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Abstract. The bivariate location problem is considered. The sup, L; and Lz norms
are used to construct bivariate sign tests from the univariate sign statistics computed
on the projected observations on all lines passing through the origin. The tests so
obtained are affine-invariant and distribution-free under the null hypothesis. The
sup-norm gives rise to Hodges’ test. A class of tests derived from the Lg-norm, with
Blumen’s test as a member, is seen to be related to a class proposed by Oja and
Nyblom (1989, J. Amer. Statist. Assoc., B4, 249-259). The Li-norm gives rise to a
new test. Its asymptotic null distribution is seen to be the same as that of the L;-
norm of a certain normal process related to the standard Wiener process. An explicit
expression of its cumulative distribution function is given. A simulation study will
examine the merits of the three approaches. -

Key words end phroses:  Location problem, distribution-free, affine-invariance, nor-
mal process, Wiener process, Li-norm, La-norm, Hodges’ test, Blumen’s test.

1. Introduction

Let (X1,Y1),...,(Xn, Y; ) be independently and identically distributed (iid) random
vectors. It is assumed that, for any line passing through the origin, the conditional
univariate distribution of (X; - §,,¥; — 62) given that it is on that line has median 0.
This is true for example if (X1,Y)) is distributed symetrically around (4, 62), that is,
(X3 — 61,1 — 83) and (—X1 + 61, —Y; + 62) are identically distributed. However the
former is a weaker assumption including many skewed distribution models. We wish to
confront the hypotheses

(1.1) Hy: (61,8:) = (0,0) and Hy:(61,60) # (0,0).

Obviously, if we want to test Hg : (81,82) = (610, 820) with (610, 620} not necessarily
equals to (0,0), then the simple transformation (X;—&g, Y:i—820),% = 1,...,n, brings the
problem back to the form (1.1). Various generalizations of the univariate sign test have
been proposed to treat this problern. The oldest two suggestions were made by Hodges
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(1955) and Blumen (1958). These two statistics are distribution-free (under Hp} and
affine-invariant, i.e., they remain unchanged after a nonsingular linear transformation of
the observations. Section 2 examines the relation between these tests and the present
work.

Asymptotically distribution-free tests based on a quadratic form involving coordi-
nate-wise sign statistics have been proposed by Bennett (1962) for the multivariate lo-
cation problem. The large sample test procedure of Chatterjee (1966) is identical to the
bivariate procedure of Bennett (1962) but, in addition, Chatterjee gave a small-sample
version of the test which is conditionally distribution-free. These tests are scale-invariant
but not rotation-invariant and thus not affine-invariant. Later, Dietz (1982) proposed a
modification of these tests that yields affine-invariance.

Oja and Nyblom (1989) introduced a class of bivariate afline-invariant distribution-
free sign tests that includes both Blumen’s and Hodges’ test. In particular, they showed
that Blumen’s test is optimal among their class for elliptical alternatives. Brown and
Hettmansperger (1989) proposed a conditionally (and asymptotically) distribution-free,
affine-invariant sign test. This test is based on the gradient of Oja’s measure of scatter.
It is shown in Brown et el {1992) that this test and Blumen’s test are asymptotically
equivalent for elliptical alternatives and the connection with the class of Oja and Nyblom
(1989) is explored.

Métténen and Oja (1995) introduced a multivariate rotation invariant (not affine-
invariant) sign test {and signed-rank test) with a spatial analogue of the sign concept.
For bivariate spherical distributions, their spatial sign test is asymptotically equiva-
lent to Blumen’s test, and thus to the sign test of Brown and Hettmansperger (1989).
Chakraborty et al. (1998) proposed to apply the spatial sign test to transformed obser-
vations {by a certain type of data dependent transformation). Their method produces a
version of the spatial sign test that is affine-invariant.

Chapter 6 of Hettmansperger and McKean (1998) gives an account of the procedures
described above.

In this paper, a different perspective is employed to look at the notion of bivariate
sign statistics. We begin with the set of univariate sign statistics computed from the
projections of the observations on all lines passing through the origin. The sup, L, and
Lo norms are then used to construct bivariate sign statistics from these univariate sign
statistics. All the tests studied are affine-invariant and distribution-free under the null
hypothesis. We present the method in Section 2 and examine the cases of the sup and L,
norms. For the Ly-norm, a relation with the class of Oja and Nyblom (1989} is found. In
Section 3, we see that the Ly-norm gives rise to a new distribution-free bivariate sigh test.
Small sample critical points of the tests are given and its null asymptotic distribution
is obtained. The results from a small simulation study are described in Section 4 along
with an example using a real data set. Concluding remarks appear in Section 5. Some
of the proofs are sketched in the Appendix.

