach on the Neyman-Pearson statistic.
The important difference is that the criteria proposed in this paper do not depend on
the vector of the residuals (in contrast to the criterion of Hamilton and Watts {1985)).
Moreover the methods used in the proofs of our results yield a refined second order
approximation for the optimality criterion of Hamilton and Watts (1985} who obtained
their expansion by ignoring the third order derivatives and by considering only the case
m = n (see also Seber and Wild (1989)).

The second order criteria discussed in this paper can be classified by two parameters
A €1[0,1] and Loy, in the form

52
(L) Qe = 1A {8+ (1= ) Lot

where |02A} is the determinant of the inverse information matrix. The case 8 = 1
corresponds to the first order D-optimality criterion while 8 < 1 gives the second order
criterion. For example, the criteria based on volumina of confidence regions are obtained
for 8 =0.5 and &% = x¥_, (m).

The paper is organized as follows. In Section 2 the asymptotic bias and variance
criteria are discussed while Section 3 introduces the second order approximation of the
volume of confidence regions as optimality criteria. In Section 4 we introduce a class
of generalized second order optimality criteria. Section 5 gives a detailed discussion for
the one-parameter nonlinear model, for which the situation is more transparent, and
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illustrates the different criteria in the exponential regression model. In the same section
we also discuss secand order optimal designs for the two-parameter intermediate product
model (see Box and Lucas (1959)). Finally, Section 6 summarizes our main results, puts
the proposed criteria in larger context of experimental design and discusses possible
directions for future research. The proofs are somewhat tedious and therefore deferred
to the Appendix.

2. The asymptotic bias and variance criterion

The asymptotic second order expansion of the bias vector and covariance matrix
of the least squares estimator ¢, was calculated by Box (1971) and Clarke (1980). A
more detailed discussion can be found in Ivanov (1982), Grigoriev and Ivanov (1987a,
b), Grigoriev (1994), O'Brien and Rawlings (1996) and Ivanov (1997). Throughout this
paper we use differential geometric notations for quantities, which are connected with
the expectation surface

(2.1) E™ = {n(6) | 8 € ©}.
Generalizing the notation of the information matrix we introduce

ak
Fiyein (8,0} = (@, 6)
1

H(ila---:ik)(jl ,...,je) - L ‘Fil,...,ik (:B: G)F_?]_ ....,jt (3:1 a)dgﬂ(m)

and denote the inverse of the information matrix M;; = Iy, with AY. Following
Grigoriev and Ivanov (1987a) the Christoffel symbols of the second kind of E™ are
defined as

(2.2) T = ATl iy,
and the Ricci tensor of the expectation surface E™ is given by
(2.3)  Rip = A" (Wiikyre) — Meiryrs)) + A A (U ay (i Thia) sy — Wiapira iy ) -

For the coordinates of the bias vector in (1.8) we thus obtain the following expression
% o? ik
(2.4) bﬂ=—?A ry  (k=1,...,m).

From (2.2) and (2.4) it follows that in the metric {-,-) with generating matrix o ~2IIj;y(5
the norm of the bias vector is given by

lb,]I% = %21\“ AMEA Ty i) Tl ey
Therefore, if the bias is important, we propose the quantity
(2.5) Qaln) = l0°AY + bbin" = Jo®A| - (1 + Bzan™")
with

(2.6) Bay = ||bal?
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as a possible design criterion of second order for minimisation. Similarly, we have the
expression (see Grigoriev and Ivanov (1987a))

(2.7) Varu, = D¥ + o(n™1),
for the covariance matrix (1.8), where
(2.8) Di¥ = g2 A% 4 ATt = g2A (S + a?A} .n7)
e AY = A""A{,,r. The matrix Ay with elements Al , is defined as

. . 1 g ,
(2.9) A%,k =—A"Rx + EATHAWAUH(M(,-S)H(;)(m,) + Té‘;
where T,g =T+ TF) and

Tf = A™(07, T2 + 219, I8 — ATTAS T g (ry-

Observing (2.9) we propose as an alternative second order criterion of D-optimality

(2.10) Qu(€n) = [DF| = |02A] - |In + 0%Agn ™| = |0%A - (1 + VoY),
where
(2.11) Vay, = tra®As.

We note, that the principal drawback of the criterion (2.11) is that in general the
matrix %A, is not positive definite and therefore the quantity Va, can be negative. If
bias and variance are both important we can, in addition, consider the matrix of mean
squared deviation

(2.12) A¥ =D + B bint.

Its determinant is obviously representable in the form

(2.13) Qz(n) = [0®A - (1 + Zoun™?),
where
(214) Zon = Bop + Vap,.

The values of the quantities Ba,, Vay, and Zj,, will be discussed in Section 4 in more
detail. For regression models with a scalar parameter § € © C R! a more transparent
representation will be derived in Section 5.
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3. Criteria based on the volume of confidence regions

Hamilton and Watts (1985) considered the confidence region (1.9) with the statistic
of Neyman and Pearson (see Rao (1965)).

(3.1) T, = 8(6) — 8(8,).

