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Abstract. Asymptotic biases and variances of M-, L- and R-estimators of a loca-
tion parameter are compared under s-contamination of the known error distribution
Fy by an unknown (and possibly asymmetric) distribution. For each e-contamination
neighborhood of Fp, the corresponding M-, L- and R-estimators which are asymp-
totically efficient at the least informative distribution are compared under asymmet-
ric e-contamination. Three scale-invariant versions of the M-estimator are studied:
(i} one using the interquartile range as a preliminary estimator of scale: (ii) another
using the median absolute deviation as a preliminary estimator of scale; and (iii) si-
multaneous M-estimation of location and scale by Huber’s Proposal 2. A question
considered for each case is: when are the maximal asymptotic biases and variances
under asymmetric e-contamination attained by unit point mass contamination at co?
Numerical results for the case of the s-contaminated normal distribution show that
the L-estimators have generally better performance (for small to moderate values of
£) than all three of the scale-invariant M-estimators studied.

Key words and phrases: Robust estimation, M-, L- and R-estimators, asymptotic
biases, asymptotic variances, asymmetric contamination.

1. Introduction and summary

This paper carries out a comparative study of the robust M-, L- and R-estimators
of location that are derived from the asymptotic minimax theory for robust estimators
(Huber (1981}). Comparisons of maximal asymptotic biases and variances are carried
out when the error distribution model is the asymetrically e-contaminated normal dis-
tribution. In all the asymptotics, the proportion of contamination, &, remains fixed as
the sample size approaches co.

In Section 2, the comparisons are described. The key idea is to parameterize the
comparisons on the value of 2. For each z > 0, consider the M-, L- and R-estimators
of location (represented by the functionals Ty ., Ty » and Tg e, respectively) which are
asymptotically efficient at the least informative e-contaminated normal distribution. Un-
der symmetric s-contamination each of the three estimators is unbiased and each has
the same maximal asymptotic variance (the reciprocal of the Fisher information of the
least informative distribution). The program is then to compare the maximal asymp-
totic biases and variances of the same three estimators under asymmetric contamina-
tion. Although the estimators {Tas.e, 1L ¢, Tr.e} have equivalent behavior (i.e., unbiased
with tied asymptotic variances) under symmetric contamination, both their influence
functions and their maximal asymptotic biases and variances differ under asymmetric
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contamination. So restriction of the comparisons to triples {Tns ., Tr e, Tt -} provides a
reasonable and concise way of quantifying the differences in behavior of the three classes
of estimators under asymmetric contamination.

Section 3 presents computations of the asymptotic biases and variances of the three
estimators at F, the stochastically largest distribution in the s-contamination neigh-
borhood. For each estimator, the question of whether the suprema of the asymptotic
biases and variances are attained at F, is then considered. Theorem 1 shows that the
maximal asymptotic variance of M -estimators with monotone score functions is attained
at Fie.

Although the L- and R-estimators studied in Section 3 are scale-invariant, the M-
estimator is not. Section 4 presents the influence functions and asymptotic variance
functionals for three scale-invariant versions of the M-estimator: (i) the M-estimator
with the interquantile range (IQR) as preliminary scale estimator; (ii) the M-estimator
with the median absolute deviation (MAD) as preliminary scale estimator; and (iii) the
M-estimator of location obtained from Huber's Proposal 2.

Section 5 presents computations of asymptotic biases and variances of the scale-
invariant M-estimators at F,.,. The question of whether the suprema of the asymptotic
biases and variances are attained at F,, is then considered. Theorem 2 shows that the
supremum of the asymptotic bias of the M-estimator with IQR as preliminary scale
estimator is attained at F,. Also calculations in Section 5 show, for M-estimators with
either IQR or MAD as preliminary scale estimators, that the supremurm of the asymptotic
variance is not attained at F,. Larger asymptotic variances can be achieved by moving
some of the contaminating mass away from oo to a neighborhood of a discontinuity of
the influence function of the estimator.

The conclusions of the study are given in Section 6. The main conclusions are:

(1) When the scale parameter is known, A -estimators have smaller maximal
asymptotic biases and variances than both R- and L-estimators under asymmetric con-
tamination.

(2) When the scale parameter is unknown, the L-estimators have smaller maxi-
mal asymptotic biases and variances than all three scale-invariant versions of the M-
estimators for values of ¢ ranging from 0.10 to 0.30.

