Ann. Inst. Statist. Math.
Vol. 52, No. 3, 519-543 (2000)

A TWO-STEP SMOOTHING METHOD FOR VARYING-COEFFICIENT
MODELS WITH REPEATED MEASUREMENTS

COLIN O. WU'* | KAl FUN YU? AND CHIN-TSANG CHIANG?

1Department of Mathematical Sciences, The Johns Hopkins University,
Baltimore, MD 21218, U.5.A.

2 Division of Epidemiology, Statistics and Prevention Research,
National Institule of Child Health and Human Development,
Bethesda, MD 20852, U.S.A.
3Depa’rtment of Statistics, Tunghai University, Taichung, Taiwen

{Received May 6, 1898; revised February 15, 1999)

Abstract. Datasets involving repeated measurements over time are common in
medical trials and epidemiological cohort studies. The outcomes and covariates are
usually observed from randomly selected subjects, each at a set of possibly unequally
spaced time design points. One useful approach for evaluating the effects of covari-
ates is to consider linear models at a specific time, but the coefficients are smooth
curves over time. We show that kernel estimators of the coefficients that are based
on ordinary local least squares may be subject to large biases when the covariates
are time-dependent. As a modification, we propose a two-step kernel method that
first centers the covariates and then estimates the curves based on some local least
squares criteria and the centered covariates. The practical superiority of the two-step
kernel method over the ordinary least squares kernel method is shown through a fetal
growth study and simulations. Theoretical properties of both the two-step and ordi-
nary least squares kernel estimators are developed through their large sample mean
squared risks,

Key words and phrases: Bandwidth, kernel, longitudinal data, mean squared error,
ultrasound measurement, varying coefficient models.

1. Introduction

In many medical and epidemiological studies, such as growth studies, interests of
statistical analyses are often focused on determining the relationship between a time
dependent real-valued outcome variable Y () and a set of random covariates X(t) =
(X1(t),..., Xx(®)7. Longitudinal observations of these studies are usually obtained
from n randomly selected subjects and, for i = 1, ..., n, the i-th subject has n; repeated
measurements recorded at possibly unequally spaced time points £;;, 7 =1,...,7. The
j-th measurement of (¢,X(t),Y (¢)} for the i-th subject is then denoted by (t;;, Xij, Yi;),
where X.,;j = (Xijh - ,X,jjk)T.

Statistical models and estimation methods for this type of data have been mostly
concentrated on parametric approaches based on linear and nonlinear regression models,
such as Diggle et al. (1994), Davidian and Giltinan (1995), Vonesh and Chinchilli {1997),

* Partial support for the the first author was provided by grant, R0O1 DA10184-01, from the National
Institute on Drug Abuse. This research was carried out when the first author was visiting the Division
of Epidemiology, Statistics and Prevention Research, the National Institute of Child Health and Human

Development,

519



520 COLIN 0. WU ET AL.

among others, or nonparametric models of (¢, Y'(}) without considering the effects of co-
variates Xq(t}, ..., Xk(t), such as Hart and Wehrly (1986), Altman (1990) and Rice and
Silverman (1991). As a mixture of parametric and nonparametric models, a semipara-
metric approach based on a partially linear model has been studied by Zeger and Diggle
(1994) and Moyeed and Diggle (1994). However, for many situations, the existing para-
metric and nonparametric approaches may be either too restrictive to accommodate the
unknown shapes of the curves or lacking the specific structures of being biologically in-
terpretable. On the other hand, a general multivariate nonparametric regression model
would be too complicated to be biologically interpretable.

As a useful compromise to retain meaningful biological interpretations and flexible
nonparametric structures, Hoover et al. (L998) considered the varying coefficient model

(1.1) Y{t) = Bo(t) + XT(£)8(t) + (2),

where 3(t) = (Bi(t),...,B:(t)7T, Bi(t), | = 0,...,k, are continuous curves of t, €(t)
is & mean zero stochastic process with Ele2(t)] < oo for all ¢t and X(¢) and e(t) are
independent, and proposed a class of linear smoothing estimators of 3(f) based on local
ordinary least squares or penalized least squares criteria. When the data are cross-
sectional, i.e. n; =1 for all ¢ = 1,...,n, {1.1) reduces to a special case of the models
described by Hastie and Tibshirani (1993).

The linear smoothers of Hoover et al. (1998), such as their ordinary least squares
kernel estimator, suffer two main drawbacks. First, in many situations, the corresponding
estimators may be subject to large biases when the covariates are time-dependent so that
no adequate estimators of 3(t) can be obtained for any choice of smoothing parameters
(see Section 4). Second, since the ordinary least squares kernel and local polynomial
estimators rely on only one set of bandwidth and kernel function, they can not adjust for
different smoothing needs of 3,.(t), r = 0, ..., k, when they belong to different smoothness
families.

A motivating example here is the Alabama Small for Gestational Age Cohort Study
(Alabama SGAC Study) conducted by the National Institute of Child Health and Human
Development. A main objective for this study is to determine the effects of placental
development and other risk factors on fetal development, such as the growth of abdom-
inal circumference, throughout pregnancy. Since no specific relationship between fetal
growth, gestational age and other available risk factors has been rigorously justified, the
nonparametric model (1.1) is clearly more adequate than parametric models for an ini-
tial data exploration. However, because of the above two drawbacks, the ordinary least
squares kernel method gives obviously biased estimators which do not have meaningful
hiological interpretations.

As a remedy, we consider the following equivalent form of (1.1},

(1.2) Y (1) = B5(t) + ZT(D)B() + (1),

where Z(t) = (Z1(t),..., Zx(t))7T, Zi(t) = X, (t) — (L), BL(t) = Bo(t) + Z;;l wi () Ei(t)
and y(t) = E[X,(t) | t], and propose a new class of kernel estimators of 3§(t), So(t) and
B(¢). Our estimators are constructed based on a two-step procedure which first obtains
estimators f;(t;;) of pi(ti;) and then estimates G5(t) and B(t) based on some local least
squares criteria and the centered covariates (X;;;,— i (¢:;)}. As a simple generalization, we
also incorporate multiple bandwidths and kernels into the estimators, so that adeguate
smoothing may be provided for all 5,(t). The results of this paper have two main features.
First, in many situations, particularly when gy (t), for some 1 = 1,..., k, have large slopes
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at ¢, our two-step kernel estimators are asymptotically superior over the ordinary least
squares kernel estimators in the sense that the two-step kernel estimators have smaller
asymptotic mean squared errors. Second, through Monte Carlo simulations and an
application to the Alabama SGAC Study, we show that the two-step kernel estimators
are often more reliable than the ordinary least squares kernel estimators in practice. We
only consider in this paper the practical and theoretical properties of the two-step kernel
estimators in order to provide useful insights to the two-step method. Similar approaches
can be generalized to two-step procedures based on local polynomials and smoothing
splines. But, under the current complex longitudinal design, asymptotic properties of
local polynomials and smoothing splines require substantial further development.