They showed that the volume of a 100(1 — @)% confidence region for 8 is approxi-
mately equal to

2
— 2411/2) v 1/2 a —1p, -1
(3.2) Vo = vla*Al 20| {1+—2(m+2)tr0 Gn },
where (@)
av'm
02:)&_&(1’)’;), ‘T:m’
r 2

the matrix G = GY* is a function of the arrays of parameter effect curvatures (see Bates
and Watts (1980}) and the matrix C is a function of the arrays of intrinsic curvatures of
the expectation surface E™ defined in (2.1). In the following let « : R™ — R™ denote an
orthogonal transformation of R™ such, that its matrix has the form

U = (T:N),

where T’ = FD (or elementwise T¢ = F2D¥) and DDT = A (or DfD{6Y = A*). Here
{Ti,k =1,...,m} is an orthonormal basis of the tangent space

T™0,) = {z €R™ |z =7/ + Ft,t € R™}

of the expectation surface E™ at the point 9 = 5(8,) and F' = F(8,) is defined in (1.2).
Similarly {.Na,a =1,...,n —m} is an orthonormal basis of the orthogonal complement
N™=™(8,) of the tangent space T (,,). We also introduce the arrays of Bates and Watts
(1980)

(3.3) Airs = (T;, FeeDEDY),  i=1,....m

and

(3.4) Apmtars = {Nu, Fre DEDYY,  a=1,...,n—m,
where

32
Fre = 56"“—89‘7?(9)'
Following Hamilton and Watts (1985) we can now write
m m
(35) ij = 6rj53kGrs = 0'2 Z Z{Ar,rsAs,jk + Ar,jsAa,rk + Ar.rjAs,sj}
r=1 s=1
and the elements of C~! = C;; are given by

(3'6) Cjk = 5jk - (é: FrsD§D£> = Uik — AmAm-lrcz,_;ih::
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where A% are the coefficients in the expansion of the residual vector é = y — 7 with
restact to the basis {N, | o =1,...,n — m} of the orthogonal complement N™~ (@n)-
If é is equal zero (see Hamilton and Watts (1985)) then Cjy, = 85, and
(3.7) trG = A; + Ay + Az,
where
Ar = o A AT AP Ty 3 iy,
Ag = A AT AP Ty ) T ey,
A = o AP AT AMTL Gy ) i k).

Consequently, Hamilton and Watts (1985) proposed the functionals

(3.8) Quw (&) = oA {1 + ﬁ(ﬁl + Ay +Aa)n‘1}
or

a2
(3.9) Qrw(&n) = |o°A {1 + m—+2(A1 + Ap + As)nwl}

as a second order D-optimality criterion. A principal drawback of these criteria is that
they are derived under the assumption of a vanishing vector of residuals. In general (3.2)
depends on é and there is some arbitrariness in the choice € = 0. As a modification of this
approach O'Brien (1992, 1996) proposed to use non-informative priors for the residual
vector. We additionally point out that (3.2) is only a correct second-order approximation
of the volume of the confidence ellipsoid if the third order derivatives of the response
function with respect to the parameters vanish (see Hamilton and Watts (1985), p. 249
and the discussion in Remark 1). Because of these difficulties we will now introduce
a class of alternative confidence regions such that the second order approximations of
the corresponding volumes are independent of the residuals. In Theorems 1 and 2 we
will present a general formula for the second order approximation of the volume of an
elliptical confidence region which also refines the formula of Hamilton and Watts (1985),
because it includes the third derivatives of the response function.

DEFINITION 1. A statistic T,, = T}, (c) is called u,-representable at the point B,
if there exists a vector ¢ = (¢;)7_; € R* such that T, admits a stochastic asymptotic
expansion of the form

(3.10) Tn =Ty, +0p(n™")
where

T!, = Ton + Tinn™ /% + Topn ™"
and

Ton = sy Ui teh,

Tin = el gryutudul,

Ton = (ealliy(he) + alliiyiiney + CaA™ iy un sy Junthubuh.
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Table 1. e-vectors in the asymptotic expansion of the statistic T,(:‘) (r =1,...,4) defined in
(3.12)(3.15).

Statistic n-1/2 n~t
1

3
[~
iy]
[«
x]
[~y

7! Kullback-Leibler 1
T4, modified Wald 2
1
0

wl- O O

,(,3), modified Rao

(] E R e B R NP
= A= e

(&1

Tr(f), Pazman

The vector ¢ = (¢;)i_; € R* characterizes the u,-representable statistic Tj,-

DEFINITION 2. A wu,-representable statistic is said to have the c-property if its
corresponding vector ¢ = (¢;)?_; € R* satisfies

o
(3.11) Z =c2 +¢4.

The class of u,-representable statistics with c-property is quite rich. For example,
the statistics

(3.12) TN = {1 -7l

(3.13) T = sy (Ol
(3.14) T = | P(6.) (A — )%,
(3.15) T = Qi (On)uiud,

satisfy the assumptions in Definitions 1 and 2. Here P(én) is the orthogonal projector
onto the tangent space T™(6,) with matrix P** = AYF2F!n~1 and @Q;; is Pazman's
matrix with elements

Qi = Mi; — (I — P)(i — ), Fiz),

(see Pazman (1992)). 'The validity of this proposition is easy to examine by a Taylor
expansion of T at the point 6,. The ¢ -vectors of these criteria are given in Table 1. The
funetion 73" is commonly called the Kullback-Leibler statistic since for a Gaussian error
distribution the quantity o=2||r7(81) —n(82)[? is two times the Kullback-Leibler distance
between the Gaussian measures Fj, and F§ (sec Borovkov (1998)). The function 7Y

is the statistic of the modified criterion of Wald (see Rao (1965)). The function T s
the modification of the statistic of Rao’s criterion (see Rao {1965), Grigoriev (1994)).
It defines so called the tangent elliptical confidence region for 6 (see Pazman (1992)).
Finally, we call the function T,E_4) Pazman's statistic since the matrix @;; is studied
extensively in the numerous papers of Pazman (1989, 1990, 1992, 1993).

