Ann. Inst. Statist, Math.
Vol. 52, No. 3, 438-447 (2000)

ON THE BESSEL DISTRIBUTION AND RELATED PROBLEMS

LIN YUAN AND JOHN D. KALBFLEISCH
Department of Statistics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

{Received October 13, 1997; revised February 9, 1939)

Abstract. This article investigates basic properties of the Bessel distribution, a
power series distribution which has not been fully explored before. Links with some
well-known distributions such as the von Mises-Fisher distribution are described. A
simulation scheme is also proposed to generate random samples from the Bessel dis-
tribution. This scheme is useful in Bayesian inferences and Monte Carlo computation.
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1. Introduction

The interest on probability distributions involving Bessel functions can be traced
back to the early work of McKay (1932} and Laha (1954) in which two classes of contin-
uous distributions, called Bessel function distributions of type I and type II, are studied.
Don McLeish (1982) further investigates the application of the Bessel function distri-
butions of type II and some closely related results to create a robust alternative to
the normal distribution. Devroye (1986) provides more discussion on Bessel function
distributions.

Unlike the previous work, the Bessel distribution we study here is a power series
distribution generated by the first type of (modified) Bessel function. A random variable
Y, taking values from non-negative integers, is said to be a Bessel random variable with
parameters # > —1 and o > 0 if

n=0,1,...,

1 an 2n+v
(1.1) Pr(Y =n) = L{anl(n+ v+ 1) (5) '

where I,,(z) denotes the first type of (modified) Bessel function given by

L@ = (3)'Y sy (57 =>0 veot

n=0

It should be noted that this distribution (1.1) also arises in Pitman and Yor (1982);
see Section 3 for discussion. For simplicity we use the notation Bes(,a) for the Bessel
distribution with parameters v and a.

The Bessel distribution (1.1) can be thought of as an inverse probability as is il-
lustrated by the following example. Assigning a gamma prior to the mean of a Poisson
distribution is a standard procedure in Bayesian statistics; in this example, however, we
put a Poisson prior on a gamma distribution. Suppose we study the number of customers
visiting a laundromat with reference to the power consumption. The observable total
power consumption Y in a period T breaks into two parts: the customer consumption
Y; and an independent base amount Y;. We assume the power consumption of each
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customer is independently an exponential random variable with scale e, and the distri-
bution of Y3 is G{v + 1,a), the gamma distribution with shape parameter v + 1 and
scale @ where v > —1. If the number of customers is r, the distribution of ¥ given r is
G(r+ v+ 1,a). Suppose that customer arrivals are described by a Poisson process with
rate A. The prior distribution for r is then Poisson with mean AT. Given an observation
Y =y, it follows that the posterior distribution of r is Bes(v, 2¢/aXTy).

The Bessel distribution is related to many distributions with Bessel functions in-
volved in the density, the von Mises-Fisher distribution and the squared Bessel bridge,
for example. These distributions are mixtures involving the Bessel distribution.

This article is organized as follows. Section 2 gives some basic results about the
Bessel distribution. Section 3 introduces the gamma distribution randomized by a Bessel
distribution, and its link to an appealing multivariate gamma distribution. Section 4
presents a simple scheme for simulating the Bessel distribution, and Section 5 discusses
some applications.

2. Some properties of Bessel distributions

This section examines the Bessel distribution and describes links to distributions
that are fimiliar to most readers.

(i) The Bessel distribution as a conditional Poisson distribution. Let P()) denote
the Poisson distribution with mean A. When v is an integer, it is easily seen that the
Bessel distribution Bes(v, a) is the conditional distribution of ¥ given X —Y = v, where
X ~ P(A) and Y ~ P(X;) are independent and A Az = a?/4.

For the general case v > 0, X is generated from a randomized Poisson distribution.
More specifically, X ~ P(A; — 1) with n distributed as a G(r — [v], 1) but variate right
truncated at A (to include the integer case we adopt the convention that G{0, 1) denotes
the probability distribution concentrated on zero). Now, the density of 5 is proportional
to 7 ¥1-1e"n[(0 < 5 < Ap), so that,

Pr(X = k) x / Pr(X = k | nyp* ¥ e MI(0 < 5 < M )dn

e M M [¥]—1 k
- v—[1]— _
“ThT D 1)f0 7 (AL —m)dn

)\;;+uf[u]
T(k+1+wv-—[v)

0.8

Now, it can be seen that for v > 0, the conditional distribution of ¥ given X — Y = [¢]
is Bes(v,a).