2. A class of tests based on the Lo-norm
Let ¢ be in the interval [-7x/2,7/2]. For each j, 1 £ j < n, define P;(8) =
X; cos(f) + Y;sin(f) as the projection of (X;,¥;) on the directed line passing through

the origin with angle #. Let s(u) be the sign function, i.e., s{u) =1l or =l asu = 0 or
u < 0. Define

(2.1) S5(0) =3 s(F(0))
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as the sign statistic for the projected observations on the axis with angle 8. Under
the hypothesis Hy, s(Pi(#)),...,s(Pn(8)) are iid random variables (r.v.) taking the
values 1 or —1, each with probability 1/2. A large value of {5(8)| is thus a criterion
to reject Ho. The approach of this paper is to take an average of the values in the set
P ={|8(8)|: —n/2 < 6 < 7/2} as a test statistic. More precisely, we will focus on the
sup and on weighted L; and L norms of these values.

Let us look at the sup-norm first. In that case, the test for Hy is simply based on
the statistic

(2.2) sup  [S(6)}
—7 2<R<n/2

But this is to Hodges’ test statistic; see Hodges (1955), Joffe and Klotz (1962), Klotz
(1964) and Killeen and Hettmansperger (1972). Moreover, Killeen and Hettmansperger
(1972) introduced the test based on the sup-norm of the Wilcoxon signed-rank statistic
computed on the projected observations.

We will now examine a class of statistics derived from a weighted Lo-norm of the
values in the set P. For each i, 1 < ¢ < n, let

X
(2.3) G,M—arcta,n(y;)+§

be the angle (€ [0,7)) between the vector (X;,Y;) and the X-axis. Also, define ; =
6; —7/2,1 < i <n,and let Fy be the cumulative distribution function (c.d.f.} of 4. If
Fy was known, an intuitively appealing statistic for testing the hypothesis Hy would be

n

2
/2
24) -/ (Zs(Pj (0))) dF(6).

-2 =1

A little algebra, using the fact that s{P;{(8)) = s(Y;)s(6 — ¢;), shows that (2.4) is equal
to

(25) IS Vst - 2(Fy(max{i, ;) - FoCmin{u b D)

i=1 j=1
Since the function F), is unknown, we replace it by the empirical c.d.f. of ¥1,..., ¢,
Then (2.5) becomes
1 o e 2
(2.6 22> sa) [1- 2R - my|

where R; is the rank of 4; among 6,...,8, (and also the rank of ¥; among ¥1,...,%5).
Let ¢ : [0,1] — R be a score function satisfying ¢(u) = —¢(1 — u) for all u € [0, 1].
Examination of (2.6) gives rise to the class of statistics

@.7) ZZS(Y)S(Y ('R R')
i=1 j=1

The test consists in rejecting Hy for large values of Wy. Obviously, the choice ¢(u) =
1 — 2u corresponds to the statistic {2.6).
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The strong relationship between this class and the class of tests studied in Oja and
Nyblom (1989) will be given shortly, but first, let us examine W, more closely. Note
that we can write ‘

1 o * * “’ B JI

28) W= 323 s (&)

where, for each 4, 1 < i < n, ¥* is the value of ¥; for which R; = . Since the
two vectors (s(Y1),...,5(¥n)) and (64,...,0,) are independent under Hy, we have that
(s(¥7),...,s(Y,')) and (s(Y7),...,s(Y,)) are identically distributed, ie., s(¥y),...,
s(Y;) are iid and each can take the values 1 and —1 with probability 1/2 respectively.
Combining this and the representation (2.8}, we see that Wy is distribution-free under
Hj and consequently, exact critical points can be obtained. But the representation (2.8)
can also be used to obtain the asymptotic null distribution of Wy which is given in the
next theorem whose proof is sketched in the Appendix. The only assumption we make
for now and for the rest of this article is that

(2.9) % has a continuous distribution and P(X; =(,Y; =0) = 0.
1

THEOREM 2.1. Suppose that ¢ possesses a bounded continuous derivative on (0,1).
Under the assumption (2.9) and under Hy,

[».u]
D1
Wy — 5;%6}, as n— oo

where, for K =1,2,...,
1
ap = Qf d(x) cos{kra)dz,
0

are the coefficients in the cosine Fourier series developpement of ¢ and where Cy, Cs, . ..
are #id x5 random variables.

When applying the test, p-values can be computed either from the exact null distri-
bution or from the asymptotic distribution given above using formula (5.10) of Oja and
Nyblom (1989) for instance.

Oja and Nyblom (1989) have made a study of bivariate sign tests. In particular,
they considered the following class of statistics:

n—1 "

(2.10) Sy = % ST erni — 1/2)h(i/n)
k=0

=1

where h is a general score function and where the 2’s are defined in their paper. However,
it is seen that, fori=1,...,n,

(2.11) 2z —1/2) = s(Y;")  and  2(2n4s — 1/2) = —s(¥]").

Oja and Nyblom {1989) showed that the statistic S, is affine-invariant and it is not
difficult to see that the same is true for the statistic Wy by verifying that it is scale-
invariant, rotation-invariant and invariant for a reflection about the X-axis since any
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nonsingular linear transformation can be decomposed into a sequence of those types of
transformations.