In Theorem 1 below we demonstrate that u,-representability of a statistic is suf-
ficient for a second order approximation of the volume of its corresponding confidence
region (1.9) to be independent of the residuals. The important criterion of Neyman-
Pearson with statistic (3.1) is not u,-representable. The terms T, in the stochastic

expansion of Definition 1 are

(3.16) Ton = (H(,-)(j) — bij)u;uf;,
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1 o
(3.17) i, = (H(,:)(jk) —3 z‘jk) upulu,
318 1 1 1 kg
(3.18) Ton = | {Myey + gHaGke — T5bike upudubul,
where
(319) bil,...,‘ik = <e7 Fh,...,ik)a k= 2, 314

and e = y — n(#) and
ak
Fipin = an)

The expressions (3.16)—(3.18) contain the vectors b;, . ;, and coincide with the terms

75 in the expansion of the Kullback-Leibler statistic 1f b ir = 0. In the general case
we cannot write T}, = T +o0,(n™!) using (3.16)-(3.18) s1nce by the central limit theorem

nllzb‘ih-..,ik —d’ N(O, 0‘2)
as n — o0 and therefore
T, = H(ﬂ(a)“ u, + (H(t)(Jk)u - b,k)uv" ukp=1/2

[( Wijyikey + 3H(=)(jk£)) uy, — §b,k.g] wl uFuln!

If we introduce the following generalization of the representation (3.16)-(3.18)
(which is similar to (3.10))

{3.20) T:L = (H(i)(j) ;_?)'u u + (Cobgjk + cIII(,,)(Jk))u ’u,J u’“n t/2

+ leeTijy00) + callyiney + cah Py T igyhe) + Cobighelunuhupu‘n

and put

= a=1 a=t a=i =0 e=-
CO—_S’ =1, C2_41 C3-—3, 4=\, 5 — 12
then we obtain the statistic of Neyman-Pearson. If, in addition, ¢g = 0, ¢s = 0, we
obtain the statistic of Kullback-Leibler.
For the formulation of our main result we finally define

Ay = P NEATARTL G G iy,
Ay = P APNTAR TG Gy ey ey
Ag = UzAisAjrn(‘iS)(:i?‘J’
Az = * AN Ty e,y
Ag = JgAiSAer(i]{jrs)'

The quantity

(3.21) R=A*Ry, = (Ag — As) — (A7 — As5)
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is called the Ricei’s curvature or scalar curvature (see Rashevsky (1967)) and the quantity
(3.22) H = As— Ay

is called the Efron’s curvature (see Efron (1975), Grigoriev and Ivanov (1987b)). For
m = dimE™ = 1 and for flat models (see Pazman (1990)} Ricci’s curvature R is always
zero. In contrast to Ricci’s curvature Efron’s curvature H is not necessarily zero in the
one-dimensional case. By definition Efron’s curvature is non-negative, i.e. H > 0, but
Ricci’s curvature can have both signs. Efron’s and Ricei’s curvature of the expectation
surface E™ are related by the inequality (see Grigoriev (1994), Ivanov (1997))

(3.23) H>R
The quantity
(3.24) | B=3H 2R

is called Beale’s measure of intrinsic nonlinearity of the expectation surface E™ (see Beale
(1960)). From {3.23) and (3.24) we obtain B > 0.

Ricci’s and Efron’s curvature are scalar invariants of the expectation surface E™
(since they are not changed under a local coordinate transformation) and together with
Beale's measure of nonlinearity important objects in the theory of nonlinear regression
(see Grigoriev (1994), Ivanov (1997)). In the Appendix we will give the proof of the
following two assertions.

THEOREM 1. If&, is a non-degenerate design (i.e. |[Mi;| # 0) and V, is the volume
of a confidence region (1.9} with u, -representable statistic T, then

2
— 241172 v -1 -1
(3.25) Vi = |c?A| {1 + M1 Konn } + op(n™t),

where v is defined in (3.2) and

2
(3.26) Ky, = Kgﬂ(c) = C%(A1+A2+A3)—CQ(A6+2A7)+ (% - 04) (A4+2A5)—363A3.

Moreover, if T,, has the c-property we have

(327) Ky, = C%(Al + Ay + A3) - C2(3H - QR) — 3eaAa.

In order to present a similar result for statistics which are not necessarily t,-
representable we denote with §*7 the inverse of the matrix IIj;y(;) — b;; and define the
random variables

By = 875815y bagr
By = 8575 iy i) bapy:
By = 8§97 sy i) by
By =S98 8 b 1bagys

By = 8595857, 1 bogy,

Bg = 595k, 14,
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where bagy and by are defined in (3.19).

THEOREM 2. If the mairix S;; is positive definite at the point én, then the volume
V.. of the confidence region (1.9) with the statistic (3.20) is given by

2
2411 a -
(3.28) Vi, = ~|o2A[1/2 {1+.2_(__2)(K2ﬂ+Kén)n 1}+rn,

where r, = 0p(1) and rn = 0,(n=") if b;,,..;, = 0. Here Kay, is defined in (3.26) and
: 1 3ck
(329) K2n =3cger { By + By + EBS + T(&Bé -+ 235) — 3es5Bs
and everywhere in the quantities A; of (3.26) the matriz A" is replaced by the matriz
84,

Remark 1. It is worthwhile to mention that an application of Theorem 2 gives a
refined second order approximation for the volume of the confidence region based on the
Neyman-Pearson statistic as considered by Hamilton and Watts (1985). To be precise
we put b;, ;. =0, k = 2,3,4. Then Kj, = 0 and for Hamilton and Watts’s case it
follows from (3.27) with ¢; = 1, ¢ = §, €3 = 3 that (3.25) is valid, where

1
(3.30) Ko, = {A1 + A 4 Ag) - Z(?’H - ZR) — Ajg.
On the other hand Hamilton and Watts (1985) obtain (3.25) with

(3.31) Kop = Ay + Ap 4+ Aj.