(ii) The Bessel distribution as @ sum of Bernoulli variables. It is well-known that
the Bessel function satisfies the recurrence equation

L(@) = La(e) + 22

Iy+1(2),

which implies a kind of relation between Bes(v, a), Bes(v+1, a} and Bes(r+2,a)}. In fact,
it is immediately seen that, the Bessel distribution Bes(v, o) is a mixture of Bes(v+1, a)
and a right-shifted Bes(v +2,a) produced by moving the mass at each integer & to k+1.
The weights for this mixture are 2(v+ 1)R.(a)/a and R, (a)R,;1(a) respectively, where
R.{a) = I,41(a)/1.(a) is called the Bessel quotient. In the language of sampling, a
random variable Y ~ Bes(v, a) can be generated by first generating a Bernoulli random
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variable  with Pr(n = 1) = R,(a)R,+1(a) followed by X ~ Bes(v+n+1,a), and then
Y=X+1n

From this property, we see that a Bessel random variable can be expressed as a
sum of dependent Bernoulli variables: First, a random variable ¥ ~ Bes(v,a) can be
written as ¥ = 1 + X; with n; a Bernoulli variable with parameter R, (a)R,+1{a) and
Xy ~ Bes(v+m + L,a). Then, X; can be written as X| = 1o + Xo with 2 a Bernoulli
variable with parameter R,y 41(a)Ru4n, +2(a) and X; ~ Bes(v + 1 + 12+ 2, a). Since
Bes(v + k,a) can be treated as a point mass on zero for k large enough, we can express
Y as an infinite sum of Bernoulli variables >7.°; n;.

(iit) Relationship to spherical distributions. The von Mises distribution is an ana-
logue of the normal distribution in circular statistics. Its density function is

#(6) = th)(ﬁ)-exp(ﬁcosﬁ), —r<l<w, >0,

where & is the concentration parameter. Detailed study and interesting applications
can be found in Mardia (1972). The Bessel distribution offers a simple description for
the von Mises distribution. If § is a von Mises variable with concentration parameter
#, then the distribution of cos?# is a randomized beta distribution Beta{€ + 1/2,1/2)
where £ ~ Bes(0, k). However, given cos?# = y there are still four possible values of 8
in [—m, 7). Further analysis of the conditional distribution of # given cos?8 = y we have
the following relation. Suppose Y ~ Beta{£ + 1/2,1/2) where £ ~ Bes(0, k), and given
Y, by and by are conditionally independent Bernoulli variables with parameters 1/2 and

1/(1 4 e=2=vY) respectively. Then,
0 = (2b; — 1) arccos{{2b; — 1)VY]

is a von Mises variable with concentration parameter «.
As a generalization the von Mises-Fisher distribution M, (i, ) is a distribution on
a r-dimensional hypersphere with density

(1/2)1"—

(2m)/2r T y2yr—1 (k) exp(k{p, y))

where {@, ) = ¥._, ui¥;: is the inner product and |u| = 1 and & > 0 are parameters.

To describe the joint distribution of (Y7,...,Y;) ~ M; (i, &) we introduce a random-
ized multinomial distribution. Suppose that (Nl, .o N2} ~ mudtinomial (N, p1, ..., py)
with N ~ Bes(r,a). The joint distribution of (Ny,..., N} is then

Pr(Ny =n4,...,N, =n,}
1 a/pr\*™  fa pr)Q"’
m!- o n T+ -+n.+v+1) 2 2 )

This distribution can be used to describe the von Mises-Fisher distribution M. (p, x) on
a r-dimensional hypersphere.
The joint density of (Y, ...,Y;?) is proportional to

- o T ni—(1/2}
7 (Z ”i = 1) H cosh\f/ii, Wi (Z i = 1) Z Z annw?m yﬁ(zni)! )

i=1 i=1 n1=0 n,.=0i=1

X
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Note that

n,—(1/2) e

T 2ns 2ns Uy T 1 Rpy 2
H’“ i 1(2,1/.)1 - 7 H il (”:_zi)
i=1 v I‘(n1+---+nr+§) jmp T

r
I‘(n1+---+nr+§)

ni=(1/2)  ne—(1/2)

% 1 R4 “Yr
which is a mixture of Dirichlet distribution D(ny + 1,...,n. + 3) with (ny,...,n,)
from a randomized multinomial distribution multinomial(N,p?, ..., 42) where N ~

Bes(s — 1,K).
(iv) Moments and mode. The moments of the Bessel distribution can be expressed
in terms of the Bessel quotient. For instance, if Y ~ Bes(v, a), then

1
(2.1) EY = EaR,,(a) and FEY?= %azRu(a)RUH(a) + %aRu(a).

