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Abstract. A bandit problem with infinitely many Bernoulli arms is considered. The
parameters of Bernoulli arms are independent and identically distributed random
variables from a common distribution with beta(a,b). We investigate the k-failure
strategy which is a modification of Robbins's stay-with-a-winner /switch-on-a-loser
strategy and three other strategies proposed recently by Berry et al. {1997, Ann.
Statist., 25, 2103-2116). We show that the k-failure strategy performs poorly when &
is greater than 1, and the best strategy among the k-failure strategies is the 1-failure
strategy when b is less than or equal to 1. Utilizing the formulas derived by Berry et
al. (1997), we obtain the asymptotic expected failure rates of these three strategies for
beta prior distributions. Numerical estimations and simulations for a variety of beta
prior distributions are presented to illustrate the performances of these strategies.
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1. Introduction

A bandit problem consists of a series of choices from a set of Bernoulii stochastic
processes, or arms with unknown prior parameters that have to be made. At each
decision stage, the decision maker will choose an arm for observation. The choices are
sequential in the sense that they can depend on which arms were chosen previously and
on the resulting observations. The field of bandit problems is a very fascinating area
with wide variety of applications in various branches of sciences. A complete account
of these applications can be found in the paper of Banks and Sundaram (1992) and the
references contained therein.

Two types of strategies have given rise to interesting decision problems. One is to
discount future observations and minimize the expected discounted number of failures.
Berry and Fristedt (1985), Gittins {1989), and Banks and Sundaram (1992) have dis-
cussed several of these strategies. The other variation is that of Robbins (1952), who
considered minimizing the expected long run failure rate (failure proportion). More re-
cently, Herschkorn et al. (1995) and Berry et al. (1997) have proposed some strategies
for the bandit problems with infinitely many arms. This paper can be interpreted as a
detailed study of the work of Berry ef al. (1997) when the parameters of Bernoulli arms
are independent and identically distributed random variables from a beta distribution
with a,b > 0. We will show that the k-failure strategy for the bandit problems with in-
finitely many arms performs poorly for b > 1, and the best strategy among the &-failure
strategies is the l-failure strategy when 0 < b < 1.
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In addition to the 1-failure strategy for the use in the bandit problems when 0 <
b < 1, the possible competitors are the three strategies proposed by Berry et al. (1997).
The goal of this article is to compare the asymptotic expected failure rates by using
these four strategies. The article is organized as follows. Section 2 shows the claims
that the k-failure strategy performs poorly when & > 1, and the best strategy among
the k-failure strategies is the 1-failure strategy when 0 < b < 1. We then derive the
asymptotic expected failure rates by using the 1-failure strategy and the other three
strategies proposed by Berry et al. (1997). A lower bound for the expected failure
proportion over all strategies derived by Berry et al. (1997) is also included. Finally, we
present the asymptotic estimated expected failure rates based on the formulas in Berry
et el. (1997) for various beta distributions. We also provide the asymptotic expected
failure rates through simulation. Tables are given to illustrate the performance of these
strategies and compare them with the lower bound.

2. Main results

Under the assumption that the common prior distribution F is a beta distribution
(beta(a,b) with a,b > 0), the goal of this section is to investigate some of the results
among the k-failure strategies, and three other strategies which are proposed by Berry
et al. (1997). Some of our results generalize the findings of Berry et al. (1997), who have
shown a number of results when the prior distribution is uniform (0,1). In particular,
Theorems 1, 2, and 8 generalize Theorems 1, 2, and 3 of theirs respectively. Also,
Theorems 6 and 9 extend their Theorem 4, Theorem 7 extends their Theorem 5, and
Theorems 5 extends their Theorem 6.

Let us begin by introducing some notation and definitions. For each positive integer
k, a strategy is called a k-failure strategy if it calls for using the same arm until that arm
produces k failures, and when this happens, it calls for switching to a new arm (never
recalling arms that have yielded failures). With the possible exception of the arm being
used when the horizon n is reached, every arm yielded exactly & failures. In particular,
the 1-failure strategy is a modification of Robbins’s stay-with-a-winner/switch-on-a-loser
strategy to the infinite-arm setting. The failure rate (failure proportion) of this strategy
in n trials, when F is a beta(a, b}, is asymptotically equal to

Bla,b) — Bla+ n,b)
S Bla+,b)

where 8(a,b) = Ia)['(b)/T(a + b).
Let N(n,k,a,b) denote the expected number of tosses to the k-th failure or the n-th
trial, Since F' is a beta{a,b) distribution and & < n, we have

