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Abstract. In this paper, we present a unified diagnostic method for linear measure-
ment error models based upon the corrected likelihood of Nakamura (1990,
Biometrika, 77, 127-137). Both global influence and local influence are discussed.
The case-deletion model and mean-shift outlier model are considered, and they are
shown to be approximately equivalent. Several diagnostic measures are derived and
discussed. It is found that they can be written in terms of the residual and leverage
measure. Some existing results are improved. Numerical example illustrates that our
method is useful for diagnosing influential cbservations.
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1. Introduction

This paper deals with the assessment of influence for linear measurement error mod-
els, based upon the corrected likelihood (CL) defined by Nakamura (1990). Some review
of measurement error models can be found in Anderson (1984), and Fuller (1980, 1987)
for linear models, and in Carroll et al. (1995} for nonlinear models. To deal with these
models, there are two approaches shown in the literature as Hanfelt and Liang ((1997),
p. 628) pointed out. One approach, the corrected likelihood (Nakamura (1990)), success-
fully corrects for measurement errors in normal, Poisson, gamma and inverse Gaussian
regression models. The method is easy to compute in practice. Another approach given
by Stefanski and Carroll (1987) is more direct on an unbiased estimating function rather
than on an approximate likelihood. On regression diagnostics for measurement error
models, only little work has been done and they are all basically based on the second
approach mentioned above. Kelly (1984) gave an influence function for the structural
models, Fuller (1987) defined the hat matrix using the estimated predictor variable val-
ues, and Wellman and Gunst (1991) proposed an one-step approximation to Cook’s
distance. Zhao et al. (1994), and Zhao and Lee {1995) derived the influence functions
for generalized linear and non-linear measurement error models. However, the results
stated above are quite cormplicated in computations.

In this paper, we present a new and unified diagnostic method for linear measure-
ment error models based upon the corrected likelihood of Nakamura, {1990). Both global
and local influence diagnostics are derived. In Section 2, we review the basis of the
corrected likelihood defined by Nakamura (1990}, and some related properties are dis-
cussed. By using the corrected likelihood, Section 3 deals with two diagnostic models:
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case-deletion model and mean-shift outlier model. Our results show that the two diag-
nostic models are approximately equivalent. We can approach to global influence via
deletion approach, and several diagnostics are derived. Section 4 covers local influence
analysis via perturbations of model or data. The diagnostic procedure based upon Cook
(1986), and the scaled curvature defined by Schall and Dunne (1992) are well applied to
the corrected likelihood. Moreover, the corrected scaled curvature is found to connect
well with the diagnostics mentioned in Section 3. The diagnostics given in this paper
are easier to compute than those of Kelly (1984), and Wellman and Gunst (1991). In
Section 5, an illustrative example is given. Section 6 gives a brief discussion on the
generalization of the methods.

2. Corrected likelihood of measurement error models

The linear measurement error models can be written as

(2.1a) Y=2Z3+¢, ¢~ N{(0,6°I,),
(2.1b) X=Z+6 §~N(0,I,®A),

where Y is an n x 1 vector of observations y;, Z is an n x p matrix with z7 as its é-th
row, I, is an n x n identity matrix, and ¢? is the unknown common variance. X is also
an n X p matrix with z7 as its i-th row, ¢ and & are independent, and A is a positive
definite matrix.

The measurement error model begins with an underlying model for the response ¥’
in terms of the covariates. We distinguish between two kinds of covariates: X represents
those covariates which for all practical purposes are measured with errors, while Z cannot
be observed exactly for all studied subjects.

We now first review the corrected likelihood of Nakamura {1990) and then apply it
to model (2.1).

Denote by i(3,Z,Y), U(3,Z,Y), and J(3, Z,Y) the log-likelihood, score function,
and observed information —8U(3, Z, Y} /83 respectively, of 3 given Z and Y. The Fisher
information of 8 given Z is denoted as I(3, Z). Let 8y be the true parameter value and
E* denote the expectation with respect to the random vector Y, then

(2.2) EY{U(B,Z,Y)} =0, E*{J(B,2,Y)} = I(8, 2).