The factorial moments,
a k
EY(Y=1)- (Y —k+1) = (5) Ry(a) - Ruyp(a), k=1,2,...,

are easily obtained and from these we can calculate the moment of any order.

The Bessel distribution has a unique mode, or two modes at consecutive integers.
For convenience we make the convention that the mode of a Bessel distribution always
refers to the larger one if there are two modes and, it then follows that the mode of
Bes(v,a) is the integer part of m{r, e) = {(Va® + v* — v)/2. This is useful in simulating
the Bessel distributions.

2 -

Fig. 1. The Bessel quotient for different v values.



442 LIN YUAN AND JOHN B, KALBFLEISCH

{(v) The Bessel quotient. Tt should be noted that the evaluation of the Bessel
functions is avoided due to the inefficiency of the existing numerical methods. The
Bessel quotient is much more stable than the Bessel function and can be evaluated using
a continued fraction (Amos (1974)).

As shown in Fig. 1, all curves of functions R, (z), v > —1 start from (0,0) and share
the same asymptote y = 1. The monotonicity is classified into two categories according
to whether v is larger than —1 or not. For » > —1, the function R, (z) is increasing
over the whole interval (0, oc); while for —1 < v < —1, the function R, ()} is increasing
first to reach a maximum and then decreasing. We also see that R,(z) < R, (z)if v > p
and the inequality holds strictly in (0,0¢). Further discussion of the Bessel quotient is

given in the Appendix.
3. Multivariate and randomized gamma distributions

Several multivariate extensions of the gamma distribution are available in literatures.
Prominent among these are the two basic approaches introduced in Johnson and Kotz
(1970). The first approach is to create some kind of linear combinations of independent
gamma variables. More complete references of this type of work can be found, for
example, in Mathai and Moschopoulos (1991). The second approach works with the
multivariate integral transforms such as Fourier or Laplace transforms; see for example,
Richards (1986) and Pinky (1993).

We begin with a simple construction of a bivariate gamma distribution, which is a
special case of the second approach as suggested by Johnson and Kotz (1970). Consider
the joint Laplace transform of independent random variables Y7 ~ G{a, A1)} and Yz ~
G(Oﬁ, 4\2),

—a —a
Ee-tiYi—ta¥s _ (1 + t—l) (1 4 53) — {det(T, + AT)]™®,
A1 Ag

where I3 is a 2 x 2 identity matrix, A and 7" are 2 x 2 diagonal matrices with entries 1 /A1,
1/Xxz and ty, ts respectively. One way to construct a bivariate gamma distribution is to
alter the matrix A to a symmetric positive definite matrix. Therefore, a more general
form of A can be ohtained if we replace the two zeroes in A by /p/AMA2 with0 < p < 1.
The corresponding Laplace transform

(3.1) [1+—+—+

possesses a closed-form inverse. Lengthy but straightforward calculation shows that the
density function corresponding to the Laplace transform (3.1} is proportional to

_ Ay + A dphi A
(32)  (ny) > P 2exp (““1%“—’5‘%}3) Io ( % ) ;o YLy >0

The density {3.2) retains the marginal distributions of ¥1 and ¥,, and the main
point of inferest is the dependence between Y7 and Y,. Specifically, we are interested in
the conditional distribution of Y] given Y3, or vice versa. It is seen that both conditional
distributions are the Bessel function distributions of the first type, or randomized gamma
distributions as named by Feller (1966).
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Suppose that Y | n ~ G{a + n,A) with o, A > 0 and 7 a Poisson variable. Then
the marginal distribution of Y is called a randomized gamma distribution of the first
type. One can easily verify that the conditional distribution of Y} given Yy = y2 is a
randomized gamma distribution G(a + 1, A /(1 — p)) with 7 ~ P(pAaye). The constant
p called coefficient of dependence measures the degree of association between Y; and Vs,
and a larger value of p indicates a stronger dependence.

Can we construct a multivariate gamma distribution in this way? The problem is
that a closed form density may not always be available. We restrict our attention to a
special case, namely, the multivariate gamma with Markov dependence where a closed
form density does exist.

A random vector (Y7,...,Y,,) is said to be Markov if the conditional distribution
of Y; given Y7,...,Y;.1 is the same as that of ¥; given ¥;_;. Let p; denote the depen-
dence coeflicient between Y;_; and Y;. If we wish that each marginal distribution of
Y; is G(a, A}, then under the assumption of Markov dependence, the joint density of
(Y1,...,Y,} is proportional to

n -1 ‘
(1 — pipir1) Ny 4p;i 1 A X1 YY1
33 n (x—1}/ T I
33) ()" exp Z(l_pl H —— ,

1—p1+1 i=1

yi>03

where p1 = ppy1 = 0.