For the rest of the paper, we give the expressions of the ordinary least squares and
the two-step kernel procedures in Section 2. The finite sample advantages of the two-step
kernel method are illustrated through simulation results in Section 3. The application
of the two-step kernel method to the Alabama SGAC Study is shown in Section 4.
Asymptotic properties of the two-step kernel estimators and their comparisons with
that of the ordinary least squares kernel estimators are developed in Section 5. Proofs
of the main results are deferred to Section 6.

2. Smoothing methods

2.1 Least Squares
21.1 Ordinary least squares

Suppose that the (k + 1) x (k + 1) matrix E[(1, X7 (¢ ))T(l XT(t))) is invertible for
every ¢t € R. The ordinary least squares kernel estimators Go(t; K, k) and B(t; K, h) of
Bo(t) and B(t}, respectively, are obtained by minimizing

@.1) L(t) = ZZ[YH — bo(t) — XTb(t)Paw K( ht”) ,

i=1 j=1

with respect to by(t) and b(t) = (b1(t),...,b(t))T, where w; are non-negative weights
whose usual choices include w; = (1., 7)1 or w; = (nng)~', K(-} is a Borel-
measurable kernel function and A is a positive bandwidth. Let
1 X oo Xk Ya
Xo=|: &+ i i ], Yi=|
1 Xipa 0 Xink Yin,

Ki(t; h’) = diag (wih_lK (t——f;—{]—'—) yeeey 'w,;h_lK (_t W]:‘fﬂ‘)) .

i R ORI XT.K;(t;h)X ) is invertible, then the unique minimizer of (2.1) is given by

and

(22) (Gt K, h), BT (6K, m)T {ZX{,_K th)X*.,] [Zx Ki(t;h)Y ]

=1

When w; = (3], n;)7", (2.2) is reduced to the ordinary least squares kernel estimator
of Hoover ef al. (1998).
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2.1.2  Two-step least squares

By centering all the covariates X;(¢) around their corresponding conditional means
wi(t), (1.2) is equivalent to (1.1) and S33{t) now represents the baseline effect or the
mean effect of ¢ on Y(#) when the covariates are equal to their conditional means. Given
the relationship between &2(t), Bo(t), Bi(t) and w(t), it is also natural to estimate the
coeflicient curves based on (1.2).

Following this approach, one would have to first estimate y;(t) from the data and
then estimate 3%(t) and B(t) based on some local least squares criteria. Let (I';(-), ),
I =1,...,k be k sets of Borel-measurable kernel functions and positive bandwidths.
Then a kernel estimator fi;(¢; Ty, ) of p(t) can be obtained by minimizing

(2.3) b(t) = Z Z {[X*ﬂ -] woy T ( %tu ) }

i=1 j=1

with respect to a;(t). It is straightforward to see that the minimizer f(t; Ty, vi) of (2.3)
is a Nadaraya-Watson type estimator (see Nadaraya (1964), Watson (1964), and Hérdle
{1990), Chapter 3) given by

o _ im Dpiy X (¢ = #) /ul}
24) AT = S SS T o) )

Let Ziji = Xijt —m(t,,) Zijg = Xijo — fu(ts;Toom) for 1= 1,...,k, Zij = (Zy1,---,
Zix)T, Ziy = (Zijr, ..., Zijx)T and

1 Ziy - Zi
Zyi= | : f : : -
1 Zina - Zingk
Substituting X; of (2.1) by Z,-J-, one can obtain two-step kernel estimators 33(¢; K, h)
and B(¢; K, h) of 83(t) and B(t), respectively, by minimizing

L3 i

(2.5) LK =YY {[Y,, — bo(t) — Zib(O)Pwih K ( htzJ )}

=] j=1
with respect to by(t) and b(¢) = (Br(®), ..., b (t)T. When (3 1Z,,,K (t;R)Z.,) is
invertible, 33(¢; K, h) and B(¢; K, h) are uniquely given by

-1 'n

(2.6) (Bt K, h), 3T (¢ K, ) [Z ZLK 0 ] [Z Zﬂm(t;h)n—] .
i=1 i=1

Based on 33(t; K, h), 3(t; K, h) and fi(t; Ty, ), one can estimate Go(t) of (1.1) by

k
@.7) Bolt; K, b) = By (1 K, h) — {Z[m (5T ) At K, h)]}

i=1

where G(t; K, k) is the I-th component of 3(t; K, k). Here, the adequacy of Bo(t; K, k)
depends on (T, v;) as well as (K, h).
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Remark 2.1. In both (1.1) and (1.2), Bi(t) with { > 1 can be interpreted as the
average change of Y{t) at time # that is caused by the unit change of X; (£). Althoggh
Bo(t) may be thought as certain “baseline” curve, it does not have a meaningful physical
interpretation when the values of X;(t), for some ! = 1,...,k, can not be zero. ‘On
the other hand, F3(t) can always be physically interpreted. Thus, for many practical
situations, it is frequently more advantageous to consider (1.2) and the estimation of
B2(t) and ((t) instead of the estimation based on (1.1).

2.1.3 Modified estimators

The estimators given in {2.6) rely on a single set of kernel and bandwidth, i.e. (K, h},
to estimate 3¢ (t) and all k curves in 3(¢). In most practical situations, particularly when
B (t), Ba(t), ..., Bu(t) belong to different smoothness families, a single (K, h) may not
simultaneously provide adequate smoothing for all the estimated curves. As a natural
generalization of (2.6), (43(t), 3¥())T can also be estimated by

(28) é(ts K: h) = (5’5 (t; KD:hO)aﬁnl (t; Kl ) hl)a rrey ﬁk(t; Kk: hk))Tu

where K = (Ky,...,Ky) and k = (ho, ..., hi) are sequences of kernels and bandwidths.
Similarly, by generalizing (2.2}, (Bo(t), 37(t))7 can also be estimated by

(2.9) 6(t; K, k) = (Go(t; Ko, ha), 51 (6 K1, h1), - - ., Be(t; K, )T,
where j, (t; K, h) is the I-th component of B(t; K. h).

Remark 2.2. Similar to the approaches of Hoover et al. (1998), two-step local poly-
nomial estimators can be obtained by substituting bo(t) and b(t) of (2.5) with their
corresponding Taylor expansion terms. Although the current complex model and data
structures are quite different from the traditional nonparametric regression with indepen-
dent cross-sectional data, it is conceivable that certain boundary advantages of the local
polynomials over the kernel estimators may still remain. A comprehensive study of the
practical and agymptotic properties of two-step local polynomials requires substantial
theoretical development, hence is omitted from this paper.

2.2  Bandwidth choices

Similar to kernel smoothing with independent cross-sectional data, the shapes of
kernels are usually less important than the sizes of bandwidths. Although subjective
bandwidths may be selected by examining the fitted curves, it is helpful in practice to
have a procedure that suggests appropriate automatic bandwidths based on the available
data. Because of the possible intra-correlations within each subject, the usual data-
driven bandwidth selection methods that are suitable for the independent cross-sectional
data may not be directly applied to the current longitudinal data. Here an appropriate
bandwidth choice may be associated with the structures of the intra-correlations; see,
for example, Altman (1990). But, for most applications, the intra-correlation structures
are completely unknown. Then a simple and natural automatic bandwidth procedure is
the “leave one subject out” cross-validation suggested by Rice and Silverman (1991).