After substituting (2.11) in (2.10) and expanding the square, a little algebra shows
that

(2.12) S = o D 2 S8V unlli 1)

i=1 5=1

where ¢npn : {0,1,...,n— 1} — R is defined by

o= Z0 () T (0 15)

k=1

The similarity between (2.12) and (2.8) is evident. The only difference is that ¢, varies
with n while ¢ is a fixed function. Nevertheless, the next theorem tells us that, for every
choice of the function A in the class of Oja and Nyblom (1989), there is a function ¢ in
the class (2.8) such that the two statistics are asymptotically equivalent under Hp. For
any square integrable function A, introduce the function

1
(213)  fuly) = [o [h(1 = 2)h(1 - 2+ y)I(z 2 y) — h(e)h(z + 1 - I(z < y)ds

where I denotes the indicator function. Since ¢y (y) = —dp(1 —y) for all y € [0,1], ¢y is
a proper score function in the class (2.8) and this choice gives the asymptotic equivalence
with (2.12).

THEOREM 2.2, Let S), be defined by (2.10) where h possesses a bounded continuous
derivative on (0,1} and let Wy, be the statistic (2.7) with the score function ¢y defined
by (2.13). Under the assumption (2.9) and under Hy,

|48, — Wy, | 50 as n- oo

Proor. We will show that

(2.14) E(4Sy, — Wy, )? = 16B(S}) + E(W}, ) — 8E(ShWs,)
—+0 a n-—o oo

Note that

=_§:Z (Y7)s(Y] )¢ (1 I)+¢h(0)

i=1 j=i+1

Also,

n

—%Z O S0 ll =1+ om0
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Since, for ¢ < j and k < I, E[s(Y;")s(Y;")s(¥)s(Y;")] = 0 unless i = k and j = ! and
since Els(Y;*)s(Y)] = 0 if ¢ # 7, we have
(2.15) E(ShWWi,)

nSZ 3 S0 S Bl sV s(8i )}m(“’ ‘)mua—n

i=1 j=i+1 k=1i=k+1

2¢’“" Z Z Els(Y; (“_;J‘l)

i=1 j=i+1

.._.

n

12¢h(o ZE (Y)Y bunlli — 1)

J=i+l
4) (0) ¢’nh(
T 4
1= i — C o Br(0) énn (0)
_F;j;;l% (—n_) Prnlli =3l + ===

The first term in (2.15) is equal to

= Z(l /1) (i/n)buni)

i==1
a5 Ea () (1)L (D) (45
ZRZ:IZH:(I"’Z/TL%(%/?I){ (1——+1)h(1+1 ko1

2.2 +~T;)I(k>i)
—h(%)h(1+k;i)f(k£i)}-

](1—x¢h(a: [/u yIh(1+ 2 — )l (y > 7)

This last termt converges, as n — o2, to

—hh(l+y—a)I{(y < m)]dy] dr

= [ a-o)hie)s
0

On the other hand, the second term in (2.15) equals

2

fol h‘"(a:)dmg%gm(k/n) - ?} (/01 hz(m‘)dw) s s o

Consequently, as n — oo,

2

E(S5,Wy,) — /:(1 — x)é3 (z)dz + % (f; hz(a:)dw) i
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Similarly, as n — oo,

Ewmﬁith@%mM+%(/%%M@2

2

and
BW2) — 4 /D (1= ) (2o - ( /D 1 hz(:r:)da:)

Combining the above results with {2.14) concludes the proof.

Theorem 2.2 also indicates that the two statistics are asymptotically equivalent un-
der a contiguous sequence of alternatives and thus that they are equivalent in the Pitman
efficiency sense. Here are three examples of score functions h with their corresponding
score functions ¢p. If we select h({t) = sin(t) in Oja-Nyblom’s class, then the resulting
statistic is identical to the statistic {2.8) with the choice ¢(u) = cos{wu) and this yields
Blumen’s test. Also, the choice h(t) = 1 corresponds exactly to the statistic (2.6), i.e.,
the choice ¢(u) = 1 — 2u. Finally, if we select h{f) = 1/2 — ¢, then

. —6nli P+ 4l ~ 5 | m—dli—
Bo=q ZI:ZS(Y Y)[ T2n7 NP
i=1 j=1

which is asymptotically equivalent to the statistic (2.8) with ¢(u) = 3/3 —u?/2+1/12.
These three choices of the function h correspond to the B,,, U, and T, tests of Oja and
Nyblom (1989) respectively.

