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Abstract, We show that iterative methods for maximizing the likelihood in a mix-
ture of exponentials model depend strongly on their particular implementation. Dif-
ferent starting strategies and stopping rules yield completely different estimators of
the parameters, This is demonstrated for the likelihood ratio test of homogeneity
against two-component exponential mixtures, when the test statistic is calculated by
the EM algorithm.
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1. Introduction

To estimate the parameters of a finite mixture model by maximum likelihood, iter-
ative methods are commonty used. The likelihood function in mixture models tends to
have multiple maxima. The expectation-maximization (EM) algorithm converges mono-
tonically to a local maximum or a saddle point. Its convergence can be rather slow, which
has given rise to many accelerated variants in the literature. Frequently it is argued that
the behaviour of the EM algorithm (and of these variants as well) does not depend on
its special implementation and, in particular, is independent of the rule by which initial
values are selected.

In this note we shall demonstrate that estimates and tests which are based on itera-
tive maximization of the likelihood may well depend on the starting strategy. Moreover,
they may depend on the stopping criterion. We show that these effects really occur and
that their consequences cannot be neglected in practice.

As the effects are particularly severe when the data come from the “wrong” model,
likelihood ratio tests for the number of mixing components are heavily affected by them.
Therefore we argue that it is not feasible to perform such a test on the basis of quantiles
that have been obtained by Monte Carlo simulations of the test statistic and published
in the literature, unless the algorithm employed by the authors is fully known and reim-
plemented.

In particular, we investigate the likelihood ratio test for exponential homogeneity
against finite mixtures of exponentials (Béhning et al. (1994}). We show that the details
of the maximization algorithm strongly influence the simulated quantiles. So, when
applying the test, not only are the functional form of the test statistic and the critical
values decisive but also the specific implementation of the algorithm. A required level
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of the test can only be guaranteed if, in every application, the test statistic is calculated
with precisely the same algorithm that has been used in the former simulation of the
quantiles.

For a general introduction into the analysis of mixture models and their applications,
the reader is referred to the monographs by Everitt and Hand (1981), Titterington et
al. (1985) and Lindsay (1995). McLachlan and Basford (1988) present statistical tools
including a resampling approach for assessing the null distribution of the likelihood ratio
test for homogeneity. For the EM algorithm see Dempster et al. (1977) and, for recent
developments, McLachlan and Krishnan (1997).

Section 2 introduces the exponential mixture model. We discuss different implemen-
tations of the EM algorithm, while in Section 3 we present the likelihood ratio test for
exponential homogeneity and its quantiles and sizes obtained by different implementa-
tions. The Appendix collects some details about random number generation and the level
of accuracy required. This level must be very high in order to obtain stable quantiles.

2. Exponential mixture model and EM algorithm

For z, 8 > 0, let f(z,8) = }exp(—%) denote the density of the exponential dis-
tribution with expectation #. A mixture of two exponential distributions with pa-
rameters #; and 8; and with mixing weights p and 1 — p, 0 < p < 1, has density
f(z, Py =pf(z,61) + (1 — p)f(z,02), where

-2 1)
p l-p

denotes the parameter of the mixture. A maximum likelihood (ML) estimator Pof P
is defined as a parameter value P that maximizes the log-likelihood function I(P) =
Yo In f{z;, P). Starting from an initial value P°, the EM algorithm gencrates a se-
quence
L_ [6F 6%
P _’[pk 1_pk ) kENU{O}:

according to an iterative scheme which has a simple form in our situation; see Bhning
and Schlattmann ({1992), p. 293). The sequence [(P*),cy is nondecreasing.

2.1 Stopping criteria

Let acc > 0 be a given level of accuracy. In our investigation we employ two criteria
to stop the EM algorithm:

Stopping criterion 1 (“function values”) is based on the size of change in the
log-likelihood. From Bohning and Schlattmann (1997) we borrow the following version
of it: Choose P = P*, if [(P*) — l{P*"?) < n-acc for some k = 3w+ 2, v > 0.

However, as Lindstrom and Bates (1988) write, this first criterion “is a measure of
lack of progress but not of actual convergence”. The following stopping criterion has a
better theoretical foundation; see Béhning et al. (1994).

Stopping criterion 2 (“directional derivatives”) uses the expression

DP(B) — Z_f(xia?zx:’f;;:i: P) .

i=1

It can be shown that Dp(8) has the properties of a directional derivative of {{F) in the
direction of #. In Bbhning and Schlattmann (1992) and below the iterations are stopped
at P = P* if max{Dp:(6), Dpx(65)} < n-acc and k > 3.
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Observe that both stopping criteria do not depend on data scale, i.e., they are scale
invariant in the probability law.

2.2 Scale Invariance

If X is exporentially distributed with parameter # and a > 0 then aX is exponen-
tially distributed with parameter af. Let (P*}.cn be the sequence of estimates obtained
from a sample x4, ..., 2z, by the EM algorithm. Then the sample az1,. .., az, results in

a sequence {P*}. .y with
ko aB{“ af?’z‘
Pa - [ pk 1— pk :

Therefore, if the starting values 0¢ and 0% are scale equivariant and pC is scale invariant
in the underlying probability law, the ML estimator calculated by the EM algorithm is
scale equivariant with respect to ¢y and f; and scale invariant with respect to p.