N(n, k,a,b)
N EENS T R Y 1 n=3(1 _ oV dF
—/Oj=k_7(j_k)or7 (1-a) dF(a)+n/D§(j)a (1 — a)?dF ()
L (i\Bla+i-kb+k) N[\ Batn—4b+])
;k(fe) Ba.t) +"§O(;’) Bla,b)
5 Bla+37,b+k)

= k+i+1)B(ef0+1LE+1)
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Z Bla+7,b+n—j)
n+1 Bla, )i +1,n—7+1)

Notice that if & > 1, N{n,k, a,b) is bounded for any n > k. Hence the expected failure
rate k/N(n, k,a,b) of the k-failure strategy does not converge to 0 as » — oo for any
fixed k, i.e., when b > 1, the k-failure strategy is a very poor strategy.

On the other hand, for 0 < b < 1

N(n,k,a,6) n z Bla+j,b+n—j)
k C k{n+1) Ba,8)3(G +1,n—j+1}
n—k

GBla+j7,b+ k)
X T T ORwG + LET )

j=n—k+1

is decreasing in k. Hence the expected failure rate k/N(n, k, a, b) of the k-failure strategy
is increasing. Therefore, we have the following theorem.

THEOREM 1. If F is a beta(a,b) distribution and 0 < b < 1. Then the best strategy
among k-failure strategies is the 1-failure strategy asympiotically.

Note that N(n,1,q,1) = m, and N(n,1,a,b) ~ % for 0 < b < 1.

Thus, with different value of b, we have the following two results.

THEOREM 2. For any fized k, the expected failure rate of the k-failure strategy is
asymptoticelly equal to M(nlwﬂ_) if F 45 a beta{a, 1) distribution.

Proor. For fix k and & < n, we use the Stirling’s expansion to have

N(n,k,a,1)
Z P(n+OM(a+j) "Z* T(k+j+ 1)l(a+j)
Pl k+1[‘(n+a+l)1"(g+l 1“(3+1)1“ (a+j+k+1)
mn
N (a+j—1) (k+3)’“
Ncmj_%_'_l (n+a)e Zo {a+7+ k)t

Then the expected failure rate of the k-failure strategy is asymptotically equal to

H 1 . 1
azn jk fn/(a+n) uk U g - aln a+ny’
=k (a+ j)F+1 kflatk) 1 — o u a

THEOREM 3. If0 < b < 1 and F is a beta(a,b) distribution. Then the expected

failure rate of the 1-failure strategy is asymptotically equal to F—%{%@g.

From previous discussions we know the k-failure strategy performs poorly under
the prior distribution beta(a,b) with b > 1, and the best strategy among the k-failure
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strategies is the 1-failure strategy when 0 < b < 1. Also, it may occur that the asymp-
totic expected failure proportion of the 1-failure strategy is not good when Z;‘f__o Bla +
7,b)/6(a,b) < co. Berry et al. (1997) have proposed three strategies and pointed out
that their expected failure rates are very close to the lower bound given in the following
theorem. :

THEOREM 4. (Berry et al. (1997) Theorem 11) For 1 < ¢, < n and G(c,) =
minlgcgn G(C)#

Glen)
n

1 1 1

_1 {cn / Fla)da + (n — en) f Fen (a)dcx}
n 0 0

is a lower bound for the ezpected failure proportion over all strategies.

However, they did not provide a detail investigation about these three strategies
when the prior distributions F are beta(a, b). It is the motivation of this paper, among
other results, to derive the asymptotically expected failure rates of these three strategies
by following the results of Berry et al. (1997).

Before getting into the details we must introduce these three strategies and their
corresponding asymptotically expected fajlure rates first.

o A strategy is called an m-run strategy if it follows the 1-failure strategy until either
the current arm has produced a success run of length m or Arm m is used. If the
former obtained, then the current arm is used for the all remaining trials. If the
latter obtained, then the arm with lowest failure proportion among the m arms
used so far is used for the all remaining trials. So an m-run strategy uses at most
m arms. If it uses 7n arms, then the best performing arm is recalled and used for
the whole remaining trials. Thus, the expected number of failures produced by the
m-run strategy will be asymptotically less than or equal to

1
H(n,m)=m+ (n-— m)/0 F™(a)do.

For each n, there exists a k, such that H(n, k,) = minj<m<s H(n,m).