3. An Lj-norm bivariate sign test
In the foregoing section, we studied bivariate sign tests based on the sup and Lo
norms. In this section, we will use a weighted Ly-norm of the sign statistics computed

from the projected observations to obtain our bivariate sign test. In order to give a
motivation for the statistic to come, consider the random variable

w/2
(3.1) /
— /2
As in the last section, a little algebra using the fact that s(P;(8)) = s(¥;)s(6 — ¢;) shows
that (3.1) is equal to

n

> s(Fi(6))

i=1

dFy(8).

n

(3.2) >

k=0

n

S s(¥;)s(k — )

i=1

(Fyp (W) — Folm))

where ©¥),...,¥m) are the order statistics of ¥,...,%, and where we define 1y =
—m/2 and Y41y = 7/2. Again, since Fy is unknown, we replace it by the empirical
c.d.f of ¥4y,...,%, and (3.2) becomes

(3.3) % i
k=0

z (k —14)|.
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The test consists in rejecting Hy for large values of L,. Since L, is based only on the
r.v.’s s(Yr*),...,8(Y,), it is distribution-free under FHy. Furthermore, it is not difficult
to show that L, is affine-invariant. Table 4 in the Appendix gives a set of exact null
critical points of nL, for sample sizes 12 to 20.

For larger sample sizes however, having asymptotic null critical points would be
useful. The rest of this section will be concerned with the asymptotic null distribution
of n™1/2L,. Let {W(t} : 0 < t < 1} be the standard Wiener process and define the
stochastic process {G(¢) : 0 <t < 1} given by

G(E) = 2W(t) — W(L).

It is straightforward to verify that G(t) is a normal process with mean 0 and covariance
function given by

COV(G(tl),G(tQJ) =1- 2lt1 — tgl, 0< t],tZ < 1.

The following result, whose proof is given in the Appendix, covers the case of the statistic
L, and will be helpful in obtaining an expression for its asymptotic null c.d.f..

THEOREM 3.1. Let Vi, Va,... be tid random variables with E(V1) = 0 and
Var(Vy) = 1. Then,
e
> Vis(k — i)

=1

n—1 1
1 D
~7E Y 2 [ewa

k=0

where G(t) is the process defined above.

COROLLARY 3.1. Under the assumption {2.9) and under Hy,

1 D 1
ELH_)/Q |G(t)|dt.

In what follows, we will find an explicit formula of the c.d.f. of the random variable

1
(3.4) L= /0 G()]dt.

The study of the L;-norm of stochastic processes is much more complicated than that
of the Lo-norm where general results are well-known, see Shorack and Wellner (1986)
for example. An explicit expression of the c¢.d.f. of the L{-norm of the Brownian bridge,
based on previous work by Shepp (1982) and Rice (1982), is given in Johnson and
Killeen (1983). From earlier work by Kac (1946), Aki and Kashiwagi (1989) obtained an
expression for the c.d.f. of the Li-norm of the Wiener process.

From now on, we will follow closely the treatment of Kac (1946). In view of The-
orem 3.1, we can choose any distribution for the iid r.v.’s ¥}, Vs,..., as long as they
have ( expectation and unit variance. Hence, we will suppose that 1, V3, ... possess the
standardized double-exponential distribution with density function

exp(—v2|z)
V2

, —o0< T <.
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The first step is to obtain the limiting, as » —» oo, Laplace transform of

> Vis(k 1)

=1

H

n=-1

1
(3.5) _Dﬂ_:aﬁigz
=0

which is the Laplace transform of L. Then, we will invert it to get an explicit expression
for the c.df. of L.

Let o; and o; denote the j-th zero of the Airy function and of the derivative of the
Airy function respectively, see page 446 of Abramowitz and Stegun (1964).

THEOREM 3.2, For z > 0, the Laplace transform of L is

D0
E(em ") =2 (%@ _ gos@h)y
J=1
ProoOF. For z > 0, the Laplace transform of D,, (n > 3) is

1 _ n n &
Be*Pr) = 573 /ﬁ exp (;3% z Zas,;s(k — i) ) exp (—\@Z |5'3¢|) dzy -+ dy,.
n i=1

k=1 li=1

By making the change of variables
1 n
Yk = — zisk—14), k=1,...,n,
«52 (k=1)

whose Jacobian is 1/{v/2)"2, and by letting

e—.@|5|g_|s_t|e_ﬁ|t| z
K(s,t) = 5 and 5=7—2n—35,

we obtain
(36) E(EHZD") = 2/ K(“ynsyl)K(ylayﬂ : "K(yn—lyyn)dyl "'d'yn‘
Rn

Now, letting A1, Xg,... be the eigenvalues and fi(t), f2(t),... be the normalized eigen-
functions of the integral equation

(3.7) / : K (s, )£t = A1 (),

(3.6) becomes
(3.8) 23 [ ss-oa

Note that the integral equation {3.7) is solved in Kac (1946). Let J, denote the Bessel
function of the first kind of order v. The eigenvalues are seen to be
)\2@_1:———}——' )\giZL ?::1,2,...,

(ri8)? (t:8)
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where r; is the i-th positive root of Ji/g(z) = 0 and ¢; is the i-th positive oot of
Jy,5(z) = 0. The corresponding eigenfunctions are

s(8)Jy s 5(r e~ Plthe—Altl Jysa(te Bt e—Bl
fio1(t) = ()1 15(r1 ) and  fult) = 18(ta | ) ’
Moy Mo

where My, M>, ... are normalizing constants. Noticing that
o0 00
/ Jaic1{t) faia (—t)dt = —1  and / fai(t) fai () = 1,
—CoQ -0

we can write, in view of (3.8),

(3.9) ) = i((g ﬂ'('r,-;)g“)'