Applying the procedure of Rice and Silverman (1991) to the two-step smooth-
ing estimators, we would have to first compute the cross-validated values for 7. Let
ﬁg—z)(tgl‘;,ﬂﬂ) be the estimator of () using (2.4) with the observations of the i-th
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subject left ont. Suppose that we would like to select v to minimize the the aver-
age prediction squared error of fi;(t;T},v). The cross-validation bandwidth oy then
minimizes

(2.10) CV(m) = Zzi{'wi[xz'jl — & (5 Ty )P}

i=1 j=1

with respect to .
Let §(-9)(¢; K, h) be the estimator of (85 (t), 87 (£))T based on (2.8), (T1,evs- - - Thev)
and the remaining data with the observations of the i-th subject left out. We define

(2.11) CV(h) = ii{wi[nj - (LZ?;)é(fi)(tij;K: m*}
i=1 j=1

to be the cross-validation score for 6(~% (t; K,h). Then the cross-validation bandwidth
vector Bey = (Ro,evs - - - » Pkov) 15 & minimizer of CV (k).

Remark 2.3. By minimizing (2.11), we approximately minimize the average pre-
diction squared error

2
7 i k
APSE((K,h)) = > Y wiE < Y5 — By (tss: Ko, ho) — > (Zijiha(tis; Kiy )
=1 j=1 =1
with respect to & = (hq,...,hs)7, where Y5 is a new observation at (ti7,Xi5). To give

a heuristic reason for this, we can consider the following decomposition

(2.12) CV(h) = ZZ{w,-(Y,-J- — Boltij) —~ Z;ﬁ(tu))z}

i=1 j=1

+ Z z‘{wi[(laz;;)((ﬁa(tij)s BT ()T — 6ty K R)IPY
i=1 j=1

+230 3 funlYiy - fslti) — Ziy0(t))

X [(L, Zi (B (8, BT ()T — 89t K, W)},

The first term of the right side of (2.12) does not depend on the bandwidths. By
the definitions of 8¢~ (t; K, h) and Z-j, we can show that the expectation of the third
term of the right side of (2.12) is negligible when n is sufficiently large. Thus, hc
approximately minimizes the second term of the right side of (2.12). By a straightforward
comparison between APSE((-; K, h)) and the second term of the right side of (2.12},
we can show that k., also approximately minimizes APSE(6(:;K,k)). Without the
presence of the covariates X (¢}, the consistency of a similar “leave-one-subject-out”
cross-validation bandwidth has been established by Hart and Wehrly (1993) for the
estimation of E[Y (t) | f]. But rigorous theoretical properties and efficient algorithms of
h.. under the current varying coefficient models have not been developed and deserve
further study.
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Remark 2.4. A systematic and rigorous search of hc, may be time consuming
and may require sophisticated optimization software. However, instead of searching for
the global minima, it is frequently reasonable in practice to use those bandwidths that
approximately minimize the cross-validation scores. Such approximate crosg-validation
bandwidths will be used in the simulation study of Section 3 and again in the Alabama
SGAC Study of Section 4.

3. Monte Carlo simulations

We consider model (1.1) with & = 2 and 5y(t) = 3.5 + 6.5sin{tr/60),

3 —
ﬁl(t)=2-5—o.0074(£1;—t) and ﬁz(t)=~0.2—1.6cos(—-———(t 630)“).

For each ¢, X;(t) is a time-dependent random variable from the Gaussian distribution
with mean 3 exp[t/30] and variance 1, and X5 is a time-independent Bernoulli random
variable with probability 0.5 for being 1 or 0. Each longitudinal sample has 400 randomly
generated subjects. The cross-sectional observations X, i = 1,...,400, are indepen-
dently generated from the distribution of X;. Each subject has a probability of 0.4 to be
observed at time points 0,1,2,...,30. The observed time points form t,;, i = 1,...,400,
j=1,...,n;, which are unequally spaced. Based on each t;;, independent samples X;;
and €;; = ¢;(t;;) are generated, respectively, from the distribution of X (¢) and the mean
zero Gaussian stationary process with covariance

cov(en (e (e) = { g RN L

0, if 4y # s,
The simulated outcome values Y;; are obtained by substituting ¢;;, Xi;1, Xi2, €¢;; and
the above (ﬂo(t@'j), Je ! (tij),ﬁZ(tij)) into (11)

This simulation process was replicated 200 times. For each simulated longitudinal
sample, kernel estimators of Sg(t), 51 {t) and Ba(t) were computed using both the ordi-
nary least squares and the two-step methods. Since different kernel choices, such as the
Epanechnikov kernel (see Hirdle (1990), Chapter 3) and the standard Gaussian kernel,
gave very similar results, the estimated values presented here are only for the standard
Gaussian kernel. Following the bandwidth procedure of Section 2.2, we computed the
cross-validation bandwidths for each simulated dataset. For the purpose of illustration
and comparison, we also used several other bandwidths which had cross-validation scores
very close to those given by the cross-validation bandwidths., For simulations with the
ordinary least squares kernel estimators, the cross-validated bandwidths hq oy and Ry ¢y
were around 0.3 and the values of fp ., were in the range of 0.4 to 0.6. For simulations
with the two-step kernel estimators, the cross-validated bandwidths v ., for the esti-
mation of y;(t) were around 0.7, hgc, and hy o were around 0.4, and k2 . were in the
range of 0.4 to 0.6.

Figures 1a and 2a show the real £g(t) and 3;(#) in solid curves, and the averages
over 200 simulations of the ordinary least squares kernel estimators computed using
the cross-validated bandwidths and (hg, hy,hy) = (0.5,0.5,0.7} in dashed and dotted
curves, respectively. Similarly, in Figs. 1b and 2b, the solid curves represent the real
Bo(t) and B1(t), while the dashed and dotted curves show their corresponding averages
over 200 simulations of the two-step kernel estimators computed using the cross-validated
bandwidths and (41, ho, by, ha) = (0.7,0.6,0.6,0.8), respectively. To give an indication of
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(1a) Beta0 (OLS)
1]
2
1
e T
R
1
1
*1 v
]
s s i’ M M M »
Time

Fig. 1. The solid curve gives the actual So(t) and the vertical bars give the +2 standard
errors of the estimates at the corresponding time points. (la): the averages of the ordinary
least squares (OLS) kernel estimators of fg(t) base on the standard Gaussian kernel, the cross-
validated bandwidths {(dashed curves) and the subjective bandwidths (ho, k1, h2)= (0.5, 0.5,0.7}
(dotted curves); (1b): the averages of the two-step kernel estimators of fp(t} based on the
standard Gaussian kernel, the cross-validated bandwidths (dashed curvesj and the subjective
bandwidths (-1, ho, h1, ho)= (0.7,0.6,0.6, 0.8) (dotted curves).

the variability of these estimates, the vertical bars in the figures represent the pointwise
+2 standard errors of the 200 simulation estimates at the corresponding time points.
Both the ordinary least squares and the two-step kernel methods give estimates very close
to the true Ba(t) curve, hence, their plots are omitted. The cross-validation bandwidths
appear to give slightly undersmoothed estimators for both the ordinary least squares
and the two-step kernel estimators. These figures also show that a slight increase of
the bandwidths causes significant upward shifts of the ordinary least squares kernel
estimators, but the same increase of the bandwidths only affects the smoothness of the
two-step kernel estimators.