e A strategy is called a non-recalling m-run strategy if it uses the 1-failure strategy
until an arm produces a success run of length m at which this arm is used for the
all remaining trials. If no arm produces a success run of length m, the 1-failure
strategy is used for all n trials. Then, the expected number of failures produced by
the non-recalling m-run strategy will be asymptotically equal to

T\ (ﬁ(f(jri ) ) Z maﬂ’b) (1 - 6(“2(::“;,;3&))‘

For each n, we can find u,, such that N(n,u,) = min; <men N{n,m).

o A strategy is called an N -learning strategy (N < n) if it follows the 1-failure strategy
for the first N trials (the arm used at the Trial N will be used until such time that it
yields a failure), and then it calls for using the arm that has performed best during
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the learning period for the all remaining trials. Under this strategy the expected
number of failures will be asymptotically less than or equal to

Ng(a,b) .
>o0Ts Bla+j,b)

1
Lin,m)=m+ (n— N)/ ™ (a)dae where m=
0

For each n, there exists an m, such that L(n,m,) = minjcn<y L(n, m).
Therefore, we have the following theorem.

THEOREM 5. If F is a beta{a,b) distribution. Then the expected failure rate of
the non-recalling (cn)V/ 140 ryn strotegy is less than or equal to (1 + b)(en)™Y (L+b)
asymptotically, where ¢ = I'(a + b)/T'(a).

PROOF. Using the Stirling’s expansion I'(z + 1) = (2m)'/2z7+1/2¢~2 the expected
number of failures produced by non-recalling m-run strategy can be easily calculated
and is asymptotically less than or equal to

'(a) + nb
Tla+b) a+b+m

(a+b+m—1)°

We now want to find the value of m that minimizes the equation above. From the
differentiation and simplification of the solution we find that m is asymptotically equal
to (en)Y 84D with ¢ = T'(a+b)/T(a), and the corresponding expected failure proportion
of non-recalling m-run strategy is asymptotically less than or equal to

6*1/(b+1)nb/(b+1)(1 +b)/m = (1+ b)(cn)—lf(b+1)'

THEOREM 6. If F is a beta(a, 1) distribution. Then the expected failure rate of the
' nja-run strategy is asymptotically less than or equal to 2/\/an.

PROOF. Since F ~ beta(a, 1), we have F{a) = a® and the expected number of
failures produced by the m-run strategy is asymptotically less than or equal to

1

m+nf a"do =m + .
0 - am + 1

Taking the differentiation with respect to m and then setting it equal to zero, we thus

have the minimum expected failure proportion of the m-run strategy is asymptotically
equal to 2/y/an, and m is asymptotically equal to y/n/a. It completes the proof.

THEOREM 7. If F i3 a beta(a,1) distribution. Then the expected failure rate of the
vann{®t" ) learning strategy is asymptotically less than or equal to 2/ /an.

a

Proor. Following the argument in the proof of Theorem 6 with N = am ln(“T"f“),
we have the expected number of failures produced by the /N-learning strategy is asymp-
totically less than or equal to m + 5. Applying the same procedure we therefore
reach the conclusion.

. - . . 2 .
THEOREM 8. If F is a beta(a, 1) distribution. Then T is a lower bound for

ell strategies asymptotically.
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Proor. From Theorem 4,

1 1
Glcn) =cnf ado + (n—cn)/ a*rdo
0

0
Cn n—~Cp = Cn Tl

=a+1+acn+1 Na+1+acn'
Setting dG(ec,)/den, = 0 and solving, we obtain ¢, = /n(a + 1)/a and thus G{e,)/n =

2/+/ala + 1)n.

THEOREM 9. If F is a beta(l,b) distribution. Then the expected failure rate of the
(Dn)% -run strategy is asymptotically less than or equal to C/n*, where k = 1/(1 +b),
C is a function of b, and D =T(1+ })/b.

PROOF. Since F ~ beta(l,b), we have F(a) = 1 — (1 — a)®. Thus, the expected
number of failure produced by the m-run strategy is asymptotically less than or equal
to

m+ (n— )/ﬂl(l—(l* b)mda—m+£—_6—£n~ﬁ(%,m+l).

Using the Stirling’s expansion, we get

1 1\* 1
m+(n—m)I‘(l+g)/(m+E) wm+n1"(1+5)/m1/b

Again, we take the differentiation to m + nl'(1 + §)/m!/® with respect to m and then
set it equal to O to find the solution m = (Dn)¥/(1+5 with D = I'(1 + §)/b will have a
minimum expected failure proportion

1
(Dn)b/(1+b) r (1 + 5) Db[(1+b)(1 +b)
n + (D)1 70+5) = L/ (1+5)

Hence, the proof is completed by simply taking & = 1/(1 + b) and C = D% (1 + b).