Remark 1. The particular M- and L-estimators studied here (i.e., the Huber A-
estimator, especially its scale-invariant versions, and the e-trimmed mean} are often used
in practice. The corresponding R-estimator, although not used in practice because of its
computational complexity, is included here for its theoretical interest. The asymptotic
theory is relevant to practice when the tuning constants for the estimators correspond
to the proportion of contamination . In applications one never really knows £ exactly;
however, there are situations in which one has an approximate idea of the value of ¢
based on, say, previous data sets of a similar type. In these cases, the asymptotic theory
provides a good guide to the choice of estimator for reasonably large sample sizes.

Remark 2. With ¢ fixed, the asymptotic comparisons of estimators depend on
the value of ¢. Fortunately our results yield qualitatively uniform comparisons over
reasonably wide ranges of values of £. An alternative to fixed-= asymptotics is the local
asymptotic approach, in which ¢ -— 0 at rate 1/y/n as the sample size n — oco. In
this framework Huber M-estimators and minimum distance estimators are known to be
asymptotically optimal. A good guide to the local asymptotic approach literature is
Rieder (1994) — see Chapter 5 in particular. An interesting open question is whether
the fixed-¢ results here have any connection to the local asymptotic optimality theory.
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2. The estimators and their breakdown points

Let Xy, X3,..., X, be a random sample from a distribution F{(x —8)/c), where @ is
an unknown location parameter to be estimated, and ¢ is a known scale parameter. All
estimators of # considered here will be location-invariant, so without loss of generality
we assume that # = 0; also we assume that the known value of ¢ is 1. Assume that F is
an unknown member of an e-contaminated neighborheod, defined by

Prye={F 1 F=(1-e)Fy+eCG
for some unknown and possibly asymmetric distribution G},

where the contamination proportion {0 < £ < 1) is assumed to be known, and the fixed
distribution Fp is assumed to satisfy:

ASSUMPTION 1. Fj is absolutely continuous; and its density fo = Fj is symmetric
about 0, with fo(z) strictly decreasing in z > 0.

In this study, Fp will sometimes also be assumed to satisfy:

AsSUMPTION 2. The density f; is absolutely continuous, and the function &o(x) =
— fi{z)/ fo(z} is monotone nondecreasing in z.

All calculations will be done for the special case of the standard normal distribution
Fy(z) = @(x) = [°_ o(t)dt, where ¢(z) = (2m) "1/ 2 exp(—z2/2).

We now suminarize the asymptotic minimax theory for three classical types of es-
timators of the location parameter #; sce Huber (1981) for details. All three types of
estimators (M, L and R) are generated from functionals T(F'} by taking the estimator
to be T(Fn), where F,, is the empirical distribution function of the random sample X7,
Xoyoo, X The M— L-and R—estimators arise as solutions of f ¢(z —T'(F))dF(z) =0,
T(F)= fam(F dF(sc) and [ J{1[s+1— F(2T(F) — F~!(s))]}ds = 0, respectively.
When Iy satlsﬁes Assumptions 1 and 2, there is & unique F € Pg, . which has minimal
Fisher information. Futhermore one can choose the score [unctions 1, m and J so that
the resulting M-, L- and R-estimators are asymptotically efficient at F¥. These estima-
tors will be denoted throughout by T, T . and T . In the important special case
Fy = @, they are given as follows:

Tu,e is the solution of [ .(x ~ T(F))dF (z) = 0 where

(2.1) Y.(x) = max[—c, min(c, z)],

with ¢ determined from £ by

26(c) e
= 2=

— &

(22)

Tr.e is the o-trimmed mean (L-estimator with mf{t) =1/(1 - 2o} fora<i<1l-a,=0
otherwise) with

(2.3) a={1-e)®(—¢c)+¢e/2;



354 JOHN R. COLLINS

and Tg . is the R-estimator defined through

-, t< o
t—e/2
(2.4) J(E) = { &1 (l—e/) a<t<l-a
— &
C, tzl'a’

where ¢ and o are given by (2.2) and (2.3).