Although nonparametric inference procedures have yet not been systematically in-
vestigated for the current model and data structure, a potentiaily useful bootstrap
method, suggested by Hoover ef al. (1998), is to resample with replacement the entire
repeated measurements of subjects. To assess the validity of the estimators, we com-
puted the 0.95 pointwise bootstrap percentile confidence intervals for 3 (t) and Ga(t)
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Fig. 2. The solid curve gives the actual F1(f) and the vertical bars give the +2 standard
errors of the estimates at the corresponding time points. (2a): the averages of the ordinary
least squares (OLS) kernel estimators of 81(t) base on the standard Gaussian kernel, the cross-
validated bandwidths {dashed curves) and the subjective bandwidths (ko, h1, he)= (0.5,0.5,0.7)
(dotted curves); (2b): the averages of the two-step kernel estimators of 3;(t) based on the
standard Gaussian kernel, the cross-validated bandwidths (dashed curves) and the subjective
bandwidths {-y1, ko, h1, ha)= (0.7,0.6,0.6,0.8) (dotted curves).

Table 1. The estimated coverage probabilities of the 0.95 bootstrap pointwise confidence inter-
vals for 3 (t) and B:3(t) based on the ordinary least squares kernel estimators with the standard
Gaussian kernel, hev and b = (0.5,0.5, 0.7).

Time point 30 60 9.0 120 150 180 210 240 270
Bi(t; K, hey) 095 096 094 093 0094 095 092 092 094
Bilt; K,h) 004 015 037 054 073 085 085 090 0.92
Bo(t; K, hey) 092 092 092 095 094 093 094 094 093
B K,h) 096 091 091 093 094 092 092 093 091

at nine time points. These confidence intervals were computed based on 200 boot-
strap replications. Based on the 200 simulations, Table 1 shows the estimated coverage
probabilities of the ordinary least squares kernel estimators with the cross-validated
bandwidths and (ho,R1,he) = (0.5,0.5,0.7). Similarly, Table 2 shows the coverage
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Table 2. The estimated coverage probabilities of the 0.95 bootstrap pointwise confidence in-
tervals for B1(t) and 82(t) based on the two-step kernel estimators with the standard Gaussian

kernel, kv and k = (0.7,0.6,0.6,0.8).

Time point 3.0 60 90 120 150 180 210 240 270
Bult: K hey) 095 096 093 092 094 095 092 092 093
Bit; K,h) 095 094 092 093 091 093 091 092 094
Balt: K, hey) 094 091 0892 097 093 0593 094 092 093
Bo(t; K,B) 094 090 093 094 092 083 092 095 093

probabilities of the two-step kernel estimators with the cross-validated bandwidths and
(71, ha, h1, h2) = (0.7,0.6,0.6,0.8). Although the coverage probabilities of the ordinary
least squares kernel estimators appear to be acceptable for the cross-validation band-
widths, they are very sensitive to the bandwidth choices and a slight change in band-
width choices may lead to totally unacceptable coverage probabilities; see, for example,
the coverage probabilities of (;(¢; K, k) in Table 1. On the other hand, the coverage
probabilities of the two-step kernel estimators are more stable and generally acceptable.
Similar conclusions can also be obtained for the estimation of Sy(f).

4. Application to the Alabama SGAC study

The data are from a prospective study of risk factors for intrauterine growth re-
tardation. All 1475 women enrolled in the study were scheduled to have their fetal
anthropometry measurements carried out by ultrasound at approximately 17, 25, 31 and
36 weeks of gestation. However, this schedule was not closely followed. The actual visits
were scattered between 12 and 43 weeks of gestation, which led to unbalanced repeated
measurements. Since normal fetal growth is naturally thought to be associated with
proper childhood development, a main objective of this study is to assess the role of the
risk factors or covariates that might affect fetal growth. Although many maternal behav-
ioral risk factors, such as smoking, alechol use and drug abuse, etc., may have significant
influence on the fetal development, for the purpose of demonstration, our analysis here is
focused on the effects of the placental development, measured by placental thickness over
time, on the development of fetal abdominal circumference. Since mother’s height is also
an obvious factor that may be positively correlated with fetal size, this covariate is also
included in the analysis. Biomedical and epidemiological implications of the statistical
results here are also interesting but deserve further study and need to be independently
verified from other data. So these implications will not be addressed in this paper.

Let Y{t) be the fetal abdominal circumference at t weeks of gestation, X;(t) be
the placental thickness at ¢ and X, be the mother’s height. Under model (1.2), 43(¢)
represents the mean curve of fetal abdeminal circumference when the woman has average
placental thickness at ¢ weeks of gestation and is of average height, and 5, (t) and £x(%)
represent the unit change in fetal abdominal circurmnference associated with the unit
change in placental thickness at ¢ and the unit change in mother’s height, respectively.

Fitting model (1.2) to the data, Figs. 3a and 4a show the two-step kernel estima-
tors of G3(t) and (3;(t) based on the standard Gaussian kernel and the cross-validated
bandwidths v o = 1.5, fycy = 0.3, { = 0,1,2. The dashed curves show the 95%
bootstrap percentile pointwise confidence intervals computed by resampling the subjects
with replacement and 200 bootstrap replications. Because the cross-validation score cor-
responding to the bandwidths v, = 1.5, hg = 1.0, hy = 2.0 and hy, = 1.0 is very close
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(3a) Time Effect (CY)

Baseting Ab. Clr.

Bazelica Ab. Cir.

Fig. 3. The solid curve gives the two-step kernel estimator of the baseline time effect on the
fetal abdominal circumnferences. The dashed curves give the corresponding 0.95 bootstrap
pointwise confidence intervals. The cross-validated bandwidths (1.5,0.3,0.3,0.3) were used
in (3a). The bandwidths (1.5, 1.0, 2.0, 1.0) were used in (3b).

to the cross-validation score corresponding to (v1,cv, ho,ev, A1,ovs P2,cv), Figs. 3b and 4b
show the two-step kernel estimators of 83(t) and B (t), respectively, computed based on
the standard Gaussian kernel and bandwidths v = 1.5, kg = 1.0, A; = 2.0 and hy = 1.0.
These estimators are smoother and perhaps have a better biological interpretation than
those given in Figs. 3a and 4a. The estimates for 52(t) stay very close to 0 across the
entire time range, hence, are omitted from the presentation.

Qualitatively, we can see from these figures that placental thickness appears to
be positively associated with fetal abdominal circumference. This positive association
appears to be significant for the period roughly between 22 and 27 weeks of gestation and
levelling off at either the beginning or the end of pregnancy. On the other hand, mother’s
height shows no significant effect on the growth of fetal abdominal circumnference.