When Z is subject to error and X is the observed value of Z, then E+*{U (8, X,Y)} =0
does not necessarily hold and 8 such that U(8, X,Y) = 0 is not necessarily consistent,
in general. To correct this, Nakamura (1990) proposed a corrected likelihood I*(5, X,Y)
which satisfies

(2.3) ET{I"(B,X,Y)} =UB Z,Y),

where E* denotes the conditional mean with respect to X given Z and Y, and parameter
{3 is in an open convex subset B. Let U*(3,X,Y) = 8I*(3,X,Y)/83 and J*(8,X,Y) =
—QU*(B3,X,Y)/83 be the corrected score function and corrected observed information
respectively. If E* and 93 are interchangeable (Nakamura (1990}), then

(2.4) EX{UB3, X, V)}=U{({B,2,Y), E{JYE,X,Y)}=J(B,2Y)

The value 3 such that U*(8, X,Y) = 0 with J*(3, X,Y) being positive definite is called
a corrected likelihood estimate (CLE) of 3.



INFLUENCE FOR MEASUREMENT ERROR MODELS 369

As pointed out by Nakamura (1990), the corrected likelihood I* and the CL estimator

3 have nice properties (see also Hanfelt and Liang (1997)). Let E' == ETE” denote the
global expectation, then it follows from (2.2) and (2.4) that

E{U(60,X,Y)} = EYE*{U*(f0, X, Y)} = E*{U(o, 2, Y)} = 0.

This indicates that a corrected scare function is an unbiased score function (Stefanski
and Carroll (1987); Nakamura (1990)). In particular, as proved by Nakamura (1990), the
estimator 3 has the properties of consistency and asymptotic normality, under certain
regularity conditions, as expected. Moreover, from the asymptotic normality of ﬁ, we
have LD{3) = 2{I*(8) — I*(3)} — x*(p) (see, for example, Cox and Hinkley (1974)).
By the above description, our discussion on measurement error model (2.1} will be

based on the CL {*(3, X,Y) and the corresponding CLE 3. For our model (2.1), it is
easily seen that the log-likelihood (3, Z,Y) is

1
(25) 18,2,Y) = ~Flog2no® ~ 55 > _(ui — [ ).

From this, we can get the corrected log-likelihood as
* __bR 2 1 T 312 T
(2.6) (8, X,Y) = -5 log2ma® — S > {(wi — =78y - 8TABY,

since E*{I*(3,X,Y)} =1{B,Z,Y) (see also Nakamura (1990)).
Differentiating I*(3, X,Y) with respect to 3, we have the corrected score function

o
B
Then 3, the CLE of 8 is obtained by solving equation &/*/83 = 0, when the following

matrix inversion is possible

(2.7) HXTY - XTXB 4+ nAp).

(2.8) B=(X"X —nA)"1XTY,

which coincides with the regression coefficient corrected for attenuation; see Fuller
((1987), p. 5).

From (2 8), the fitted valueis ¥ = HY , where H = X (X TX nA) 1XT with entries
hij, and the residual vector is é = ¥ — Y. The estimate of o2 is 6% = ||€]|?/(n — p).
Further, from differentiating {2.7) we can get the corrected Fisher information matrix
A _
= a

J*8, X,Y) HXTX —nA).

Let 8; be a p-vector with 1 at the k-th position and zeros elsewhere, then ﬁk = 5{@ has
the standard error s and the t-value tx = Si/sk, where s,c = &2 (XTX - nA)” 16g-
The joint 1 — & confidence region for parameter 3 is {3 : (ﬁ AT(XTX —nA) (ﬂ 3) <
&*F(p,n — p,a)}, where F(p,n — p,a) denotes the upper o percentile of the Fisher’s
F-distribution with p and n — p degrees of freedom.

3. Global influence analysis

This section will present several diagnostic measures based on corrected likelihood
(2.6).
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3.1 On diagnostic models
A fundamental approach of diagnostic analysis is based on the comparison of param-

eter estimates 3, 52 with parameter estimates 5‘(,-), &(21.} that correspond to the so-called
case deletion model (CDM) with the i-th case deleted:

(3.1) yi =2 B+¢, J#i4 i=1,....n

LeMMma 3.1. The estimates @(,-) in case deletion model (3.1) can be expressed as

(3.2) B~ By =

where hy; is the i-th diagonal entry of H, measuring the leverage for case i, and é; = y;— ¥
is the i-th residual.