2.3 Starting Values

There are some indications for good starting values of the EM algorithm, at least
for mixtures of univariate distributions. Tet Zyy, = min{x,...,z,} and Tpax =
max{x1,...,Z,}. In Béhning and Schlattmann ((1992), p. 296) it is shown for a partic-
ular example that an initial parameter with p = 0.5 and well separated values of #; and
t2 yields the global maximum in a normal mixture model, and in Béhning et af. ((1994),
Section 3) p = 0.5, 67 = Ty + 0.5 and 8y = & .y — 0.5 are chosen as initial values in a
Poisson mixture model. So our first strategy, abbreviated as Tumin/Tmax, i8

Zmin  Tmax
mmin/ﬂfmaxi P = [ 5 .5a ] .
We contrast this with a second strategy,
T4 .50

o [z .56 z+.50
P‘[ 5 5 |

Observe that both strategies start with parameters 87 and 89 that are scale equiv-
ariant in the data generating probability law, while p° does not depend on it.

3. Application to quantiles of a likelihood ratio test

Let us consider the likelihood ratio test for the null hypothesis of ezponential homo-
geneity, Hy: X ~ f(z,0) for some 8, against the alternative that the distribution of X
is a mizture of exponential dzstmbutwns Hy X ~ f(x,P) with 8; #6; and 0 < p < 1.
Under Hp, the ML estimator 6 of @ is given by # = £ The ML estimator under the
alternative has to be calculated numerically. The test statistic of the likelihood ratio
test, 2In X, = 2[I{(P) — I(d)], has a null distribution that does not depend on @ (see
Subsectmn 2.2).
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Table 1. Quantiles under different maximization strategies.

Start: min/®max Start: T+ .50 published in
Stop: funct.  Stop: deriv.  Stop: funct. Stop: deriv. Béhning et al. (1994)
n = 100
a=01 3.36 3.36 2.22 2.44 1.69
a = 0.05 4.73 4.76 3.64 3.80 3.26
a = 0025 6.13 6.19 5.04 5.23 4.67
a =001 8.15 8.01 6.94 7.09 6.33
n = 1000
a =01 3.49 3.52 1.50 2.60 1.49
o = 0.05 4.95 4.99 2.55 4.09 2.59
a=10.025 6.42 6.42 3.71 5.52 3.76
o =0.01 8.30 8.40 5.34 7.41 5.48
n = 10000
o =401 3.23 3.41 1.09 1.57 0.50
o = 0.06 4.66 4.84 2.22 2.73 ' 1.86
a = 0.025 - 6.06 6.19 3.39 4.01 3.19
o = (0.01 7.93 8.16 5.10 5.73 4.94

3.1 Quantiles

In Bohning ef al. ((1994), p. 383), selected simulated quantiles of the null distribution
of 21n A, are published. Details of the algorithm for maximizing the likelihood function
(starting values, accuracy) are not given. Another program (BShning and Schlattmann
(1997)) uses T = .50 as a starting strategy, which is possible by the scale invariance
of the test problem, and a stopping criterion of type “function values”. A stopping
criterion of type “directional derivative” is built into the C.A.MAN algorithms (B&hning
and Schlattmann (1992)). To calculate quantiles of the likelihood ratio tests based on
different implementations of the EM algorithm, we simulate the null distribution of
21n A, for n = 100, 1000, 10000 and the four possible combinations of starting strategies
and stopping criteria described above, using acc = 1072 as level of accuracy. Each
distribution is simulated for 8 = 1,2, ..., 10, with 10000 replications for each parameter.
(There is an exception at n = 10000: With the second stopping rule the distribution is
simulated only for @ = 1,2,...,5, with 2000 replications for each parameter.) Table 1
presents the 1 — o quantiles, @ = 0.1,0.05,0.025 and 0.01, averaged over the 10 (5)
parameters under consideration, and contrasts them with the quantiles published in
Bohning et al. (1994).

As it is seen from Table 1, different implementations of the EM algorithm result in
different tests. The distribution of the test statistic depends heavily on the starting and
stopping strategies chosen.

While the published quantiles are the smallest, the quantiles based on Zmin [ Tmax
are much larger and the quantiles based on %+ .58 lie in between. Whereas the published
quantiles are decreasing as n increases, the quantiles based on Zmin /Tmax seem, for every
«, to be independent of n.

The influence of the stopping rule is obvious when we look at n == 1000 and starting
value 7 + .54.

The only set of quantiles which seems to match the published quantiles fairly well
occurs at n = 1000 with Z & .50 and the function values stopping rule. However, we
recalculate this set using the accuracy acc = 1078, The result is shown in Table 2. The
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Table 2. Quantiles under accuracy change.

@ 1 05 025 .01
acc=10"% 150 2.55 3.71 534
gec=10"% 166 3.17 4.85 603

Table 3. Size when different quantiles are used.