We also computed the estimators of 8y(t), 51 (¢) and G(t) based on model (1.1) and
the ordinary least squares kernel estimators with cross-validated and a range of other
bandwidths. These estimators are less smooth than the two-step kernel estimators for
the cross-validated bandwidths and have significant upward shifts when the bandwidths
are slightly increased. Thus, the results based on the ordinary least squares method are
not presented in this paper.
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Fig. 4. The solid curve gives the two-step kernel estimater of the placental effect on the fetal
abdominal circumferences. The dashed curves give the corresponding 0.95 bootstrap pointwise
confidence intervals. The cross-validated bandwidths {1.5,0.3,0.3,0.3) were used in (4a), The
bandwidths (1.5, 1.0, 2.0, 1.0} were used in (4b).

5. Asymptotic properties

5.1 Notation and assumplions

Biomedical data frequently are unbalanced in the sense that not all subjects are
observed at the same time points. We assume here that the time points tij, with ¢ =
l,...,mand y =1,...,n,, are randomly drawn from an unknown cumulative distribution
function F(-) with density f(-). With a slightly different set of notation, our calculations
here can be modified to accommodate fixed and balanced designs.

The following regularity conditions are assumed throughout this section:

(A1) The kernel functions K.(-) and Ty(-) with 0 < r < kand 1 < ! < k are
bounded, symmetric about the origin and compactly supported on the real line and
satisfy [ K, (u)du = [T)(u)du = 1.

(A2) The bandwidths k- and 7 and the weight functions w; satisfy Y1 ngw; = 1
and, as n — oo, hy — 0, 7 — 0, naw;h7? — 0 and niwi'yt_z —+Qforallr=0,...,k and
I=1,...,k

(A3) For r = 1,...,k, X,(t) are compactly supported stochastic processes on the
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real line and are independent of ¢(t). Define

#2(5) = B, rion,o0) = Bleloi)ele  7(s) =l Ble(o)ls + ),
pr,l(s) = COV(XT('S)aXi(s))! PT,I(SI’SZ) = COV(Xf‘(Sl)va(SQ))

and
pri(s,8) = giu%) cov{ X, (s), Xi{s + c}).

Forallr,!=0,...,kand p = 1,...,k, 3,(8), pra(5), f(s) and pu,(s) are continuous at
¢ and belong to the same smoothness family; for example, 5. (s}, pri(8), f(s) and pp(s)
are Lipschitz continuous with order a > 0 at ¢.

Some of the above regularity conditions, such as the smoothness assumptions of
Br(8), pr1(8), f(s) and p,(s) and the compactness of the supports of X.(t}, K-(-) and
I'y(+), are merely assumed for mathematical simplicity and can be weakened if necessary.
The application potential of 8(f; K, h) may not be restricted by these technical conditions.

Similar to the situations with independent cross-sectional data, the moments of the
components of §(t; K,h) may not exist, e.g. Rosenblatt (1969). To avoid this minor
technical inconvenience, we consider the following approximation

k
(5.1)  AGKR) = (I +0,(1)) 006 K B) — (85(8), 87 ()] = D earr At Ko, ho),

p=0

whose proof is given in Section 6, where I is the (k+ 1) x (k + 1) identity matrix, op(1}
is the (k1) x (k+ 1) matrix whose elements converge to zero in probability as n — oo,
€pt1 is the (kK + 1) x (k + 1} matrix with 1 at its (v + 1,v+ 1)-th entry and 0 elsewhere,

(52)  AGKR) =) ETZ(ZI (DR K, B,
Z,(t) = (LZT@)T, R KR = (Rolt; K, h),..., Rig(t; K, h))",

(5.3) R K, h)= ZZ{[ — Bolt) ~ Zk:((z*'j‘ - ?é:::))) (t))]

i=1 j= i=1

(o) 2520

and, for 1 =1,... .k,

(5.4 61 = 30 3 P = ) 27, (1152

i'=13'=1

For convenience, we define Z;;0 = X;;0 = 1 and jio(t) = po(t) = 8o(t) =

Because a vector of smooth curves are estimated, several risk conﬁguratlons of
d(t; K ,h) may be consider under the current context. Here, we consider a natural mean
squared risk of 8(t; K, h) defined by

(5.5) MSEp{8(t; K, h)} = E[AT (6 K, h)pA(t; K, b

k
> p{ B2 At Ky, )] + varfA(t; Ko, )}
=0
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where p = diag(pg,...,Py), P are non-negative known constants and A;(¢; K, h) is the

(! 4 1)-th element of A(%; K, h).
By the same method in the derivation of (5.1), it is straightforward to show that

k
(5.6) ALK, k) = (I+0,(1)[6(t K,h) — (Ba(2), 87 (tNT] =D eos1Alt; Ko, a),
v=0
where I, 0,(1) and e,41 are defined in (5.1),
(5.7) At K, b) = (7)) B XL (XT (0)]Q( K, h),

X.(8) = (1, X7 ()7, and Q(t; K, k) is a k + 1 column vector given by
(5.8) Q(t: K, h) = Z{wtx’-”m(t R ~ Xui(Bot), 87 (1)1}
i=1

The mean squared risk of §(¢; K, k) for the estimation of (Go{t), 5T(£))T can be defined
by

(5.9) MSEy[6(t; K, h)] = E[AT(t; K, h)pA(t; K, h)]

k :
= ZPL[(EAI(t, K, ht))2 + var(A;(t; Ky, hl))]s
=0

where A;(t; K, h) is the (I 4+ 1)-th element of A(f; K, R2).

5.2 Risk representations of 8(t; K, k) and 8(t; K, h)

We now summarize the main asymptotic results of this section. The proofs of these
results are given in Section 6.

Let 8(t; K, h) and 8(t; K, k) be the estimators defined in (2.8) and (2.9), respectively,
with (K, h) replaced by a smgle set of kernel and bandwidth (K, h). By (5.5), the mean
squared risk of 8(¢; K, h) is

(5.10) MSE,[6(t; K, k)] = ZZ{M (L P E[R. (6 K, R Ry (t; K, b))},
r=0 p=0
where M ,(t;p) is the (r + 1, p + 1)-th element of the (k + 1) x (k + 1) matrix
M*(t:p) = (f(£))"H{ETZ.(1)ZT O] (B [2.(1) 27 (O]}
Similarly, (5.9) implies that the mean squared risk of 8(t; K, k) is
) ko k
(5.11) MSEp[f(t; K, B)] = 3 > { Mo () E [Q( K, R)Qp(t; K, B)]}
r=0p=0
where M, ,(t;p) is the (r + 1, p+ 1)-th element of

M(t:p) = (F0) {ET XL (XTI PE XL ()X (O]}
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For the mean squared risks of the more general estimators f(t; K,h) and 8(t; K, h), we
have

k
MSEp[@(t; K, B)] = > pr{MSEy,., [6(t; Ki, b))}
=0
and

k
MSEp[6(t; K, b)) =Y pr{MSEu, ,, [0t K1, 1))},
=0

where u, is the (k+ 1) x {k+1) diagonal matrix with 1 at the r-th diagonal place and 0
elsewhere. Thus, the asymptotic representations of MSE,[#(t; K, k)] and MSE,,[B (t; K, h)]
are expressed through the asymptotic covariances of R,(¢; K,h) and Q. (¢; K, h).
Forr,p=0,...,k let I, (t) = prp(t)a®(t) £ (t) fl(z(u)du] UL} (t) = prplt, DT(2)
{f(£))? and Ur,p(t) 'and III,np( } be defined as II7(t) and III} (t) with p,,(t) and
prp(t,t) replaced by pr () — pr(E)pp(t) and py p(t, t) p,,(t),up(t), respectively.