The randomized gamma distribution of the second type is the mixture distribution
G{a+m + 212, A), @, A > 0, where 1y and 72 are independent with Poisson and Bessel
distributions respectively. This can be viewed as a generalization of the first type taking
7)2, in a limiting case, as zero. For any positive numbers a, b, A and «, the randomized
gamma G(a + m + 22, A} with m ~ P({a + b)/(4))) and 5y ~ Bes(a — 1,vab/(2X))
independent has a density function proportional to e=*1,_y (/ag)la—1(vby), ¥ > 0.

A randomized gamma. distribution of the second type arises from (3.3) when we
consider the conditional distribution of ¥; given Y;_y = 9~ and Y341 = y:41. The
conditional density is proportional to

(1 — pipir1) it 4o i1 A1 4pii1 MM 1 Yilivt
exp |— Ta Iy )
(1= p) (X = pit1) 1—p; 1 — pia

y’i>07

exactly of the form given above.

More generally, we may consider the squared Bessel process and the squared Bessel
bridge. For any d > 0, the d-dimensional squared Bessel process £(), £ > 0 is a time
homogeneous Markov process with transition density

B9 e =5 (9 ew (1)L (L), >0 myzo

2t 2t t

where v 4+ 1 = d/2. We see from (3.4) that the conditional distribution of £(t) given
£(0) = z is a randomized gamma distribution of the first type G{v +n + 1,1/2t) with
7~ P{x/2t).

When £(0) = 0 there is a correspondence between a multivariate gamma given by
(3.3) and a re-scaled finite dimensional distribution of a Bessel process. Specifically, if
we sample £(t) at times t; = 1/{p1 - p:), £ = 1,...,n, then the joint distribution of



444 LIN YUAN AND JOHN D. KALBFLEISCH

§(t1)/(t1M1), .- ., &(tn)/(tnAs) is exactly the same as (3.3) provided d = 20 and A; > 0,
0<p; <1,

A standard squared Bessel bridge &, ., (£) is a stochastic process on [0, 1] generated
by £(t) with £(0) and £(1) tied at zo and z; respectively. The distribution of £,, -, () is
studied in detail by Pitman and Yor (1982). Its transition distribution is a randomized
gamma distribution of the second type. Let 0 < s < t < 1. If we know that &, ., (s) = =,
then, Y = &;, ., () can be obtained by generating independent random variables

m~P( . [(l_t) (t=s) D and m~Bes(u‘/"T‘“)

al-9 [t=—m" =™ "1—s
and then
1-—-s
Y~G 2 1, —mm8M8mm—|.
("”1 T b ar—en —t))
s s
< L)
& &
P . =
o H = i
S | ] s l
< ]l [ijm- =2 I .]l l ’ ]A.'T—. ..........
O T T ¥ T O T T T
0 5 10 15 20 0 5 10 15 20
1. Bas(0,12) It. Bes{0,20)
2 8 |
L) o
& &
= o
s i ' <
< 4 ‘I] l [ [‘I'T"l--.‘...,.........,.... (=} i ]l-. e
[ ] r - r - - Lo ) T r
0 5 10 15 20 0 5 10 15 20
IH. Bes(10,20) . Bes{40,20)

Fig. 2. The Bessel distributions and their normal approximations.
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4. Simulations

Simulating a Bessel distribution is generally difficult. However, intensive numerical
experiments show that a normal approximation is applicable to Bessel distributions with
mode m(v, a) > 6. This is illustrated by Fig. 2 ()—(IV).

We thus propose the following method for simulating a Bessel distribution. When
m{v,a} > 6, a sample ¥ ~ Bes(v,a) is drawn by generating U ~ U(0, 1) followed by

X=p+ob YU+ (1 U)B(—u/o)]

where the mean p and variance o2 are calculated from (2.1) and then Y is set as the
closest integer to X.

When m(r, a) < 6 the Bessel distribution has a short right tail. Therefore, a table
sampling is appropriate for this case, which is easily implemented.

5. Discussion

The Bessel distribution links the spherical distributions such as the von Mises-
Fisher distribution with well-known distributions on the real line. Therefore, simulating
the von Mises-Fisher distribution is sasily accomplished once we have an efficient way
of simulating the Bessel distribution. Of course, there might be a better scheme for
simulating the Bessel distribution and we leave this for future study.