This lemma is easily obtained by a few calculations from (2.6} (2.8) and (3.1). A
similar result is given for linear models without measurement error by Cook and Weisberg
((1982), p. 110).

The case deletion model is the basis for constructing effective diagnostic statistics,
and it is the most important one in practice because it is straightforward and easy to
compute. Another commonly used diagnostic model is the mean-shift outlier model
(MSOM, Cook and Weisberg (1982), p. 20). MSOM can be represented as

(3.3) yi =z B+e, for j#i, j=1,...,n,
v =2l B+ v+ e,

where v is an extra parameter to indicate the presence of an outlier. It is easily seen
that the nonzero value of -y implies that the i-th case may be an outlier because the
case (%, 2;,y;) no longer comes from the original model. This model is usually easier
to formulate than the case deletion model. To detect outliers, one may either estimate
the parameter 4 or make a test of hypothesis Hy : v = 0, using MSOM which will be
discussed later. The CLE of 3, ¥ and ¢2 in (3.3} are denoted by Bmi, mi and 62,
respectively.

CDM and MSOM are central models frequently used in regression diagnostics. It
is well known that in linear regression models CDM and MSOM are equivalent in the
following sense: the least square estimates (LSE) of parameters are equal under CDM
and MSOM (Cook and Weisberg (1982)). However, the equivalence of CDM and MSOM
on our models (2.1) have not been studied in the literature. It was Storer and Crowley
(1985) who conjectured that Gp; = ﬁ(,;) may hold in a broader class of models. Williams
(1987) used the result G, = ,@(i) for generalized linear models, but he did not give
the proof. Ross (1987) and Dzieciolowski and Ross (1990) used the result ﬁmi = 3(1-)
implicitly for nonlinear regression models. Wei and Shih (1994) have solved this problem
for many commonly encountered models, but not including measurement error models.
Now we shall show that 8, &~ 3(;) holds for our models.

THEOREM 3.1. Under the notation and definitions stated above, we have ém,- ~z

Bsy-
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ProoF. It follows from (2.6} that the corrected log-likelihood of MSOM is

1
(8, X,Y) = — 2 log2m0® = 55 3 3 (w2} 8)° — (i —2{ B~ 7)* —nBTAS
J#i

The CLE f.m; and 4ym; satisfy

81:711(467X1Y) =0 al;—;,z(ﬁaxay) -0
ap o oy '
which results in %, = y; — x?,@m and

Boni = (XTX — nA — ziz] )HXTY — zays),

T _ -1 2.
(3.4) Boi=f - & Xl f”}f ) iy

From Lemma 3.1, we have fimz- R ﬁ(@-).

3.2 Influence diagnostics

Once we get the corrected likelihood and its corresponding estimates, many diag-
nostics are immediate consequences, now we list them below.
3.2.1 Basic diagnostics

As in linear regression, the residual and the internally studentized residual are de-
fined as

g =yi—x B, and
é;

r=
It is easily seen that hy = d4;/8y;. This means that h;; measures the sensitivity of §;
with respect to ;.
3.2.2 Score test statistic of outlier

We can get a score test statistic to detect the outlier based on the mean-shift outlier
model. In fact, for model (3.3), one can make a test of hypotheses:

Hy:v=0;, Hy:v#£0.

If Hy is rejected, then the i-th case is a possible outlier because this case may not come
from the original model. We now derive a score test statistic for Hy.

THEOREM 3.2.  For MSOM, the score test statistic for the hypothesis Hy : vy = 0
is gwven by

52

e
3.5 M S—
( ) 5C, 5_2(1 — h%) L
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ProoF. Since CLE is asymptotically normal, the score test can be used (Cox and
Hinkley (1974)). Let the corrected Fisher information matrix of Y for 3 and v be Jigy),

then the score statistic for Hy is
Y i
Oy

alz \T
5Gi = {(@7)

where J7 is the lower right corner of J (B.7)" It is easily seen that

*

(8,02

(8,
a(f 7 _ 2(% ~zTB-7),

1 XTX*RA Ty
Jom =75 | 1 1)

)

JT = 0'2/(1 - hﬁ),
then we can get the formula {3.5) from the above equations.