THEOREM 5.1. Suppose that assumptions (Al), (A2) end (A3) are satisfied, ¢ is
an interior point of the support of f{.) and, for alll=1,...,k, 1/h=0(1) asn — .
Then

(5:12) ElRo(ti W) = [[80(t ~ hu) = Go(t)] () (¢ ~
k

+ Gt t— — (D) f(t — wu)du
> {20 [t~ 1) ~ o - myin

for 1 <r <k,

k
©613) ER ) = 3o { [ prat = hdlfte - ) = SOIK 7 - B}

l=1

k
+ (Z ni(n; — I)w?) Z[ﬁl (t)or (2, 1) F(2)]
=1

i=1
+o0 (Zn: ny(n; — l)wf) ,
i=1
and, for allr,p=0,...,k,
(5.14) E[Rp(t; K,h)R,(t; K, h)]
= BB (& K, IDME(R (1 K, 1) (2 rowfh ) 12,0

i=1

(Zn, ) I (8 + o (g ngw?h )
+o (i n;(n; — 1)w§) :

i=1
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THEOREM 5.2. Suppose that the assumptions of Lemma 5.1 are satisfied. Let Q,.(-)
be the (r + 1)-th element of Q(-). Then, forallr, p=0,...,k,

&
(5.15) EQ. &K M) = 3 f (pralt — hu) — o (t — B (t — )
=0

< (Bult = hs) — B(E)) F(t — he) K ()

and Q- (t; K, B)Q,(t; K, )] equals the right side of (5.14) with R.(t; K, h), Ry(t; K, h),
H*p;(t) and III"p(t) replaced by Q,(¢; K, h), Qp(t; K, h), IL 5(t,t) and III,.p( ), respec-
tively

Remark 5.1. Define an estimator to be consistent if, for all choices of p, its corre-
sponding mean squared risks (5. 5) or (5.9) converge to zero as n — o0. Since assumption
(A2) implies that > .. (niw?h™!) — 0 and 30 {ni(n; — L)wf] - 0 as n — oo, it is
¢asy to derive from Theorems 5.1 and 5.2 that, under assumptions (Al) through (A3),
6(¢; K, k) and (t; K, k) are consistent estimators of (83(£), 87 (£))T and (Bo(t), BT (1)7,
respectively.

The general asymptotic expressions of Theorems 5.1 and 5.2 are applicable, for
example, for the families of Lipschitz continuous 3,.(t), pri(t), f(t) and ppy(t) for r, I =
0,....kand p=1,...,k. However, when furtper smoothness conditions are considered,
the asymptotic expressions of #(¢; K, A} and &(¢t; K, k) can be further specified. To see
the asymptotic risks for twice differentiable families, let a’(¢) and a”(¢) denote the first
and second derivatives of a(t) at ¢,

I&(t)=§:{ﬁz(t) (1) (s +uoro) ( [vnwa) )

I=1

+ (2050 +80r0) ([ @xwn) +a

L o7 + BORLOF(E) + ﬁa’(t)pr,a(t)f'(t)] o ( / u2K(u)du)}

), for r=1,...,k,

+3

—

o
il

M*;:IEMw
=

g
P
ol

p——
TR

ol

o~
L

S
il

SO (8) (po,r(t) + g (D)ma(8)} + B1 (8)£(8) (pq.a(t) + g ()rar(£))

B[ (L) (g (t) + pg(B)pa(t) + P‘E(t)ﬂq(t))jl ( f w’K (u)du) } + o(1),
forg=0,...,k.

COROLLARY 5.1. Suppose thet the assumptions of Theorems 5.1 and 5.2 are sat-
isfied and Br(t), pri(t), f(t) and p,(t) for all v, 1 =0,...,k and p=1,...,k are twice
continuously differentiable at t. The mean squared risk of 8{t; K, h) is

(5.16) MSE,ld(z; Kh)]—ZZ{ vt {h‘*I* ) () + (Zm wih™ )Ha’-',p(t)

r=0p=0 i=1

+ (Xn: ni(n; — l)w?) III:_p(t)] 1+ o(l))}.
i=1
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Similarly, the mean squared risk, MSE,,[é(t;K, h)], of 'é(t; K, h) is given by (5.16) with
M} (6 p), IF(t), Iy, (t) and I} ,(t) replaced by M o(t:p), I(t), I, p(t) and or. ,(t),
respectively.

ProoF. By the Taylor expansions of 8 (t), pr1(t), f(t) and p,(2), IF(t) and L.(t)
follow from (5.13) and (5.15), respectively, and assumption (A2). Then the mean squared
risks are direct consequences of Theorems 5.1 and 5.2. O

Remark 5.2. Notice that, since ﬁa(t; Ko, ho) and Bo(t; Ky, hg) are estimating dif-
ferent curves, MSE,[6(¢; K, b)) may not be compared to MSE,|8(1; K, k)] unless po = 0.
The asymptotic risks of ﬁ;(t;K;,hg) and ﬁg(i;f(;,h;), I=1,...,k, can be directly com-
pared by taking p; > 0 and all other entries of p to be zero. When the estimation of Fo(t}
is of interest, one may compare the asymptotic risk of Fo(t; Ko, ho) of (2.7) with that
of Ao(t; Ko, ho). Here, the asymptotic mean squared risk of Go(t; Ko, ho) can be derived
by straightforward but tedious computations similar to those used in the derivations of
Theorems 5.1 and 5.2 and Corollary 5.1. For clarity and simplicity, the exact asymptotic
risk representations of Eaft;Ko, hg) are omitted from this paper.

Remark 5.3. The rates of MSE,[8(t; K, h)] and MSE,[8(t; K, )] converging to zero
also strongly depend on the choices of w;, i = 1,...,n. If w; = 1/{nn;), (5.16) is reduced
to

(5.17) MSEp[f(t; K, h)] = ZZ{ (t:p) [h“I*(t)I*(t) +h” (i #) I (1)

r=0 p=0 =1
( 1 _p? Z ) |1+ 0(1))}.
When n;, ¢ = 1,...,n, are bounded, the best convergence rate of (5.17) is n*/5, ie.

MSEP[G(t K,h)] = O( ~4/%), which is attained by taking h = O(n~Y/%). If w; =
1/3 0 ng, (5.16) is reduced to

k k n
(5.18) MSE [0(t; K, h)] :ZZ{ ot 1) {h‘ll*(t)l*(t)-i-h (Zm) ()
i=1

r=0p=0
no2
((%:1:;3 Erﬂ_ll m) III:,p(t)J (1+ 0(1))}_

Again, when n;, i = 1,...,n, are bounded, the best convergence rate of (5.18) is n1/5
which is also attained by h = O(nY/%). It is interesting to note that, if max;<jcn
{(ns/ 3.5, ni) does not converge to zero as m — oo, then the assumption of limy—.qo
niwh =% = 0 of (A2) fails and (X1, n2/(T 1, ni)*) does not converge to zero as n — co
(see, Theorem 1 of Hoover et al. (1998)), hence 6(¢; K, h) is inconsistent.
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5.3 Comparison of twoe smoothing methods .