The final step in order to obtain the Laplace transform of L is to take the limit, as
n — 00, of (3.9). Let

. @ (J_w ((23,;3«@) I ((Qy;f’/?)) _

Kac {1946) also showed that

(B5)27 — 5 and  (Br)) — e as o0,

where «; and §; are the j-th positive zeros of P(y) and P’(y) respectively. Therefore,

20

lim B(e*P) = E -EL)—QZ e gy

h—00

where the passage to the limit is justified since, for » > 3 and j > 2,

1 1
¢ and ¢

< = <+
(t;8 ~ (G —1) (r;B8)2 — (4 —1)?
where c is a fixed constant. The first inequality is taken directly from Kac (1946) and
the second follows since the t;’s and r;’s alternate, i.e., t; <7 <ty <7a---.

Finally, the fact that v; = —;/2!/2 and & = —a;/21/3, j=1,2,..., completes the
proof.

The next step consists in inverting the Laplace transform of L. Aki and Kashiwagi
(1989) noted that exp(—2%/3) is the Laplace transform of the positive stable distribution
of order 2/3 whose ¢.d.f. may be represented as

Flz) = /_ :/; exp (—Il—zh(u)) du
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where

hw) = (sin((2u + w)/3))2 cos((r —u)/2)

cos(u) cos(u)

THEOREM 3.3.  The cumulative distribution function of L is

s () () =0

PROOF. The expression of F7 () comes from the termwise inversion of the Laplace
transform of L. Since o > oy ¥, the terms in the series

(3.10) ;( (—:‘"m) - (W) )

are nonnegative. Hence, to justify the termwise inversion, it suffices to show that (3.10)
converges. Define, for j = 1,2, ...,

T i d =z z
; an =
17 = 25 \/5(—0-’3')3/2

VA(-ajyr

Note that h{u) is increasing on [—=/2,7/2) with h{(—x/2) = 4/27. Furthermore, from
Johnson and Killeen (1983}, we have that

W\
(—a') _ 21/353 > m22_/3 (37r ( -2+ 12)) i > 3.

Hence,

%(F(mlj) - F($2j)) < %F(Gﬁlj)
—4
exp m
(—8(—0:;-)3)
= €Xp W

—27? a
< exp| =5 (7 -2+7/12)

IA

and the series (3.10) converges.

The first few terms in the series expa.nsion of Fr can be computed by numerical
integration using the values of a; and o) given on page 478 of Abramowitz and Stegun
(1964) for j = 1,...,10. The convergence is very rapid and only the first three or four
terms are needed Table 1 gives Fr(z) for selected values of z. ‘

Recall that £, is the asymptotic null c.d.f. of the test statistic L,//n. We recom-
mend that the exact critical points given in Table 4 should be used for sample sizes less
or equal than 20 and that asymptotic critical points could be used for larger sample sizes.
To give an idea of the approximation, if one used the .05 level critical point from the
asymptotic distribution, the actual exact levels obtained for sample sizes 12 to 20 would
be (12,.023), (13,.038), (14,.032), (15,.040), (16,.044), (17,.045), (18,.044), (19,.042) and
(20,.047).
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Table 1. Cumulative distribution function of L.

x Fr(x) x Fr(x) T Fix) z Fr(x)
3617 .05 6553 .40 0978 .75 1.3937 94
4162 10 6957 45 1.0689 80 1.4366 .95
4606 .15 7378 .50 1.1547 .85 1.4874 96
5000 .20 7821 ) 1.2660 .80 1.5504 97
.5396 .25 .8293 .60 1.2933 .91 1.63562 98
5778 .30 L8800 .65 1.3232 .82 1.7708 .99
6161 .35 93566 .70 1.3564 .93 2.1612 999

4. Simulation study and example

In this section, we will present the results from a small simulation study and conclude
with a real data example. The four tests considered are the test based on L, Blumen's
test, Hodges’ test and for comparison purposes, Hotelling’s test. The test based on
Ly is & L{ norm sign test, Blumen’s test is a Lz norm sign test (the one with the
choice ¢(u) = cos(mu) in the class (2.7)) and Hodges' test is a sup norm sign test. Four
distributions were used to generate pseudo-observations (X,Y). The first is the standard
bivariate normal distribution with independent marginals. The second one is a bivariate
Cauchy distribution where X and Y are distributed independently as a standard Cauchy
variate. The third distribution considered is the distribution for which X and Y are
independent, X being standard normal and Y being standard Cauchy. The fourth is
a skewed distributions generated via (X, Y)(1 + X/1/(X2 +Y?)) with (X,Y)} being a
bivariate normal vector with independent marginals. This distribution is thus skewed in
the direction of the first component X. The null hypothesis (amount of shift (0,0)) and
between 2 and 10 shift alternatives are considered for each distributions. Namely, we
considered 2 alternatives for the bivariate normal distribution, 4 for the bivariate Cauchy
distribution (2 in the X-direction and 2 on the main diagonal}, 6 for the normal-Cauchy
distribution (2 in the X-direction, 2 in the Y-direction and 2 on the main diagonal} and
10 for the skewed-normal distribution (2 in the X-direction, 2 in the {—X)-direction, 2
in the Y-direction, 2 on the main diagonal and 2 on the axis perpendicular to the main
diagonal). Each power was estimated with 10000 replications.