This difference can be explained by the fact that Hamilton and Watts (1985) ignore
the third derivatives (see p. 249 of their paper and p. 216 of Seber and Wild (1989)).
Moreover, as pointed out in their paper a rigorous derivation of (3.31) is based on the
assumption m = n which implies b;, ;, = 0. In this case Beale’s measure of intrin-
sic nonlinearity vanishes and (3.30) and (3.31) coincide, except for the term Ag which
involves the third derivatives of the response function. In this sense the approximation
{3.30) derived by Theorem 2 is more accurate.

Remark 2. The tangential component
(3.32) KT = A+ Az + As

is changed by a reparametrisation of the expectation surface E™ and will be zero for the
geodesic parametrisation. The normal component

(3.33) KN =3H-2R
is invariant with respect to reparametrisation of the expectation surface E™.

Remark 3. From Table 1 and (3.27) it follows that the most simple expression of
the volume V,, in (3.25) is obtained for Pazman’s statistic T,(f]. In this case we obtain

(3.34) Kan = —%(33 _92R)

and as a consequence the resulting second-order optimality criterion depends only on
Beale’s measure of intrinsic nonlinearity.
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4. The general second-order optimality criterion

In accordance with (3.25) we propose a second order criterion of D-optimality

2
41 n) = |o? g -1h
(4.1) Qo) = |o°Al {1 + m+2K2n(c)n }
Substituting quantities A; — Ag in (2.6), (2.11) and (2.14), we obtain expressions
1
(4.2) By, = ZA4’
: 1
(4.3) Var = (A1 +2A4; + §A5) — R — Ag.
1 1
(44) Zop = (Al + 24, + ZA4 + §A5) —R— As.

The comparison of expressions (4.1)—(4.4) now shows that all second-order optimal-
ity criteria discussed in this paper are of the form

(45) Qe = oA {1+ L},

m
where Kp,(c) is defined in (3.26), s* € {m+2,x3_,(m)} and Ly, € ¥ = {Ban, Van, Zan,
Kon(c)} is a coefficient depending on the quantity which we wish to minimize. This
second order optimiality criterion contains the terms of first and second order with equal

weights, but we can write the first and quadratic design criteria in one formula if we
consider the function

52
(19 Q) = 1041 {8+ (L 8) = Lawn ™},

which puts mass 3 at the term of first order and mass 1 — 3 at the term of second order.
On the other hand, we observe that in all cases the factor Ly, € ¥ is a linear
combination of quantities A; — As. Therefore, the class ¥ can be extended by some
criteria which have not been considered so far. For example, let ent2 denote the second-
order approximation of the entropy in nonlinear least squares estimation (see Pronzato
and Pazman (1994)). In our notation this approximation can be written in the form

1 1
ent2 = const + 3 log |o%A| — %(R + Ag — A — Az).

Hence, using the equivalence e* ~ 1+ z, as ¢ — 0, we obtain the second order
entropy criterion which can be motivated by the results in Pronzato and Pazman (1994),
ie.

(47) QPP(gn) = |02A| : (1 +E2nn#1) y
where

(4.8) Eop = A1 + A — R — Ag.
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Table 2. Coefficients oy, of the linear combination Ly, = E%:l apAg in the second order
optimality criterion (4.5)

Ctiterion &) @z a3 o4 G5 &g 07 O
Factors Lan € ¥4

1. Bias Ban 1

2. Variation Van 1 2 1 -3 -1 ]

3. Deviation Zon 1 2 2 -1 - 1 -1

4. Entropy Fapn 1 1 1 -1 -1 1 -1
Factors Lon € ¥y

5. Kullback-Leibler k{2 1 1 1 1 3 -1 -1 -1

6. Wald K2 4 4 4 1 2 -1 -2 -3

7. Rao ) 111 -1

8. Pazman K i1 -3

Table 2 gives the coeflicients oy, of the linear combination

8
(4.9) Lon = oAy
k=1

for various second order optimality criteria. Note that all criteria of the considered class
¥ have nonnegative coefficients a;, ag, a3, a4 and nonpositive coefficients ag, o in
the representation (4.9) of La,. The criteria of the class ¥y obtained by the asymptotic
second order approximation of the bias, covariance and entropy satisfy additionally a3 =
0, a5 < 0 and a7 > 0. On the other hand the criteria in the class ¥, {developed by
Theorem 1) have nonnegative coefficient as and nonpositive coefficient 7. Moreover,
the factars K (I ) and K, (2) corregsponding to the Kullback-Leibler and Wald criterion are
related by
K(Q) - 4K(1) + Ag

and are proportional if the third order derivatives are ignored. Similary, if m = n Beale’s
measure of intrinsic nonlinearity vanishes and the factors K, éf‘l) and K, (1) in Rao’s and
the Kullback-Leibler criterion coincide, i.e.

K(l) (3} = A+ As + Az — As (m = n)-

If, additionally, third order derivatives are ignored, we obtain the criterion of
Hamilton and Watts (1985).

A different approach to second order optimality criteria for the design of experiment
was suggested by O'Brien and Rawlings (1996). Analogous to the bias measure of Box
(1971) these authors consider bias-variance ratio, given by

2] - D]

> = DbEbln~!
Dy

(4.10) mx (BVR) =

where D¥ and A¥ are defined in (2.8), (2.12). Since

= (D)1 =0 M1+ 0n7Y),  n— oo,
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Table 3. ~-coeflicients for the general criterion in (5.2} in the cne-dimensional case.