THEOREM 10. If F' i3 a beta(l,b) distribution. Then the expected failure rate of
the (Dn)P (1 + b)n! ~8/(1 — b)-learning strategy is asymptotzcally less than or equal to
C/n*, where k = 1/(1 + b}, C is a function of b, and D =T(1 + 1)/b.

ProoF. Using the reasoning as for Theorem 9 with N = mI'(1 + b)n!~2/(1 — b),
the expected number of failures produced by the N-learning strategy is asymptotically
less than or equal to m +nI'(1 + 1)/m!/®, and then the result follows directly.

THEOREM 11. If F is a beta(l,b) distribution. Then A/n* is a lower bound for
all strategies asymptotically, where A is a function of b and k = 1/(1 + b).

ProoF. From F(a) =1 — (1 — @) and Theorem 4,
! b ! b |
= —_ —_ _ —_ _ Cﬂd
Glen) cn/U (1= (1= a)P)do+ (n cn)/o (1= (1—a))rda
)r (1+ %) Cen +1)

1
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Table 1. Estimated and simulated expected failure rates for various distributions.

lower Proc. 1 Proc. 1f Proc. 11 Proc. IV
1] cn  bound kg E s [ E 3 Uy E g E S

beta{l, 1} 100 13 0.127 9 0.181 0.179 9 0.143 @.168 9 0.165 0.160 0.191 0.221
200 19 0.083 13 0.132 0145 13 0.10¢ 0128 13 0.122 0115 0.16¢ 0.198
300 24 0077 16 0.109 0128 17 0092 0.108 16 0.102 0.096 0.159 0.183

400 27 0.067 19 0.095 0.102 19 0.082 0.096 19 0.089% 0083 0.152 0.169
500 31 0.080 21 0.08 0100 22 0.074 ¢.089 21 0081 0076 0.147 0.163
600 34 0.055 24 0.078 0081 24 0.06¢ €080 23 0074 0071 0.143 0.158%
700 36 0.051 25 0073 0.08 26 0064 075 25 0.069 0067 0.140 0.15%
800 3¢ 0.048 27 00688 0.080 27 0.061 0.073 27 0.065 0.063 0.138 0.185
900 41 0.046 29 0.064 0.079 20 0.058 0.068 29 0.061 0.080 0.135 0.153

1,000 44 0.043 31 0.061 0.074 31 0.0685 ©0.066 30 0.058 0056 0.133 0.154

beta{2,1) 100 12 0.075 7T 0132 0.132 7 0097 ¢.117 12 0113 0.104 0.117 0136
200 17 0054 10 0.005 0101 10 06074 0,030 18 0.084 0.079 0.101 0.11%

300 21 0045 12 0078 0.082 12 09063 ¢.075 23 0.070 0.070 0.084 0.112

400 24 0.039 14 0068 0.072 14 0056 0.066 26 0.062 0.060 0.089 0.102

500 27 0.035 15 0.061 0.066 15 0.051 0.060 30 0.056 0.054 008G 0.098

600 30 0.032 17 0.056 0.060 17 0.047 0.057 33 0.051 0.052 0.083 0.095

700 32 0.030 18 0.052 0.065 18 0.044 ¢.051 36 0.045 0.047 0081 0.093

80D 34 0028 20 0.049 0.053 20 0042 0050 38 0.045 0.044 0080 0.080

900 36 0.026 21 0.046 0.052 21 0.040 0.050 41 0043 0.042 0.078 0.051

1,000 38 0.025 22 0044 0046 22 0.038 0.044 43 0.041 0.039 0077 0.089

bata(1,2) 100 18 0.288 13 0338 0377 14 (.307 0¢.371 4 0,399 0361 0.505 0.519
200 28 0.235 21 0.275 0.330 22 0.255 @.310 5 0.332 0.302 0.502 0.510