Tables 2 and 3 give the observed probability of rejecting Ho for sample sizes of 16
and 49 respectively. All tests were performed at or near (as described below) the 5%
level. For Hotelling’s test, the first number is the result when using the critical points
from an F-distribution while the second one (between parentheses) is the result when
using the y? distribution. For n=16, the critical points for the three sign tests were
obtained from their exact null distributions. Thus, the exact levels of the test based on
Ly, Blumen's and Hodges’ tests are .0444, .0439 and .0440 respectively. For n=49, the
asymptotic critical points were used for Blumen’s test and the test based on L,. An
exact critical point was still used for Hodges’ test giving an exact level of .05038. Those
sample sizes were chosen in regards to the small number of available natural levels for
Hodges' test.

The results show that Hotelling’s test is, obviously, the more powerful for the bi-
variate normal distribution. In that case and among the three sign tests, Blumen’s and
Ly, tests are the better one when n=16 but the former seems to get a little edge when
n=49. This is in accordance with the fact, demonstrated in Oja and Nyblom (1989),
that Blumen’s test is the locally most powerful invariant sign test for elliptical distribu-
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Table 2. Observed probability of rejecting Hp for n = 16,

Amount Statistics
Population of shift L, Blumen Hodges Hotelling's T
Bivariate (0,0) 0440 0446 0461  .0528 (.0058)
normal (45,0} 2267 2274 2174 .2895 (.4085)
(.73,0) 5223 5221 5042 6462 (7617)
Bivariate 0,0) 0453 0445 0430  .0169 (.0432)
Cauchy (.74,0) 2104 2125 2163 .0793 (.1420)
{1.5,0) 4964 5046 5465  .2514 (.3314)
(47,.47) 1986 1971  .1885  .0682 (.1276)
(9,9) 5417 5354 4929 2123 (.3103)
Normal- {0,0) 0481 .0464 0449 .0360 {.0736)
Cauchy (-47,0) 2219 2214 2145 .3027 {.4262)
(.77,0) 5123 .b165 .5114 6954 {.8068)
(0,.7) 1995 2003 .2138 0935 (.1569)
(0,1.53) 5255 5346 6867 .2762 (.3625)
(.38,.48) 2217 2211 2082 .2197 (.3337)
(.64,.64) 5310 .5281 4934 5630 {.6973)
Skewed- (0,0) 0440 0446 L0461  .2550 (.4503)
normal (.05,0) 2281 2152 2100 .3338 (.5502)
(.105,0) 5248 5020 4623 4374 (.6661)
(.048,.048) 2121 2124 2141 .3331 (.5508)
(.115,.115) .5122 5131 .5113 .48386 (.7098)
(0,-14} 2120 2113 2324 2856 (.4894)
(0,.4) 5101 5147 5442 5093 (.7026)
(—-26,—.26) L2090 .2061 .2012 .1427 (.2546)
(—.6,—.6) 5006 4951 4762  .4234 (.5467)
(—.56,0) 2104 2067 10965  .0827 (.1264)
(-1.1,0) 6114 5069 4676 .3935 (.4766)

tions. For the bivariate Cauchy distribution (not an elliptical distribution), Hotelling’s
test has no power and can not keep its level. Among the three sign tests, we see that
when the shift is in only one direction (the X-direction here), then Hodges’s test is the
better one followed by Blumen’s test and the test based on L, comes in third. The
situation is reversed when the shift is on the main diagonal as the test based on L,
and Blumen's test become the more powerful (L, having a slight edge} while Hodges’
test comes in third place. For the normal-Cauchy distribution (again, not an elliptical
distribution), we see that the performance of Hotelling’s test depends strongly on the
direction of the shift. Among the three sign tests, when the shift is on the X {normal)
direction, the peformance of the three sign tests is similar with the exception that Blu-
men’s test seems to take the edge in the high power region for n=49. When the shift is
on the Y (Cauchy) direction, Hodges’s test is the better one. When the shift is on the
main diagonal, L,, and Blumen’s test are the better ones. Finally, for the skewed-normal
distribution, Hotelling’s test is clearly not an appropriate test since the expectation of
this distribution under Hy (amount of shift {0,0)} is not even (0,0). Its levels are thus
completely off but we still include it for the sake of completeness. Among the three sign
tests, when the shift is on the X-direction (the direction of the skew), L, test is by far
superior to the other two. When the shift is on the main diagonal, the three tests are
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Table 3. Observed probability of rejecting Hg for n = 49.