This theorem shows that the score statistic SC; is just the square of studentized
residual that is an adequate diagnostic statistic as often used in linear regression diag-
nostics.

3.2.3 Generalized Cook distance

The generalized Cook (1977) distance is the norm of ﬁ - ﬁ(i) with respect to certain

weight matrix M > 0, ie.

CD; = |18 - Beylias = (B = Biay)" M(B = Beay)-

Choosing M = J*(3,X,Y) = 6~2(XT X —nA), the corrected Fisher information matrix
of Y for 3, yields

(8 o) T(XTX — nd)(B - fro)

CD; =
&2
By Lemma 3.1 we can get, approximately,
(3.6) oD, — i
1—hy "

Rio (1988) defined G?(u) where

I (XTX —nA) lu

Gi(u) =
) VUT(XTX —nA) Tu- 1 hy

H

for some p x 1 nonzero vector u, as the so-called u potential. He argued that GZ(u) can

be used to measure the influence of case i on the precision of the estimation of uTA3. Let
G,rn' = Gi(ék), and

(3.7) DM = r2GY,,

then case ¢ can be considered a highly influential point if C’ng) > F(l,n —1,0.1), since
this case, if deleted, would move the estimate of 3; to the edge of the 90% confidence
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region, or if CD; > F(p,n — p,0.1) for a similar reason. In the Cng) measure, the
factors Gy; is the §g-potential, which indicates the influence of case i on the precision of
the estimate 8;; whereas in the CD; measure, the term hy; /(1 —hs;), which is a monotone
function of %;;, measures the relative sensitivity at each data point.

As in linear regression, other diagnostics which have similar rationale as the Cook
distance can be defined. One of such diagnostics is the Welsch and Kuh (1977) statistic

given as
B 1/2
WK; = = ti:
K (1 - hﬁ)

where t; = é;/(6¢;+/1 — h;;) is called the externally studenized residual.
324 Likelihood distance
The likelihood distance is defined as (Cook and Weisberg (1982), p. 183)

LD;(8) = 2{"(3) - I*(B»)}-

Taylor expansion of Z‘({B‘(i)) at 3 gives
A, 1. . o aa a
LDy =21 B)B o) + 58~ o) -F BB - b

where [*(3) = U*(3,X,Y) and —i*(8) = J*(3,X,Y). This result is exact because the
third derivative is zero. Since [*(3) = 0, we have

and the two diagnostic measures are identical.

We have introduced some basic diagnostics, the generalized Cook distance CD;, the
likelihood distance LD; and score statistic SC, based upon the corrected likelihood. It is
observed that the diagnostic measures can be written in terms of the basic diagnostics.
Assessment of the adequacy of moadel fit can be done by plotting residuals »; versus
various fitted values y;, or versus the values of some of the above diagnostics and 8o on.
Any patterns in such plots tend to indicate possible model inadequacy.

4. Local influence measure

The local influence approach was presented by Cook (1986) and developed further
by several authors (Thomas and Cook (1989), Escobar and Meeker (1992}, Wu and Luo
(1993), Wu and Wan (1994}, Fung and Kwan (1997), and so on). In this section we first
review the basic idea and formulas of local influence approach, and then apply them
to linear measurement error models. Notice that our work is based upon the corrected
likelihood (2.3).

4.1 Cook’s general procedure and its modification

To study the sensitivity of uncertainties in the data or model, one can proceed by
specifying a perturbation scheme through an nx 1 vector w with components w; attaching
to case i. Here w is admitted to vary over a neighborhood of wg, a null point at which
the perturbed log-likelihood satisfies 1(6,wo) = 1{#). Assuming that given w, [(#,w) is
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maximized at é{w), while {(8) is maximized at 6, then é(wg) = é. From arguments of
Cook (1986), the likelihood displacement surface is given in the form as

(4.1) o(w) = (L;(w))=

with LD(w) = 2{(#) — I{(#(w))} as the solution locus. The normal curvature of a(w) at
wy along the line w = wy + 7d takes the simple form

(4.2) Cy=2dTFd with F=77T(-DT,

where d is an n x 1 unit vector, and 7 is a scale parameter, while T is a p X n matrix
of first derivatives of #{w) with respect to w, evaluated at wy. Cook (1986} argued that
the maximum curvature direction can provide important diagnostic information.