300 36 0.209 27 0.243 0.303 29 0.228 (.288 6 0297 0277 0.502 0.508

400 44  0.191 33 0.222 0281 34 0.210 0.275 T 0.274 0.257 0.501 0.502

500 51 0.179% 38 0.208 0.268 40 0.197 ¢.280 & D0.257 {.241 (.501 0.502

600 57 0.16% 43 G.194 0.258 45 0.186 (.252 9 0.244 0.226 0.501 0.504

700 €3 0161 47 0.187 0.250 49 0.178 0.236 9 0.233 0218 0.501 0.502

800 69 0.154 52 0.17¢ 0.243 54 (.171 (.233 10 0.225 0.210 0.501 0.506
900 74 0149 B6 0173 0243 58 (.165 0(.222 10 0.217 0.204 0.501 0.504
1,000 79 0.144 G0 0.167 0229 62 0160 0.221 10 0.211 0.1947 0.501 0.503

beta(2, 2) 100 16 0.192 10 0.2562 0279 11 0.219 0.262 6 0281 .26 0.340 0.357
200 24 0.155 15 0.202 0.243% iT7 0.181 (1222 & 0.232 (.214 0.337 0.346

300 32 0.137 20 0.177 0215 21 0.161 0.210 9 0208 0.195 0.33¢ 0.341

400 38 0.125 24 G162 0206 25 0149 0.1%0 11 0191 0.183 0.335 0.340

500 44 0.116 27 0.150 0.192 29 0.139 0.185 12 0.179 0.173 0.335 0.337

600 49 0.110 31 (142 6G.178 33 0.132 0.174 13 0.170 ©.162 0.334 0.337

700 55 0.104 34 0.135 0.178 36 0.126 0.166 13 0.163 0.151 0.334 0.337

800 K9 0100 3% (G129 G175 29 0121 0.163 14 0156 0149 0.334 0.337

900 64 0.096 40 0.124 0.168 42 0.116 0.157 15 0.151 0.144 0.331 0.334

1,000 G9 0.093 43 (120 0.162 45 0.113 0.156 15 0.146 0.141 0.334 0.336

Applying the Stirling’s expansion to get the approximation ¢, +nT'(1 + 1)/ c/?. Setting
dG(en)/den, = 0 and solving, we get ¢, = (rI'(1 + 3)/b)*/(®+1) and then

1 b/{b+1) b/(b+1)

- it 1/(b+1)
Glen) r 1+b /b +|T 1+b b

-

n nl/(115)

We take k = 17 and A = (T(1 + £)/b)Y®+) 4 (T(1 + L))/ B0+ to have the

desired result.

For any 0 < b < 1 we find 1/(1 + b} > 1 — b, and therefore, from the results
of Theorems 3 and 5, the l-failure strategy is inferior to the non-recalling strategy
asymptotically.
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Table 2. Estimated and simulated expected failure rates for various distributions.

lower © Proc. 1 Proc. 11 Proc. 11 Proc. IV
n . bhound k, E 8 n E ] Un E 3 E 5

11
beta (E,E} 130 11  0.082 9 0.126 0.128 7 0083 0093 14 0.084¢ 0079 0084 0.099

200 14 0.054 11 0.084 0.089 9 0057 0066 23 0055 0054 0.060 0076
300 16 0042 12 0.065 0.089 11 0.045 6.054 30 0043 0.043 0.050 0.061
400 18 0035 14 0.054 0.060 12 0.038 0047 36 0.036 0.036 0.043 0.054
500 20 0030 15 0.047 0.050 13 0.034 0040 42 (031 0.031 0.039 0048
600 21 0.027 16 0.042 0.046 14 0.03¢ 035 48 0.028 0.028 0.035 0.044
700 22 0024 17 0.038 0.040 15 0.028 0.035 53 0025 0025 0.033 0041
800 23 0022 18 0.035 0.038 16 0.026 ©.031 58 0023 0.023 0031 0037
%00 24 0.021 19 0.032 0.035 17 0.024 0.031 83 0.021 0.022 0023 0.038
L0000 25 0.01% 20 0.03¢ 0.034 17 0.023 0.028 67 0.020 0020 0.028 0.036

beta(l, 3) 100 20 0410 15 0453 0.515 17 0425 0.503 2 0.574 0.517 0667 0.670
200 32 0.355 25 0.390¢ 0467 27 0370 0449 3 0.507 0.483 0.667 0.668

300 43 0325 33 0.356 0.442 36 0.340 0.440 4 0.470 0.437 0.647 (0.666

400 53 0305 41 0.334 (.417 44 0320 0.413 4 0446 0409 0.667 0.667

500 A2 0.250 48 0.317 0407 32 0305 0.399 5 0.427 0.394 0.667 0.665

600 70 0.278 55 0.304 0.393 59 0293 0.389 5 0.411 0374 0.667 0.666

700 79 0.269 61 0.203 0.392 66 0.283 0.380 5 0.400 0.369 0.667 0.667

800 87 0.261 68 0.285 0.380 72 0.275 0.369 6 0.380 0.358 0667 0.668

900 894 0.254 74 0.277 0374 T8 0.268 0.359 6 0.380 0.350 0.667 0.667

1,000 102 0.248 79 0.270 0.367 84 0.262 0.366 6 0.372 0.342 0.667 0.647

beta(2, 3) 100 18 0295 11 0.351 0402 13 0319 0.384 4 (.429 0383 0.500 0.506
200 29 D0.252 19 0.298 0.367 21 0.276 0.347 5 0.375 0348 0.500 0504