A frequency approach to estimation in the von Mises-Fisher is made difficult by the
complicated sampling distributions of some key statistics, whereas Bayesian inference
(Mardia (1976)} can be simply carried out especially when the concentration parameter
is known. In fact, a von Mises-Fisher prior for y leads to the posterior of g is again a
von Mises-Fisher distrilution. Although some numerical features of the posterior can be
computed (Mardia (1976)), probability intervals are possible only when we can sample
from the posterior distribution.

This study also facilitates simulation of the squared Bessel bridge and Monte Carlo
computation for path integrals of the squared Bessel process. For example, the path
integral

Py |- | t seeNduts) =& (e |- [ t Se(Nauts)] <) = 2.6(0) - /)

where p is a finite measure, has been discussed by Pitman and Yor (1982). For some
special choices of f and p the path integral can be expressed in a closed-from by solving a
boundary problem in differential equations. More generally, however, this path integral
has to be evaluated by numerical methods. For instance, we can simulate many sample
paths of a squared Bessel bridge with £(0) = z and £(¢) = y, then the path integral can
be approximated by an average.
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Appendix

A recurrence formula for Bessel quotients arises immediately from the recurrence
relation of Bessel functions:

1

(A.1) Ry(z) = 2(v + 1) Roni(@) :
- v+1

Further, the following relation of Bessel functions

Izy v
=—-+R, -
L@ 7 + R,(z), wv>-1
leads to a differential equation
(A.2) y =1yt~ 2L
y(0) =0

which has the unique solution R, (z). These equations are generally important in study-
ing the Bessel quotient. On the other hand, some special Bessel quotients do have closed
form expressions. For example,

2
Iija(z) = 4/ p sinhz, and JI3p(x) =4/ %(mcoshm — sinh ).

It follows that R, 2(z) = cothz — 1/ and, by (A.1}, R_y/2(z) = tanhz.

The asymptotic expansion (Spain and Smith (1970)) of the Bessel function implies
that R, (z) — 1 as z — oo, and thus all curves of functions R,.{z), ¥ > —1 start from
(0,0) and share the same asymptote y = 1. Further, we have

{A.3) lim z{1 - R,{z)]| =2v+1
T—00
which means the curve of R, (x) approaches the asymptote from above when —1 < v <
—% and from below when v > —%.
The monotonicity is also classified into two categories according to whether v is
larger than —% or not. For v > —%, the function R,(z) is increasing over the whole
interval (0, 0c); while for —1 < v < —4, the function R, (z) is increasing first to reach a

maximum and then decreasing. To verify this we differentiate {A.2) to obtain
2v+1 2v+1
y' = — y—(2y+ )y’-
T T

The sign of ¥ at stationary points, where 3 is zero, is the same as that of 24+ 1. Thus,
R,(z) when v > -% can have local minima only whereas if v < —%, R, (z) can have
local maxima only.

From the equation (A.2), ¥' cannot change sign when v > _%. Otherwise, there
must be s stationary point 2 which is, from the discussion above, a local minimum at
which 3’ changes from negative to positive. Since ¥'(0) = 1/(2v +2) > 0, it follows that
there must be a local maximum between zero and zy which is impossible.
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When —1 < v < —1, (A.3) indicates that y must be larger than one when z is large
enough and y(oo) = 1. Hence, there must be a point at which ' is negative. Since y'(0) >
0, there must be a stationary point z¢ which is a local maximum. Furthermore, y(zqg) > 1
is guaranteed by (A.2). We can show that, ¥’ changes sign only once, otherewise we
will have two local maxima between which there must be a local minimum, which is
impossible. Hence, y(z¢) is also a global maximum.

We now give some bounds for the Bessel quotient. In fact, the variance of the Bessel
distribution must be non-negative which, from (2.1}, implies

T
(A.4) Ry(z) < W

On the other hand, the differential equation (A .2) suggests that, R,(x) < B {(x)ifv > u
for these two functions have the same initial value but the former has a smaller derivative.
Hence, R, 41{z) < R,(z) and this combined with (A.1) and (A.4) leads to

I €T
A5 <R(2)€ e, v> -l
(A.5) e P BRI R~ e

For v > —% a slightly sharper upper bound can be derived from the fact that R,,(z) = 0.
This kind of bound is also found by Amos (1974) for the case v > 0.

Numerical evaluation for the Bessel quotient was studied in detail by Amos (1974)
using continued fraction. Actually, by repeating the recurrence relation, R,(z) can be
written as a continued fraction

1 1 1

Ru(z) = 2w+ Dzt 2(v+2)/z+ 2w+ 3)/a+ -

The upper bound in {A.5)} implies that, for fixed z, R, x(x) = 0 as k — oo and it seems
that R,(z) can be computed by iteration.
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