Under mild regularity conditions on ¥, each of the estimators Tas., Tr - and Tg
(represented generically by T, below) has as asymptotic distribution of n'/2[T.(£,) ~
T (F}| the normal distribution with mean 0 and variance V(T,, F'), where

(2.5) V(T.,F) = / IC?(x; F, T.)dF(x)

and where [C(z; F, T.) is the influence function of T. at F. Let Pj, . denote the subset
of Pr, . consisting of distributions symmetric about 0. Then, under Assumptions 1 and
2, as F varies over P§, ., each of the three estimators are unbiased and have the same
maximal asymptotic variance, namely 1/I(F}), where I{-) denotes Fisher information
for location. This minimax result was obtained by Huber (1964) for M-estimators; it
was later extended by Jaeckel (1971) for L- and R-estimators.

To study the effects of asymmetric contamination, our aim is to compare, for each
e > 0, the maximal asymptotic biases

(2.6) Sup{lTs(F)l Fe PFmE}
and the maximal asymptotic variances
(2.7) sup{V(T;,F): F € Pry}

as T, ranges over {Tm¢, 11, Tr}. What we will actually compute in the next section,
for Fy = ®, is T.(Fy) and V(Tt, Fs) where Fpy = (1 — €)® + €6, the stochastically
largest member of Py .. In general T, (F,,) and V(T,, F,;) are lower bounds for (2.6)
and (2.7), respectively. For each estimator, we will consider the question of whether
the maximal asymptotic biases and variances over P, . are attained at Fo. This ques-
tion will also be considered for three scale-invariant versions of M-estimators studied in
Section 5.

Because the estimators Tase, 71 - and Tg - depend on £ (rather than staying fixed
as € — 0), a slight variant of the usual notion of breakdown point is appropriate. For a
class of estimators {T.} indexed by &, define the breakdown point as the supremum of
the values of ¢ for which sup{T,(F) : F € Pg,} < oc. We now calculate the breakdown
points for {Tnr.}, {11} and {Tr} in the special case when Fp = @.

Since the Huber M-estimator, with ¢, given by (2.1}, has the (usual) breakdown
point % for each fixed value of ¢ >> 0, it is clear that . = %

Since Ty, is an o-trimmed mean, no breakdown occurs as long as € and « in
equations {2.2) and (2.3) satisfy £ < a. Breakdown (i.e., £ = a) occurs when the value
of ¢ determined by £ in (2.2} satisfies ¢(c) — 2¢®(—c) = 0, from which calculation yields
ey, = 0.3500.

For R-estimators of location, there is no breakdown as long as the constants ¢, ¢
and e and the function J determined by equations (2.2), (2.3) and (2.4) satisfy

1 1-¢/2
/ J(s)ds — / J(s}ds <0,
1 1

—&/2 /2
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which yields (after further calculation):

(2.8) ele —a) — /1./1:! o1 (%) dt < 0.

Note that (2.8) holds when ¢ = & (corresponding to breakdown for T} ), showing that

£, > er, . Further calculation shows that breakdown occurs when c(e — a) — (1 —

£)|¢(0) — ¢(c})] = 0, yielding £3, = 0.4465.
3. Asymptotic bias and variance comparisons when ¢ is known

Columns (3)-(5) of Table 1 present the asymptotic biases of Tys ., Tr . and Ty . at
Foo = (1—&)® +£by for various values of . The values of ¢ in Column (2) are determined

from £ by formula (2.2), and the asymptotic biases are given in the normalized form
T(F)/e. More explicitly, Tns . (Fix} i the solution ., of

(3.1) {(1-¢) /wc(z — too)p{x)dz + £¢ = 0,

where 1. is given by (2.1) and (2.2); T;, . (Fi) simplifies to

EEb( () o ()

and Tr (Fo ) is the solution £, of

{3.2) 0(1—32—31)+/32¢’_1|:;|:3+1—(1—6)

51 2(1 - E)
P (2:&00*@* ( s ))] —s]ds—(],
1-¢
where s1 and s; are the solutions of

% [31 +1-(1-¢)@ (Etm—'i'l (ISTIE))] —a and
%[Sg+1—(1—-€)¢ (ztm—q:-‘ (1‘%))] -1 a

Columns (3)-(5) of Table 2 present the asymptotic variances of T, Tr,. and
Tr. at Fso = (1 —€)® + 6. For comparison, the corresponding values of 1/I(F?}, the
minimax asymptotic variance under symmetric e-contamination, are given in Column (2).
For the M-estimator, one obtains

[ (z — too)p(2)dr + ec?