A modification of Cook’s local influence approach which is invariant over reparame-
trizations of the perturbation scheme was introduced by Schall and Dunne (1992). They
suggested the scaled curvature which is defined as

dTFd
4.3 Ci= ==
where G = E(—8%1(0,w)/8wduwT) is evaluated at wp. Based on a linear transformation
to the scaled curvature, we have
(4.4) Cl=d¥Ad with A=G YViFG-1/2

It is easily seen that C§ and CJ have the same maximum curvature direction.

Let G¢ = E{-8%{f(w))/0wBuT} be evaluated at wp, then the corrected scaled
curvature might be given as

o dTFd

¢ T dTGed
and it well connects local influence of commonly used perturbations with the influence
diagnostics given in Section 3.

By the description stated in Section 2, we can naturally apply the corrected likeli-
hood (2.6) to the Cook’s (1986) theory with LD*(w) = 2{i*(#) — I"((w))}.

(4.5)

4.2 Mean shift perturbation

Omne common way to describe the uncertainties in the mean is to perturb X3 to
X3 + w, which is identical with perturbing the vector of the observed responses in
normal case. Assuming for simplicity that o2 is known or replaced by &2, the relevant
part of the perturbed corrected log-likelihood is

. 1
(4.6) (8, w) = —5 log2n0” — s (|¥ — X8 - w|* — nBTAB),

where wy = 0 yields the non-perturbed corrected log-likelihood. In the direction of the
i-th unit vector of R", the curvature of the influence graph of w derived from (4.2} is
given by C; = hy; /3%, The expected information is G = 721, then the scaled curvature
is given by Cf = hy;. By a little calculation from (4.6), we obtain

(4.7)  I"(Bw)) = —g log 2mo? — 5;3(1/ —)T(T = X(XTX —nA)LXTWY - w),
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which results in G¢ = (I ~ H)/#?, then the corrected scaled curvature is

htl

I _
(4.8) ol = =5

The scaled curvature associated with a mean-shift in the i-th observation turns cut
to be the leverage of the observation y;, and the corrected scaled curvature, is expressed
as a monotone function of A;;. The diagnostics here emplasize the effect of case leverage.

4.3 Case weights perturbation

The case weights are often the basis for the study of influence; deleting a case is
identical with attaching a zero weight to that case. Let w denote an n x 1 vector of case
weights, then the perturbed corrected log-likelihood can be denoted as

1 1
{4.9) P,w) = ——glog%rcrz " 5.7 Z{wi(y,; — 2l 3) — BTAB} + 5 Zlogw,-,

where wy = (1,1,...,1)T yields the non-perturbed corrected log-likelihood. In the di-
rection of the i-th unit vector of R", the curvature of the influence graph of w derived
from (4.2) is given by C; = 2hé;° /&%, The expected information is G = I, /2, then the
scaled curvature is given by C/ = 2C;. By a little calculation from equation (4.9}, we
get

(4.10) I"(Bw)) = —glog%a? - %YT{W - WX(XTWX - nA) ' XTWY}Y,

where W = diag(w;,ws,...,w,), then the diagonal entry of G¢ is G, = 2hy(1 — hy),
and the corrected scaled curvature is

(4.11) cH =2

i 3

This is just the square of the studentized residual. This result illustrates that the stu-
dentized residual and the case weights perturbation here have the same effect to detect
the model fit.