300 38 0229 25 0270 0.339 28 0252 0.525 6 0.347 0.316 0.500 0.501

400 46 0215 30 0.252 0.318 34 0.237 0.317 6 0.328 0307 0.500 0.500

500 54 0203 36 0.238 0313 39 0225 0.306 7 0.313 0.289 0.500 0.501

600 62 0.195 40 0.228 0304 44 0.216 0.293 8 0.302 0.280 0.500 0.502

700 69 (188 45 0.219 0.298 49 0.208 0.291 8 0.202 0.278 0.500 0.502

800 75 0.182 S50 0.212 0.282 54 0.202 0.282 8 0.284 0271 0.500 0.500

900 82 0.177 54 0.206 0.279 59 0.187 0.272 9 0.277 0.258 0.500 0.501

1,000 88 ©.173 58 0.201 0.277 63 (0.192 (.269 9 0,271 0.264 0.500 0.500

beta(3, 3) 100 17  (.233 9 0.294 0.337 11 0.261 0.321 5 0.348 0.318 0400 0411
200 27 0.198 15 0.247 0302 18 0.225 0.284 6 0.304 0.282 0400 0.404

300 36 0.179 20 0.223 0273 23 0.205 0.260 7 0280 0.263 0.400 0.403

400 43 G167 25 0.207 0.267 28 0.182 0.261 8 0.264 0.257 0400 0.401

500 &1 0.158 29 0.196 0.261 33 0.183 0.252 g 0252 0.235 0.400 0400

600 57 (.152 33 0.187 0.250 37 0.175 0.245 10 0.243 0224 0400 Q.400

700 64 0.146 37 0.180 0.243 41 0.1690 0.241 10 0.235 0220 0400 0.400

800 YO 0.141 41 Q.174 0.229 45 0.164 0.228 11 0.228 0.217 0400 0.400

@0t 76 0.137 44 0.16% 0235 49 0.15¢ 0.226 11 0,223 0.208 0.400 0.401

1,000 82 0.134 48 0.164 0.228 52 0.185 0.223 11 0.218 0.210 0400 0.400

3. Numerical estimations and simulations

To illustrate the results of the preceding section, here we present some numerical
data using four strategies for various beta distributions. In judging the performance of
these strategies that we used in this article, we rely heavily on a lower bound of Berry
et al. (1997).

Tables 1 and 2 give some examples using four strategies to obtain the estimated
expected failure rates for 8 bete distributions with a,& > 0. Here Proc. I is the m-
run strategy, Proc. IT is the N-learning strategy, Proc. III is the non-recalling m-run
strategy, and Proc. IV is the L-failure strategy (a modification of Robbin’s stay-with-a
winner/switch-on-a-loser strategy). Using these strategies give the estimation that we
call E in our tables. For comparison, we include the simulated values obtained from
1000 iteration, which we refer to as 8. The values of ¢,,, by, ™4, and u, discussed in the
previous section are also presented.
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Berry et al. (1997) have presented a graph to compare the expected failures rates
of the first three strategies for 5 different beta distributions. In their example the N-
learning strategy tends to do better in the sense that the asymptotic estimated expected
failure rates are closer to the lower bound than both m-run strategy and non-recalling
m-run strategy. This result matches with our table values when a,b > 1. In addition,
the non-recalling m-run strategy typically improves on the m-run strategy when & = 1,
but often does worse than the m-run strategy for b > 1.

Irom the tables we have also found only the 1-failure strategy gives close esti-
mated and simulated values. The l-failure strategy performs poorly when & > 1. As
such, it is inferior to any other three strategies for any value of a. When b = 1, the
other three strategies tend to do a little better than the 1-failure strategy. However,
for beta(1/2,1/2), the N-learning strategy, the non-recalling m-run strategy, and the
1-failure strategy are very close competitors. In particular, the non-recalling m-run
strategy can be shown to be the best strategy for beta(1/2,1/2), which also verifies the
fact that it is superior to the 1-failure strategy.
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