Criterion K2 y-coefficients Yy
71 T2 13
Bias 3 0 211 %
Variation 3 0 -1 % .g
Deviation 3 0 -1 l4§ 14_1
Entropy 3 0o -1 2 1
Kullback-Leibler x?_,(1} —3 —% 8 2
modified Wald  x%_,(1) -1 -1 5 3
modified Rao x ) o -3 1 2
Pazman xi_.(l) -3 o % 0

we draw a conclusion that from asymptotic point of view
m x (BVR) ~ By,

as n — co. Therefore, bias-variance-ratio criterion should be considered in the framework
of n~2-order asymptotic theory.

5. Examples: A one- and two-parameter model

Ezample 1. Qur first example discusses the criterion (4.6) in detail for the one-
dimensional case (m = 1). To this end we introduce here the additional notation

Oy = (F1.. 1. F1.. 1)

k £

From the definition of A; — Ag we obtain
Ay == As = 2N ),
Aﬁ = A7 = 02A2H(2)(2),
As = 0‘2A2ﬁ(1)(3),
which yields by (2.6), (2.11), {(4.8) and (3.27) to the expressions

B, — 02A3f[2
2n — I (13(2)

T - -
2 3
Van=a (EA iy — A2H(1)(3)) :
Eyn = a*(20%T0)) ) — AT (1ya)),
Kan = 30*{A°TTYy (5 — e2(APTL(o)2) — A%MTfyy0) — cad® Ty }-
Consequently, the quantity Lo, in (4.6) can be written as
(5.1) Lan = 30* {11 A% (2)(2) + 724 M1y (3) + 73T ) }-
From {4.6) and (5.1) it now follows that for m = 1 our criteria are given by

o2k2 . - -
o {m Azﬂ(z)(z) + ’72A2H(1)(3) + "{31\31-[?1)(2))} ,

(62 Q) = o?A {6 11 8)

where «2 € {3,x%_ (1)}
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For all criteria, which have been discussed in this paper, the coefficients v in the

representation (5.2) are given in Table 3. Note that for the statistics 7 defined in
(3.12)-(3.15) we have

M= =G, YI=C)te
and that the (refined) eriterion of Hamilton and Watts (1985) coincides with Kullback-
Leibler criterion by by, ... 4, = 0.
In order to illustrate the impact of different second order optimality criteria we
consider the one-dimensional exponential regression model
n(z,8)=e%, fe(d0), zell o)
Let £, = {zn} denote a one-point design. In this case we obtain for the quantities

(53) f[(k)(ﬂ) — (_mn)k+88—2wn9

and (5.2) can be rewritten as

o26? 2 4
(5.4) Q&) = 2 {Be + (1 — B)unet¥n),
where
2 2
(5"5) UYn = 0T,y = E; ("Yl +72 +')’3)-

It follows from (5.4) that the second order D-optimal design of experiments is con-
centrated at the point x}, = y20~!, where y is a zero of the equation

(5.6) Bly — 1)+ (1 - Bua(2y — 1)e™ = 0.

From (5.6) we obtain the following five different cases:
e v, > 0,8 & (0,1). The second order D-optimal one-point design is concentrated
at the point z;, in the interval (35, 3);
* v, <0, € (0,1}). The second order D-optimal one-point design is concentrated
at the point z}, in the interval (0, 55);
s 3 =0,v, > 0. The bias optimal one-point design is concentrated at the point

1

Zn = 28
¢ 3 =1. The first order D-optimal one-point design is concentrated at the point
1

Ty = §;

¢ v, = 0 (Pazman’s criterion, 71 + y2 + 3 = 0). In this case the first and second
order one-point designs coincide and are concentrated at the point z}, = }.
In all cases the point y}, = fz}, is the unique root of (5.6}).

Example 2. In general optimal designs with respect to second order optimality
criteria have to be calculated numerically. As an illustrative example we consider the
two-dimensional intermediate product model investigated in Box and Lucas (1959)

n(z,0) = 01?92 (77 —e7®7), 61,6, € (0,00), z€[0,00),
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Table 4, Optimal designs with respect to various second order optimality criteria in the inter-

mediate product model, n = 2

Criterion ] Optimal design |2 A| QER)
1. Bias 0.026 (1.22917, 6.858761) 0.0000023791  0.0000023938
0.050 (1.228108, 6.861766) 0.0000380648  (.0000390030
0075 (1.226584, 6.866164) 0.0001927050  0.0002033884
0.100 (1.224727, 6.871301) 0.0006090521  0Q.0006690692
2. Variation 0,025 (1.221077, 6.784996) 0.0000023797  0.0000024808
0,050 (1.201620, 6.621477) 0.0000381732  0.0000444754
0.075 (1.180213, 6.448154) 0.0001944000 0.0002645194
0.100 (1.161554, 6.301695) 0.0006191777  0.0010068212
3. Deviation 0.025 (1.220843, 6.787037) 0.0000023797, 0.0000024954
0.050 (1.201602, 6.635525) 0.0000381628 0.0000454210
0.075 (1.181662, 6.486092) 0.0001941315 0.0002754444
0.100 (1.165379, 6.369063) 0.0006170278  0.0010692640
4, Entropy 0.025 (1.225660, 6.835870) 0.0000023791  0.0000024296
0.050 (1.215638, 6.835870)  0.0000380795 .000024296
0075 (1.202435, 6.702388) 0.0001948948  ©0.0002292756
0.100 {1.188739, 6.184514) 0.0006111208 0.0008134570
5. Kullback-  0.025 (1.223305, 6.771860) 0.0000023798  0.0000024970
Leibler 0.050 (1.208397, 6.577811) 0.0000382015 0.0000454916
0.075 (1.191085, 6.368178) (.0001948948 0.0002757634
0.100 (1175087, 6.184514) 0.0006225665 0.0010682144
6. Wald 0.025 (1.204230, 6.534296) 0.0000023906  0.0000028684
0.050 (1.166023, 6.090162) 0.0000391851 0.0000680358
0.075 (1.137103, 5.777T111} 0.0002046462 0.0005239032
0,100 {1.115480, 5.554974) 0.0006666019 0.0024339430
7. Rao 0.025 (1.223305, 6.771860) 0.0000023798  0.0000024970
0.050 {(1.208397, 6.577811) 0.0000382015 0.0000454916
0.075 (1.191085, 6.368178) 0.0001948948  0.0002757634
0.100  (1.175087, 6.184514) 0.0006225665  0.0010682144
8. Pazman 0.025 (1.229471, 6.857680) 0.0000023791  0.0000023790
0.050 (1.229471, 6.857689) - 0.0000380648 (.0000380648
0.075  (1.229471, 6.857689) 0.0001927033  (.0001927032
0.100 (1.229471, 6.857689) 0.0006090376  0.0006090376
9. D-optimal  —  (1.220471, 6.857689)  0.0000023791 —