Because (5.10) and (5.11) involve nonlinear transformations of E[Z,(£)Z7T(1)] and
EX.(t) Xf(t)] which are difficult to express explicitly when &k > 2, it is difficult to give
a general comparison between the asymptotic risks of Theorem 5.1 and Theorem 5.2.
We consider here the special case of k = 1, i.e. X, (¢) = (1, X(£))7 with X(t) on the real
line, and compare the asymptotic risks of 3, (t; K, k) and 53 (¢; K, b). For simplicity, we
assume that gy ,1(t) = ;1,1 (¢, ).

‘Since only the estimation of 51(]?5_) is of interest, we take p = diag(0,1). Di-
rect calculation shows that E[Z.(t)Z, (t)] = diag(l,p11(t)) and E7L[Z.(t)Z, (t)] =
diag(l,pii(t)). Then, by (5.10), the mean squared risk of 3 (t; K, k) is

MSE[&I (t; Ka h)] = [f(t) pl,l(t)]_zE{R%(t; Ka h‘)]a

where

(5.19) E[R{(t; K,h)] = E*[Ra(t; K, b)) + (Xn; nz-w,-zh”l) I3 (t)
i=1
(Bt i o)
i=1 n=1
+o (Zn: ni(’ﬂ,,' - 1)?1)3)
i=1

and

(5.20) E[Ry(t; K, k)] = f [B1(t — hu) — Ba(8)]pr.a(t — hu) K (W) F(t — hu)du

+ (Z ni(n; — 1)”’?) Bty 1) F() + o (Z ni{n; — 1)“’?) .

i=1
It can be shown by similar calculations that the mean squared risk of 81 (t; K, h) is
MSE (3 (t; K, )] = [f()p1,1 (D] E[(Qu (t: K, h) — 1 (£)Qo(; K. ))?),

where E[(Q:(2; K, h) — 1 (t)Qo(t; K, h))?] equals the right side of (5.19) with E2[R;(t; K,
h)] replaced by E2[Q1(t; K, h) — p1(t)Qo(t; K, b)] and

(5.21}) E{h(t; K, h) — u1(1)Qo(t; K, h))
- / Byt ~ ) — Bu(2)] pra(t — k) F(t ~ hu)K (w)du
+ /[,81 (t — hu) — B ()] (1 (t — hwe) — pr () ua (8 ~ hu) F{t - hu) K (u)du

+ / [Bott — hus) — Bo())[a (¢ — hu) — (] F(¢ — hu)K (w)du.

Thus, it suffices to compare (5.20) with (5.21).

The major difference between (5.20) and (5.21) is that the convergence rate of (5.21)
not only depends on the smoothness of 3 (t) but also is affected by the smoothness of
Boft) and py(t). Ifw; = 1/(nn;) or 1/(31, ny), B1(2) and py 1(t) are twice differentiable
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but Bo(t) and g, (t) are only assumed to be continuous at t, then 3 (t; K, h) will have a
better convergence rate than that of §;(¢; K, k) in the sense that MSE[G (t; K, k)] will
be dominated by MSE[G;(t; K, h)). If w; = 1/(nn;) or 1/(31, ;) and Bi(t), pra(t),
Bo(t) and ty () are all twice continuously differentiable at t, then the asymptotic mean
squared risk of F(t; K, h) will be smaller than that of ;(¢; K, k) when Gy(f) and/or
#1(t) have large first derivatives at {. Comparisons under other smoothness conditions
can be similarly discussed.

6. Proofs

We start with a useful technical lemma. For simplicity, we denote throughout this
section that f;(¢) = G (¢; Ty, ).

LemMa 6.1, If assumptions (A1), (A2) and (A3) are satisfied and t is an inte-
rior point of the support of f(-), then, for §;(t) and jy(t) defined in (5.4) and {2.4),
respectively, and [ =1, ...k,

2
61) BB~ [ (urt = ) — g (8T ) f (£ — mu)du} 1+ o(1))
+ (meﬁl—l) pri{t) £(t) [/ I‘f(u)du] {1+ 0(1))

+ {Z(m(ﬂi - Iwa)} Lt 1)1 + (1))

and
(6.2) Ba(t) = DI + 0, (1)) = f7HB)E(E).

PROOF. By (5.4), we have the straightforward expansion

(6.3) BB =E { > Z(X”' — w(t))” (w) (ﬂ)

b & g7
+Z 3 (Kijut — (@) (X ~ m(t))( )
=1 j1#jo

NERNES
" g/

s Z[(xmlz O Kpsat — (®)) (””‘”)

t1#42 J1.J2

x Ty (L tiun Y p, (£~ b
by n '

For the first term at the right side of (6.3}, we have, by direct calculation and the change
of variables, that

£ o (3) ()]

f=1 j==1
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S o v (5) 1 (57) e

i=1j

(Z mwhﬂ) i) | [ 1 (u)du] (1+0(1),
i=1

while, for the second term,

o[58 (52)n ()]

= Z > //{E[(nglz — () (Xijar — (1)) | &5, = 81, tij, = 8] (%)2

- 4=1 G
® Pl (t - 31) LN (t — 32) f(sl)f(SQ)}dsldSQ
T M

= [Z("i(ni - 1)“@’)} pLi(t,t) fA(E)(1 + o(1)).
i=1

I

Since the subjects are independent, it can be shown by direct calculation under assump-
tions (A1) through {A3) that

[Z > (Kt — M(t W Xizgot — pu(t)) (whwm) (t_;"“"‘)l‘l (f‘;:zja)]

i1%43 J1.92

= [1 - Z(n%wf)] [ [ttt = ) = DT 2 - wu)du] :

=1

By iy naws =1, we have that, as n — o0, 37, nfw? — 0. Thus, (6.1) follows from
(6.3) and the above equalities.
To show (6.2), we first notice that

n Wy tis -
60 @ -seuo L3 (2)n(S8) | - verae,
im1 =1 \ N n
and, by similar calculations as in the proof of {6.1),
w; tis
(6.5) (fe)! [ZZ ( ) ('r—zj)] =1+ 0,(1).
1 j=1
Then, (6.2) follows from (6.4) and (6.5). O
PROOF OF (3.1). By (2.6) and straightforward algebra, we have

(6.6) [6(tK,k) - (45(8), BT(5)] [Zéﬁlm(a h)zm} B Z.OZE (O£

i=1

i=1

= (F®) E (2027 (1)) {i[zim; B)(Y: — 2B (1), 6T(t))T)]} .
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By Lemma 6.1, we can show that

(6.7 (Z ZLK h)zﬂ-) EZ.(OZ7)((0) ! = 1+ 0,(1).
i=1
Notice that the (r + 1)-th element of . [Zz:K (Y — Z4(8 (), 8T(E)T)) is

; b—ty . N
Ro(t: K, h) = ZZ{ Zyr (S K ( - )Y —ﬁn(t)—;z,-,-,m(t)}}.

i=1 j=1

By (6.2) and the definition of Zijr, we have R,(t; K, k) = R.(t; K, h)(1 + 0,(1)), where
R, (t; K, h) is defined in (5.3). Then, (5.1) follows from (2.8), (6.6) and (6.7). O