Tmin/Tmax published
deriv. in Bdhning et al. (1984)

n = 100
=01 1041 .2366
a =0.05 {0520 .108%
o =0.025 0264 0550
a=0.01 L0108 L0252
n = 1000
o= 0.1 0976 .2640
a = 0.05 0486 .1536
o = 0.025 0239 .0866
o =0.01 .0090 0394
n = 10000
o=0.1 0.0998 0.4166
o = 0.05 0.0496 0.2091
= 0.025 0.0248 0.1123
o =00 0.0105 0.0466

quantiles based on acc = 108 are larger, yet still much smaller than the quantiles based
on the directional derivatives stopping rule. This situation is analyzed more closely in
Seidel et al. (1997).

3.2 Size :

Let us now investigate the size of the test il the “wrong” quantiles are nsed. Of
course, the implementation of the EM algorithm that produces the largest quantiles is
the best maximizer of the likelihood. As the largest quantiles are the ones based on
Tmin/ Tmax and on a derivatives stopping rule, these are regarded to be “closest to global
maximization”. (Recall that the denominator of the likelihood ratio test statistic is given
explicitly.) Therefore the corresponding test statistic, which maximizes the likelihood
with initial value Tmin/Tmax and a derivatives stopping rule, is considered as the best
one. What happens if it is used together with the quantiles obtained from another
inplementation of the EM algorithm? To demonstrate this with an example, we use the
quantiles published in Bohning et al. (1994). The size of this test, i.e. the probability of
rejecting Fy, given Hy, is simulated for the published quantiles as well as for the quantiles
calculated with the above “best” implementation of the test statistic. The results of the
simulation, based on # = 1 and 10000 replications, are exhibited in Table 3. It is seen
that the size of the test can drastically exceed « if the published quantiles are used and
the test statistic is calculated with a different implementation of the EM algorithm.
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4. Conclusions

When maximizing the likelihood by an iterative algorithm, different starting and
stopping strategies yield different ML estimators. In particular, when the test statistic
of a likelihood ratio test is determined with an iterative algorithm, each implementation
of it defines a different test. Using the example of the EM algorithm in exponential
mixture testing, we have demonstrated that these differences cannot be neglected.

In practice, our observation has far-reaching consequences: If simulated quantiles
are used, the test statistic must, in every application, be calculated with precisely the
same algorithm that has been used in the simulation. Simulated quantiles from the
literature cannot be used unless they come with a complete specification of all aspects
of the algorithm by which the test statistic has been evaluated.

Even if one believes that the “true” likelihood ratio test is the one based on global
maximization (which is in principle possible here since, for a finite mixture of exponen-
tials, the likelihood function is bounded), one has to be aware that the distribution of
the test statistic under Hy depends heavily on the accuracy of the approximation to the
global maximum. The reason is that, with a large probability, the difference between
the log-likelihoods under the null hypothesis and under the alternative is small; see the
Appendix.

In our opinion, one has to decide on the basis of power comparisons which version of
the likelihood ratio test is the appropriate one. Preliminary results (Seidel et al. (1997))
suggest that global optimization is not necessarily the best strategy: A simple starting
strategy, which often fails to find the global maximum under the null hypothesis, results
in a rather powerful test. On the other hand, a multiple starting strategy that comes
close to global maximization under both the null and the alternative hypotheses leads
to inferior power.
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Appendix: Random number generation and level of accuracy required

As usual, exponentially distributed random numbers are generated by the inversion
method from uniformly distributed random numbers. Let (2x) and (yz) be sequences of
random numbers from exponential distributions with expectation 1 and 8, respectively.
If the same seed is used, yx = 6z} should hold for each k and, according to Subsection 2.2,
all simulated quantiles obtained with the EM algorithm should be the same. A trivial
consequence is that another seed has to be used if the simulation study is repeated for
another value of 9. Consider, however, the following example: Using the same seed, we
generate 21,...,Z100 for # =1 and yy,..., 3100 for 8 = 10. To compute a value Afy, and
Ay of the likelihood ratio test statistic, the EM algorithm is performed on the basis
of the second stopping criterion and of the starting values Zmin/Tmax and Ymin/Ymax
respectively. We obtain 2In ATy, = .18954 and 21lnAY,, = .18964. These values are
slightly different, although they should be exactly equal.
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Let us analyze the situation more closely. Denote by ém Pm, éy, ﬁ'y the maximum
likelihood estimators based on the z-values and the y-values. Observe that 2In Afég =

20t P, ) — 1(0, /y)]- Then the following values are obtained:

-

I(P,) = —121.80106 1(6,) = —121.89584
3 61178  1.34480 -

=7 13644 86356 ] O = 124478
I(P,) = —352.05054 1(8,) = ~352.15436
- 6.11788 13.44798] | »
Py= | 13645 26355 ] 0y = 124478

Obviously the values of {(P) and {(8) are nearly equal, so that as a result of cancella-
tion small relative errors in I(P) produce large relative errors in 21n Ajgo. This situation
is very likely to occur under the null hypothesis. Therefore {(#) has to be calculated
with a very high accuracy.
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