where f, #; are constants measuring the specific rates of first and second decompositions
of a substance in a consecutive chemical reaction. Following Box and Lucas (1959) we
chose @ = (0.7,0.2) as initial parameter values. In Tables 4 and 5 we show the optimal
design with respect to the second order optimality criterion (4.5) for various choices of
&% and Ly, Following O'Brien (1992) we used the values ¢ = 0.0, 0.025,0.05,0.075 and
0.1 for the standard deviation and n = 2,3. The parameter %2 was chosen as the 95%
quantile of the x?-distribution with two degrees of freedom, i.e. k? = 5.991. For example,
for n = 2, Lop = K52 and o = 0.025 the design £ = (1.2233,6.7718) minimizes the
second order criterion (4.5) with {o?A| = 0.2677 - 1075 and Q (£}) = 0.2897 - 107°.
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Table 5. Optimal designs with respect to various second order optimality criteria in the inter-
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mediate product model, n = 3

Criterion o Optimal design jo?A| Q&)
1. Bias 0.025 (1.2285, 6.8594, 6.8594) 0.0000026764  0.0000026846
0.050 (1.2256, 6.8645, 6.8645) (.0000428235  (0.0000433439
0.075  (1.2210, 6.8725, 6.8725) 0.0002168044  0.0002227178
0-100 (1.2150, 6.8826, 6.8826) 0.0006852874 0.0007184118
2. Variation 0.0256 {1.2179, 6.8200, 6.8200) 0.0000026768  0.0000027501
0.050 (1.1904, 6.7266, 6.7266) 0.0000428983 0.0000474740
0.075  (1.1593, 6.6144, 6.6144) 0.0002180750  0.0002688569
0.100 (1.1313, 6.5088, 6.5088) 0.0006933992 0.0009734413
3. Deviation 0.025 (1.2170, 6.8219, 6.8219) 0.0000026769, 0.0000027533
0.050 (1.1881, 6.7356, 6.7356) 0.0000428999 0.0000479912
0.075 (1.1564, 6.6360, 6.6360) 0.0002180508  0.0002747867
0.100 {1.1287, 6.5466, 6.5466) 0.0006929454  0.0010067003
4. Entropy 0.025 (1.2243, 6.8548, 6.8548) 0.0000026765 0.0000027131
0.050  (1.2106, 6.8466, 6.8466) 0.0000428339 0.0000451618
0.075 (1.1922, 6.8349, 6.8349) 0.0002170092 0.0002432046
0.100 (1.1727, 6.8215, 6.8215) 0.0006867847  0.0008332602
5. Kullback- 0.025 (1.2175, 6.8085, 6.8085) 0.0000026770  0.0000027691
Leibler 0.050 (1.1905, 6.6876, 6.6876) 0.0000429186 0.0000486661
0.075 (1.1616, 6.5433, 6.5433) 0.0002183862 0.0002822518
0.100 (1.1370, 6.4072, 6.4072) 0.000695258% 0.0010474303
6. Wald 0.026 (1.1863, 6.6508, 6.6508) 0.0000026846  0.0000030615
0.050 (1.1285, 6.3174, 6.3174) 0.0000436751  0.0000664786
0075 (1.0919, 6.0667, 6.0667) 0.0002259096 0.0004784440
0.100 {1.0704, 59002, 5.8002) 0.0007272996 0.0021282092
7. Rac 0.025 (1.2175, 6.8085, 6.8085) 0.0000026770 0.00000276491
0.050 (1.1905, 6.6876, 6.6876) (.0000429186  0.0000486661
0.075 (1.1616, 6.5432, 6.5432) 0.0002183863 0.0002822518
0.100 {1.1370, 6.4072, 6.4072) 0.0006952588  0.0010474303
8. Pazman 0.025 (1.2295, 6.8577, 6.8577) 0.0000026764 0.0000026764
0.050 (1.2295, €.8577, 6.857T)  0.0000428230D 0.0000428230
0.075 {1.2295, 6.8577, 6.8577) 0.0002167912 0.0002167912
0.100 {1.2295, 6.8577, 6.8577) 0.0006851673 0.0006851673
9. D-optimal  —  (1.2295, 6.8577, 6.8577)  0.0000026764 —