PROOF OF THEOREM 5.1. By (5.3) and straightforward algebra, we have
6 .
(6.8) E[R.(; K, b)) = > E[An(t)],
=1
where

Alr(t) = Zz Zzz;rrzul[ﬁl u) - ﬂ!(t)] ( ) (t_%t_”') ’

i=1 J—l =0

Ag,—(t)—zzzggr (5 K (f’ ht )Eija

i=1 j=1

Agr(t) = i Z Z(f(tij))_1Z=‘jr5t(t=:j)ﬂz(fij) (1—2—') K (t—_%) ,

i—-lj 1i=1

Agr(t) = ZZ (w‘) (f(tur))_ €j0r (t"J)K< )?

n k
- W; t— &
Aor® :ZZ 3 ()™ i (i) — i) () € (57 o
L k
Aer() = EZZ ) e waen () & ().
=1 j=1 i=1

We now compute each term of the right side of (6.8). First, consider the case of
r2 1. By Zijo = 1, E[Z;;,] = Ele;5] = 0 for r > 1, the independence between X;; and
¢;; and the change of variables, we have

Bibe 01= 3305 [ B 714 = (60 - 80 (22) & (1) o

i=1 j=1 I=0

-y [ pratt = ) (61— h) ~ BV 1 — P
=1
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Tl ni

Bl (0= ) fue [ B 11 = om ke (152 ses1as)
=0,

ElAa(t) = Z;;Z:{w [ B e 10 = onxe (152 as}
=0,

Since, by assumption (A3), B.(t) and u,(t) belong to the same smoothness family, it is
easy to show using the Cauchy-Schwarz’s inequality that

|E[Asr(t)}} = o(|E[Asr(t)])  and  [E[Ae(t)]| = o(iE[A1r(2)]])-
It remains to compute E[A3,(t)]. Since

E[As(t)] = Zn: VZ Zk: {wi / E(Zir81(ti5) | tig = 8)Bi (Y K (t—i—s) ds}

i=1 j=1 I=1

and, by direct calculation,

E(Z;;rb1(ti;) 1ty = 5] = %6(8) + Y {we[Trgals) + Traals)l},

(4,37 )#(4.4)
tij = 3] )

tij =3J .

If i 75 'i’, it follows from E[(Xijr — ;.Lr(t.,;j))(Xirjq - ﬂ.g(tiﬂj-))] = () that Tr,l,l (8) =0 If
i =1 and j # j', it follows from direct integration and the change of variables that

where c{s) is some bounded function on the real line,

_ birir — i
Tra1(s)=E [(X,-,-r — (i D ( Xirjor — gty N4 T (ﬂ-m—’)

Tru2(s)=E I:(X:‘jr — (i)Y (st 30} — paa(ti5))v7 ' T (t—'%—tﬂ)

Thia(s) = / pra(s, 8 — 1)Te() f (s — yue)du.

By E[Xjr — pte(tig) | tij, tirj7] =0, we also have T} 7,2(s) = 0. Thus, substituting T (s)
into E(Z;j,6i(t;;) | ti; = s) and noting that, by assumption (A2), 3.7, (nyw?/v) is
negligible relative to E[A;-(t)], we have

n k
E (A2 (8)] = (Z ni(n; - 1)w?) S {1Bi()pra (8, D) FOI L+ 0(1))} + (B4 (B)]).
i=1 =1

Then, (5.13) follows from substituting the above expressions of E[4;(t)], ! = 1,...,6,
into (6.8).
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When r = 0, we can show by similar calculations as above that

Bidio(0] = 3 3> [ f(8) - o) (32) & (152 reopt}

i=1 =1

- f (Bo(t — haw) — Bo()) K () £(t — hu)du,
k
_ V1t = Y d
Blw(e] =Y. [ Blss) |65 = a0 k()

k
=LA [lbate = 0) - ORI~ )
3 {0 [l 20) - w1t~ i

and E[Ap(t)) = 0 for | = 2,4,5,6. Thus, (5.12) follows.
To compute the right hand side of (5.14), we first notice that

(6.9) Ry(t; K,h)R.(t; K, h)

_ [znjiam(t) (%) x (t;hii)} [ii“ffp(” (7))« (t__hti)]

i=1 j=1 e
_ZZGer(t a,j,p(t) (?.U,) K2 (t htz_g)
i=1 j=1
w; t— 1 t—ts0
o (315 (5 (15)
" aijr(t)avsp(t) (Sz (t—tij)K(t-w),
23 ournern) (555) 1 (151 e (5

where ai;r(t) = {Yy — Bo(®) — 51 [(Zist — (F(ti5)) ™ 8:(tis)) Beltig) | M Zigr — (F(ti5)) 7
8¢(t:;)]. Direct integrations as those in the proof of (5.1) show that

(6.10) [ZZa,,r Jaijp(t) (w,,) K (t _htu)]

i=1 j=1

(Zszh ) pra(t)a* (O F (1) [ng(u)du] (1+o(1)},

i=1 j=1

(6.11) iz [am(t)%p (t) wt) ( htu) K(t—htij')]

i=1 j,7'

_ ( n) et DT )R,

and

(6.12) g [am(t Yag jrp (£) (whf) K (t —;m") K (t —;w* )]

[E(Ry(t; K, h))][E(R:(; K, h))(L + o(1)).
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Thus, {5.14) is a direct consequence of (6.9) through (6.12).

PROOF OF THEOREM 5.2. By (5.8), the (r 4+ 1)-th component of Q(t; K, h) is

(6.13) (£ K, h) EZ{( £) bigr (81K (t_—htﬂl)}

i=1 j=1

where
k

bijr(t) = 3 AXuseXizt[Bi(ti) — Bi(t)]} + Xijrei-

=0

Then, (5.15) follows from Eb;jr(t) | ti; = ] = Sk o {B(X,(8)Xi(s))[Bi(s) — Bu(t)]} and

E[Q.(t; K, b)) = ZZ{(‘”" f Elbir(t) |t,,J—s]K( ) f(s)ds}

i=1 j=1

To compute E[Q,(t; K, h)Q,(t; K, k)], we consider the decomposition

(6.14) Qr(t; K, h)Qp(t; K b)Y = D1 (8) + Dypa(t) + Drps(t),
where
Do () = z;;{(%) b0 08? (522) ]
Drpa(t) = Z »)) (%) b moton (522 ) e (112 ),
D, pa(t) = Z Z {(wu'wzz) bisjar t)bwgp(t)K( ;im) K (t _;:‘izjﬁ)}.

i1742 J1.J2

By the definitions of II, ,(t) and I, ,(t), direct integration then shows that

(6.15) [Drpa(8)] = (E szh-l) o p(t)(1 + o1)),

i=1 j=1

(6.16) E[Dypa(t)] = (Z ni(n; — 1w ) I, , (£){1 + o(1)),
i=1

(6.17) E (Drps(t)] = (B(Qr (& K, RINE(Qp(t; K, A))I(1 + o(1)).

The asymptotic expression of E[Q.(t; K, h)}Qp(t; K, h)] follows from (6.14) through
(6.17).
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