Amount Statistics
Population of shift L,  Blumen Hodges Hotelling’s T2
Bivariate (0,0) .0502 .0629 .0507 .0549 (.0665)
normal (.22,0) 1987 .2015 .1910 .2605 (.2969)
(.38,0) 5180 5239 4907  .6359 (.6752)
Bivariate (0,0} 0451 0465 0472 .0144 (.0231)
Cauchy (-34,0) 188 1919 .1994  .0307 (.0412)
{.61,0) ATE9 4990 5332 .0644 (,0820)
(.24,.24) 1975 1977 1831 .0284 (.0407)
{.41,41) 5114 4998 4597 .0600 {.0769)
Normal- {0,0) 0419 0430 0456 0340 (.0453)
Cauchy (.23,0) 1975 1978 1944 .2652 (.3047)
(.38,0) 4695 4803 4584 6400 (.6817)
(0,.35) 2042 2127 2197 .0508 (.0637)
(0,.61) 4902 5150 5564  .0865 (.1037)
(.185,.185) 1992 1973 1846 1839 (.2146)
(.33,.33) 5385 5338 4901 5251 (.5694)
Skewed- (0,0) 0502 0520  .0507  .9788 (.9858)
normal (.016,0) 2314 2136 2318 .9860 (.9911)
(.0387,0) 5836 L5283 L2354 9925 {.9958)
(.013,.013) 2127 2111 2440 9848 (.9903)
(.034,.034) 4087 5021 5337 .9919 (.9947)
(0,.03) 1967 2062 .2605  .9798 (.9862)
(0,.097) 4823 5013 5066 .9829 (.9382)
(~.075,—.075)  .2091  .2114 2686 .0056 (.9291)
(-.21,-.21) 5086 5003 5368 7148 (.7611)
(—.24,0) 2123 2078 2028 4714 (.5268)
(-.46,0) 4980 4786 4375 .0801 {.0993)

similar when n==16 but Hodges’ test takes the edge for n=49. Hodges's test is still the
better one, and by far, when the shift is on the Y-direction. For shifts in the direction
perpendicular to the main diagonal, the Blumen and L, tests are the best when n=16
while Hodges’s test becomes the better one when n=49. The last case is when the shift
is on the (—X)-direction, there, L, test is superior to the other two.

The results of this simulation show that there is no clear winner among the three
bivariate sign tests considered here. Their relative performance depends on the distri-
bution and on the direction of the shift and each of them can be in turn the best one or
the worst. In accordance with the fact that they are distribution-free under Hy, they all
maintained very well their prescribed levels.

To conclude this section, the same four test procedures were carried out on a subset
of a data set from Ryan et al. (1976). The data consists in systolic and diastolic blood
pressures measurements on 15 male Peruvian Indians over 21 years old who were born
at a high altitude and whose parents were also born at a a high altitude. The data, also
analyzed in Hettmansperger (1984}, are (170,76), (125,75), (148,120), (140,78), (106,72),
(108,62), (124,70), (134,64), (116,76), (114,74), (118,68), (138,78), (134,86), (124,64)
and (114,66). As Hettmansperger (1984) and within the framework of hypothesis (1.1),
we wish to test Hp : (81,82} = (120, 80) which are the standard blood pressures values
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for healthy males over 21 years old in the United States. For the transformed data set
(X; —120,Y; — 80), i,= 1,...,15, the values of Hotelling’s statistic, nL,, 2W, (with
¢{u) = cos(mu)) and Hodges's statistic are 4.12, 97, 9.32 and 13 respectively. With a
p-value of .0411, Hotelling’s test is quite inconclusive. On the other hand, the exact
p-values (from their exact null distributions) of the test based on L,,, Blumen’s test and
Hodges’ test are .0110, .0037 and .0119 respectively all indicating more evidence against
Hy than Hotelling’s test,

5. Concluding remarks

In this paper, we studied sign tests in the bivariate location problem. The starting
point was the set of univariate sign statistics computed from the projections of the
observations on all lines passing through the origin. Affine-invariant test statistics and
distribution-free bivariate sign tests were constructed by teking the sup, L, and L
norms of these statistics. The use of the sup-norm gives rise to Hodges’ test which has
been studied extensively. Also, it was seen that the class of tests derived from the L,-
norm was closely related to a class proposed by Oja and Nyblom (1989). The L;-norm
induced a new test statistic. Small sample, as well as asymptotic critical points were
obtained. The asymptotic null distribution of this statistic is the same as that of the
Lyi-norm of a certain normal process which is related to the standard Wiener process.
The result giving an explicit expression of its c.d.f. is interesting in itself. The results
from a simulation study show that each of the three approach have its own merits and
that there is no clear winner among them.
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Appendix

PROOF OF THEOREM 2.1. Since the proof is a direct application of Theorem 2 of
de Wet and Venter (1973), we will use their notation. Write