The analysis of the Tables 4 and 5 shows rather small differences between the optimal
designs for all considered second order optimality criteria. This can be partially explained
by the small variances considered in our study. As expected an increasing variance
produces larger deviations compared to the first order D-optimal design. For example,
if n =3, ¢ = 0.175 the optimal design with respect to second order optimality criterion
of Rao is supported at the points 1.0918, 6.1207, and 6.1207, while the criterion of Wald
yields a second order D-optimal design supported at the points 1.0429, 5.6591 and 5.6591.
Except for the Bias-criterion all optimal designs show a similar behaviour as a function
of the variance. The support points are decreasing with an increasing variance. For
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the Bias-criterion we observe an decreasing left and an increasing right support point.
We also note, that for n = 3 all optimal designs with respect to the considered second
order optimality criteria in Table 5 are two-point designs. Moreover, optimal designs
with respect to Pazman’s criterion are independent of the noise. This reflects theoretical
findings, because a cumbersome calculation shows that in the case n = m = 2 Beale’s
measure of intrinsic nonlinearity vanishes (see Ivanov (1997), pp. 256-265). A similar
result was obtained by our numerical calculations in the case n = 3.

6. Discussion

In this paper we studied a unified approach to second order optimality criteria in the
design of experiments for nonlinear models using a new technique for calculating second
order bias, variance and volumina. Most of the commonly used criteria are covered
by our approach and new criteria are proposed. Qur work generalizes and improves the
second order criterion introduced by Hamilton and Watts (1985), connects this approach
with a criterion focussing on second-order MSE and unifies some fragmented concepts
from tensor analysis such as the work of Ricci, Efron and Beale. Tt is demonstrated in
the intermediate product model that for a sufficiently small variance the total influence
of the second order term is rather small. This fact was already noted by Box (1971)
in the context of bias and by O'Brien (1992) for the not u,-representable criterion of
Hamilton and Watts (1985).

There are several open and interesting questions which require future research. For
example, it follows from Box's inequality (see Box (1971)} that

4 m+2

T
BT > 5

B2n

where
Tre ™ ™

BT - Z Z Z(Ai,rrAi,ss + 2Ai,rsAi,rs)-
i=1 r=1 s5=1

Sinee the contribution of Beale’s intrinsic nonlinearity to the total nonlinearity B +
B is usually less than 10% (see Grigoriev (1994)) it would be interesting to investigate
if there exist similar inequalities for other factors of Ls,. In this case attention should
be given to the minimisation of BY. A different interesting extension of the proposed
methods is the consideration of a nonsymmetric error distribution. In this case the
second order approximation of the variance matrix D! requires additional terms which
depend on the skewness of the error distribution (see Grigoriev (1994) or Ivanov (1982,
1997)).

Finally, one more direction of possible future research is the application of the
Bartlett’s adjustment to the radius o2x3_,(m) of a confidence region. This correction
is used to improve the accuracy of the asymptotic equality (1.6) and it is written as
p2 =1+ Apn~l. If we denote R, = 02x2__(m)p2 and Cy_o(A,) = {8 € © | Th(d,) <
R}, then, by an appropriate choice of A,, the accuracy of the confidence region can be
improved by the factor n~!, i.e.

PleCi_o(A)Y=1—a+on"), n-ox.

The Bartlett’s adjustments are calculated for all criteria considered in this paper
{see Grigoriev {1994), Ivanov (1997)} and can be used for the construction of alternative
second order optimality eriteria for the design of experiment, as it is made in the given
work.
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Appendix. The proof of Theorems 1 and 2

Theorem 1 will be proved by calculating the integral
(A1) v, = f dit,
Uniz)

where )
Un{x) = {un ER™: ;T,’,(un) < :r} .

To this end we use a method introduced by Bardadym and Ivanov (1985). By
the substitution of variables uf, — oAl/%y' = oDiy" and the introduction of polar
coordinates y — (r,9) = {r,¢0,¥1;- - - ¥m—2) We obtain

m—2
(A.2) y"zr( H cosc,oa) smip;_g, i=1,...,m,

=i~—1
T T 7w .
99—1=§: 9006[0’27‘-): SOiE[_E’E), i=1...,m-2

Throughout this proof we use the notation -

m—2

k
Q'(e) = ( I cossoa) singia, Q=T Q%,
a=1

a=i—1

Om) = 0,.26) x [-3. 2
Un(z) = {r > 0,0 € Ulm) | Tofr,¢) < z}.
According to (A.3) the function T}, (used in the set Uy (x)) is transformed into the
form

T 71')"‘_2

2
Tir, @) =7+ Z 2P 0V (),

v=1
where
(A.3) mn(p) = ealliym DiDIDFQ7 (%),
o, i M7 mk e aretu
(A4)  Tan(e) = (eallisyme + calliyng + cah Mgy i Tia ke ) Dy D10 DL ()
are trigonometric polynomials in the variables @q,...,@m-2. The set Un{z) is trans-

formed into the set U,(z). The integrand in the integral (A.1) now takes the form
lo2A (Y2 J(r, ), where

m—2

(A.5) Jry9) = [ (eos i)'

i=t
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is the Jacobian of the polar coordinate transformation. Consequently,

(A.6) Vi = |02A|1/2/ J(I,cp)dtp/ r™ L,
O(m) Un(z)

For fixed y let
Talp, ) : R — R

denote the inverse of the function 77, (r, ), i.e. if p = H,(r) = T}, (r,¢), then

r= ‘I’n(P, ‘10)

The function ¥, can be found formally in the form of a series in half-integer powers
of p, where the coefficients are trigonometric polynomials in g, . . . , ¢m-2 and uniformly
bounded in # € @ and n, ie.