4.4 Perlurbation of explanatory variables

Consider perturbing the data for the k-th explanatory variable, by modifying the
data matrix X as X, = X +wé{. In this situation, the perturbed corrected log-likelihood
can be written as

1
(4.12) 1'(8,w) = — 5 log2ma® — - {|[Y - X,81° - nST AB},
where wo = ( yields the non-perturbed corrected log-likelihood. In the direction of the

i-th unit vector of R™, the curvature of the influence graph of w derived from (4.2) is
given as

1 2 " .
(13) G = (6 (XTX — nd) 66} - 26T (XTX - ) Heifids + B hait.

The expected information is G = §—2 ﬂk I, then the scaled curvature is given by Cf =
,Bk %C;. By a little calculation from equation (4.12), we get

- ] _
(4.14) (B(w)) = -glogzam? ~ 53Y T = XXX, ~ nh) T XYY,




376 XU-PING ZHONG ET AL.
I o5
N .
K
2 -
. . .
14 . . . o @
. a® o*
Do.--... ...... ................ ..... ....
.1J - . L] [ ] ®ee . . ..
.
2 .
-3 v
o 5 10 15 20 25 30 k13 40
Fig. 1. Index plot of studentized residual r;.
i 025
0.2 1 .
[ ]
0.15
»
[ ]
0.1 .
. ’ e * L .
0.05 - . * e
- . . & .0
%% 4s %ee Seeun®ey, e g . .
[ v r v
0 5 10 15 20 25 30 35 0
Fig. 2. Index plot of leverage measure F;.

From {4.14}, we can obtain that the i-th diagonal entry of G® is Gf;, = &“23,%(1 — hy;)
and then the corrected scaled curvature is

hy; _ _
(4_15) C;_H = 1_—?';%‘1; - Ztlein»i-l-tk?Tiz,

where t; is defined in Section 2, and the result here associates with the studentized
residual, the leverage and G; defined in Section 3, the potential measure.

5. Example

Concrete data. These data were given by Wellman and Gunst ((1991), p. 378),
and we call them the concrete data for short. The data set contains comprehensive
strength measurements of 41 samples of concrete. It was desired to use a linear regression
model to predict comprehensive strength of concrete 28 days after pouring from the
strength measurements taken two days after pouring. Wellman and Gunst (1991} used
the unbiased score to discuss the linear measurement error models. Here we use the
corrected likelihood to analyze the data.
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Fig. 4. Absclute value of direction |dmax| of maximum curvature under the case weight per-
turbation.

The statistical diagnostics of Sections 3 and 4 are constructed for the data set.
Since many of the diagnostics can be written in terms of the basic statistics, studentized
residual r; and leverage measure hy;, so they give similar influence information about the
data set. For brevity, only the popular and more informative diagnostics are presented
below. Figure 1 gives the index plot for the studentized residual r;. Case 21 has a large
r; which indicates that it may be an outlying observation.

Figure 2 plots the leverage values of the data. The figure shows that cases 22 and
21 have the largest leverage. However, case 22 does not have a large residual as observed
from Fig. 1. The effect of the observations to the estimates of regression coefficients is
investigated by the generalized Cook distance which is given in Fig. 3. It is clear that
case 21 has a much larger influence than the other cases.

The local influence of the observations is investigated. Figure 4 gives the absolute
value of the direction dpax of the maximum curvature under the common case weight
perturbation scheme. Again, case 21 is identified to be the most influential. The local
influence of other perturbation schemes are also investigated, and they give very similar
results to Fig. 4. They are omitted here.
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6. Discussion

We have discussed the linear measurement error models and obtained several di-
agnostic measures based on the corrected likelithood. As Nakamura (1990) successfully
corrected for measurement errors in Poisson, Gamma and Inverse Gaussian regression
models, the method used in this paper can be also applied to these generalized lin-
ear models. By similar derivations from the corrected likelihoods given by Nakamura
{(1990), pp. 131-133), both global and local influence diagnostics can be obtained for
these models. For example, the score statistic for a Gamma regression model can be
constructed as in Subsection 3.2, and it is given as

scf= &)
bORT( ARG

where &7 = y; exp{al §— (6 AB)/2}, b = yik€ (z: — AB)T 1% (zi — AB), 6F = &~ yiRT,
and I} is the corrected observed information matrix for the Gamma model. We shall
discuss the diagnostics for these other models in detail in a separate paper.
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