Ws = Z; Zl Cijns(¥;)5(Y)
i=1 j=

where ¢;jn = ¢(|i — j|/n)/n. The cosine Fourier series of ¢, which converges uniformly
since ¢ has a bounded continuous derivative on (0,1}, is

olz) = Z an cos(nmr).
n=1

For each m =1,2,..., let

Cm
Yoem-1 = T2m = _2“',

2 imT v2 _ (imnm
bizm—1,n = %COS (71.—1- 1) and by amgp = ﬁ Bin (n———l-l) .
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Let us verify the conditions of their theorem.
Condition (B4):

Zn:b- b; =2 Zn:cos bt cos il
< i2m—1nY28—1.n — n s n+1 n+1

1
—>2f cos{zmn)cos(zkm)dr as n—oC
0

= Omk-

The other cases follow similarly. The verification of condition (B5) is immediate.
Condition (C):

nE p Ry k kN | 4¢%(0)
panet ; 7 n g n n n
)3
- 2./ (1-2)¢*(x)dr as n—oo
¢
1
= [;. $2(x)de  since (x) = —p(1 —z)

1 oQ
=3 Z a2 by Parseval’s Theorem

n=1

x>
- S

n=1

Condition (C1):
o0 00
Zh’nl = Zianl <0
n=1 a=1

since ¢ possesses a bounded continuous derivative,
Condition (BC1): as n — oo,

n n

Z Z Cijnbi2m—1,n052m-1n
i=1 j=1
1 1
(A.1) — 2] / cos{mmrz) cos(mmy)o(jx — y|)dzdy.
o Jo
But, since
Hlz—y|) = Z ar(cos(nmz) cos(nry) - sin(nwzx) sin(nwy)),
n=1

we find easily that (A.1) equals a,, /2 = ~o,,—1 which establishes this condition. Finally,

since
T o0 o0
z Ciin = ¢(0) = Z ay, cos(nmd) = Z:'yn,
i=1 n=1 n=1
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Theorem 2 of de Wet and Venter (1973), along with their following remark, entails that

n n o0
33 cims(V)s(¥7) 2 Y 4z as n— oo,
m=1

i=1 j=1

where Z1, Zs, ... are iid standard normal variates and this in turn concludes the proof.

Proor oF THEOREM 3.1. We will use Proposition 1.10.3, page 87 of Prakasa Rao
(1987). Let, foreach k=0, 1,...,n,

= % > Vis(k - i),
i=1

Consider the process G,(t) defined by
Gu(t) =Zpy, 0Z5t<1,

where [u] is the integer part of u. In other words, if k/n < t < (k+1)/n, then G, (t) =
Let us invoke the Cramér-Wold device in order to verify condition (i} of Prakasa Rao.
Let ;,...,t; be in [0, 1]. We will show that

k k
S AGalte) B S AG(E) a5 n oo,
r=1 r=1

where Aj,..., Ay are arbitrary constants. Write

Z,\ Gatr) \/_ Zam

where a;, = Zle Ars{[t,n] —i). Now, we use Theorem V.1.2 of Héjek and Siddk (1967)
which also holds for a triangular array of constants a;, as in our case. Since, as n — oc,

mzam_* ZZ" Au{l = 2t —tu]) <

=1 r=1u=1

and
1 1 &
Tn 2, lain| < ﬁ;{/\ri —0,

the conclusion of Theorem V.1.2 of Hajek and Sidék (1967) is that

k k k
Y AGalte) SN (O,Z 3 A1 - 20t - m)) :
r=1

r=1u=1

Thus condition (i) of Prakasa Rao is satisfied. As for condition (ii), let 0 < ¢; < ¢z <
ta < 1 be such that G (t;) = Zy,, i = 1,2,3, with 0 < k) < ko < k3 € n. Note that

Gn(t2) - Gn(tl) == A Vi

and
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Table 4. Critical points of nLy,. The table gives the smallest value of x for which P{nLn = ) < c

n S 8 7T 6 b5 4 3 2 .1 .06 .01 005 .001

12 20 24 28 32 36 40 44 48 56 60 T2 - -
13 23 27 31 33 3T M 47 51 59 69 81 85 -
14 26 30 34 38 42 46 54 58 70 78 90 94 -
15 26 33 37 41 45 &1 57 63 75 83 101 105 113
16 32 36 40 44 52 56 64 T2 &4 92 108 116 124
17 33 39 45 49 55 61 67 77 91 99 121 126 141
18 34 42 46 54 62 66 T4 86 98 110 130 138 150
19 39 45 51 57 65 71 79 9t 107 115 139 147 165
20 40 48 56 64 68 76 88 100 116 128 152 164 180

Gr(ta) — Grlta) = Z V.

l—k2+1

Since these last two r.v.’s are independent, we have

E[(Crltz) — Ga(t))2(Grlta) — Gy(t2))?] = Var Z V; | Var Z 14
'r-kﬁ-l t—k2+1
_ 1gtk2— k1) (ks — ko)

< 16(t3 — )%

This verifies condition (ii) with ay = as = 2, ¢ = 16 and 3 = 1. Finally, the fact that

/ G ()]t = 3/22 ZVs(k—z

k=0 |i=1

concludes the proof,
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