(A7) r="Un(p,0) = p? 4+ 0225V A (p).

v=1

The coeflicients of A,,, in this expansion are calculated by the substitution of
Ti(r,) in the series (A.7) (i.e. instead p = H,(r) we substitute into (A.7) T, (r,¢)
and ignore all coefficients corresponding to the powers of order r > 1).

In order to find the quantities Ay, and Ay, in (A.7) we denote p =T (r,p), T =710
and obtain

p1/2 =r(l+ Tran 2% 4 Tzwgnn_l)lﬂ.
An application of the binomial expansion gives
1/2 1 2, -1/2 1 1, 2,3, 1 -1
(A.B) plf=r+ 30Tt n + 3M2n = gMin J 07170 +o(n™").

A substitution of (A.8) in (A.7) now yields recurrence relations for the coefficients
of A,y ie.

1

§7r1n +A5,= 0,
1 1,

5772n - gﬂ-ln + A1pT1n + Agp =0

ete. In particular we find

1
Ay = —5™in;
5 1
Agn = gﬂ'%n — 57('211.

From arguments linked to the solution of the problem of the inversion of a power
series it follows (Fikhtengolts (1966)), that for small values of t = op!/>n~1/2 the series
in {A.7) is convergent.

A substitution of r = ¥, (p, )} in (A.6) gives

* _ ov, (p,
(A.9) o= l?Al [ s, [ 0 0 S,
U{m) 0 P



594 HOLGER DETTE AND YURI GRIGORIEV

For the calculation of U"~(p, ) and 8¥,,/8p we use (A.7):

Q:‘L—l — p(m—l)/2{1 + {m _ 1)b1nplj2n—lf‘2

VUL, P

+ [(m - l)bgn + 2

where b, = ¥ Qpn, ¥ = 1,2, and

Oy 1 _yp —1j2 3, 12 -1
3p —§P + bipn +§bgnp no.

We can multiply 71 and %L now and obtain

0%, _1
dp 2

+ [(m + 2)bo, +

(A.10) L2 P D2 4 (m+ )by o 201/

30— (o 29 g™

Substituting (A.10) in (A.9) yields

alA 1/2 .z
) v =TT g, [ g,
0 U{m)

(m~-1)(m+2).,]p

[+ D+

1/2
_ ety / " pm=2)/2
2 0

1/2
ol {m—1)}{m+2) P
-{10+(m+1)11——1/2 + [(m+2)12+————2 I3| =5 dp,

where

/2
r(3)

1
I = / J(L)bin(p)dp = —50/ J(1,)min(w)de =0,
U{m)

Iy = / J(1,¢)de = (volume of the unit ball) =
Uim)

U(m)

- 1 -
L= .[ J(11 ‘P)bZﬂ({P)dcp = _/ J(11‘P)U2 (ﬁﬁ%n - lﬂ"zﬂ) dp = §0'212 - _52-[33
{7 () or(m) 8 2 8 2
o? -
= [ o= [ I0,9)5 R e = Th
U(m) U{m)

and the last two equalities define J; and 5. Substituting I, and I3 in (A.11) we obtain

2A11/2 g% . _
(A.12) Vn=t‘%—/ pm=2)/m {IOJrgz [(m+2)(m+4)12_m+2I3] pn_l}dp
4]

B 2
2411/2 - -
= [o”Al {%Ia L™ 4 g2 ,:——-(mi 1) I, — Ig] x(m’"'z)/zn_l} .

2
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Finally, the integrals
(A.13) h=[ J0emdide,
U(m)
(A1) B[ Jemned
U(m}
have to be caleulated. Substituting (A.3) in (A.14) and (A.4) in (A.15) we obtain

(A.15) 12 = ch“ DzzD;:;D;jD;:DIG 1'[(“){.;2,3)1'{(,4}(1516)

.\/L:f(m) ,‘P) H QJQ(QO dtpa

a=1

(Alﬁ) 1:3 = {CQH(hig)(ian) + C3H(i1)(izi3{4) + C4Aaﬁﬂ(a)(111172)H(ﬂ)(i31'4)}
4
x Dyt D2 D Dl / I(1,¢) [ [ @ (w)de.
The integrals in (A.16) and (A.17) are given by

2v
It = / J(L9) [] Q(e)de
U{m) a1

595

0, if at least one index appear with odd multiplicity,
71_m,/2
= ,  else.
gu—1T m+ 2y
2
Consequently,
- Qmi2
(A.17) = = K1,
a?m(m + 2){m + 4)1"(—)
2
where
K = Cf("-lA]_ 4+ 4A; 443+ Ay + 2}15}
and
= 2/
(Alg) Ig = ra KZ;
o2m(m + 2)1“(-5.)
where

K3 = cp( A6 +2A7) +203(348) + ¢4 {Aq + 245).

Substituting (A.17) and (A.18) in (A.12) and observing that = = a® = x%_,(m),

and Iy = 27™/2/T'(2), we obtain

(ay/m)™ 22 11/2 ol
Vnz——-—--—-——. . _—_Kﬂ ,
F(m+2) [ A L amr)

2
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where
1
KQn = ZKI - K2

: 3e
= (A1 + Az + Ag) — 3(Ae + 247) + (% - 04) (Ag+ 245) — —2—3A3,

which proves the first part of Theorem 1. Finally, the c-property (3.10) yields the result
(3.27). For a proof of Theorem 2 we must use (3.20) instead of (3.10). In this case we
have instead K; and K,

K| = K\ + 6¢coc1(2B) + 2B; + B3) + 3¢3(By + 2Bs),
K& = Kz + 30536

and obtain 1
2K = Ky = Kon + K,

where K}, is defined in (3.30).
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