VT, Foo) = (1 = €)2[®(toe + €) — B(too — )2

where t, is given by (3.1). For the L-estimator, one obtains
b
V(Tp,e, Foo) = (1 - 20:)'2{(1 —¢) f r24(x)de + ala® + b?)

~ (1 - e)(é(a) ~ $(8)) + ala + b)]?},
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Table 1. Asymptotic biases under Fio = {1 — €)@ + 6. Tabled values are |Te(Fuo)}/e.

(1) @ | @ [ @w | o @ | @ | @

scale known

scale unknown

£ ¢ Tare | Tre | Toe | The Thre Tate
MAD IQR Prop2
0.01 1.845 2072 {1 2.073 | 2.075 2.091 2.091 2.105
0.02 1.717 1.917 { 1.919 | 1.921 1.948 1.949 1.965
0.05 1.398 1.768 | 1.761 | 1.766 1.816 1.818 1.835
0.10 1.140 1704 | 1.713 | 1.720 1.800 1.8086 1.818
0.15 0.980 1.727 | 1.744 | 1.754 1.862 1.883 1.880
0.20 0.862 1.792 | 1.820 | 1.832 1.974 2.041 1.993

0.25 0.766 ] 1.892 [ 1.936 | 1.954 2.140 oo 2.166
0.30 0.685 |2.034 |2104 |2135 | 2.383 oo 2.437
0.3509 | 0.612 | 2.240 | 2.362 o 2.762 o0 2.968
0.40 0.549 | 2.540 | 2.802 00 3.365 oo 5.114
.4465 | 0.495 | 3.031 o0 o0 4.411 o oo
0.50 0.436 oo o0 o0 o0 o0 o0
Is sup [T(F)| ¥es yes yes not yes ves
attained at Foo? known | (Thm 2)

where a = @~ (a/(1 —¢)), b= &~ 1((1 — @)/(1 — ¢)) and « is given by (2.2) and (2.3}.

For the R-estimator, one obtains

V(t iy = LT0Ft0)~ Ul0P (o)
[f U(z)dFo ()]

¥

where U(z) is an indefinite integral of

Ulz) = J{% [3+ 1-(1-e)® (2% — 3! (1 fs))”(l — £)¢$(2t o — T)

where .J is given as before, and t, is the solution of (3.2}, The calculation of V(T'r ¢, Fio)
was carried out by numerical integration.

We now consider the question of whether the maximal asymptotic biases and vari-
ances over Pg . are attained at Fiy,.

For the asymptotic biases, we have that sup{|T(F)| : F € Pg .} = T(Fu) for each
of Tar e, Tr. and Tg by monotonicity; see Chapter 3 of Huber (1981).

For the asymptotic variances, the identity

(3.3) sup{V (T, F) : F € Pr,c} = V(T Fu)

is proved for Fy = & and T = T, in Collins (1986). For T = T, it is not known
whether (3.3) is true. For T' = Ty, (3.3) follows as a special case of Theorem 1 below.

Define ¥ to be the class of functions i which satisfy: (i) ¥ : R — R is continuous,
odd, monotone nondecreasing (but not = 0) with ¢(z) — ¥(o0} < o0 as x — o0; and
(ii) ¥’ (at points where it exists} is monotone nondecreasing on [0,oc] (so in particular
that ¥'(x) | 0 as £ — oc). Define the M-estimator 7y, (F) to be the solution to

(3.4) / ¥z — Ty (F))dF - 0.
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Table 2. Asymptotic variances under Foo = (1—€)® + &80, (See Section b for an explanation
of the additional values in parentheses in Columns (6} and {7}.)

o | ® @ | @ [ 6 6 ] @ | ®
scale known
scale unknown
£ T I}}.) T e Tre | TLe The Tht,e Tate
MAD IQR Prop2
0.01 1.065 1.066 1.067 1.069 1.66'7 1.087 1.067
(1.102) | (1.091)
0.02 1.116 1.118 1.122 1.125 1.120 1.1563 1.123
(1.181) | (1.163)
0.05 1.256 1.266 1.282 1.289 1.279 1.335 1.289
(1.308) | (1.365)
0.10 1.490 1.534 1.582 1.598 1.586 1.679 1.650
(1.787) | (1.752)
0.15 1.748 1.869 1.974 2.005 2.012 2.196 2.098
(2.290) | (2.324)
0.20 2.046 2.323 2.531 2.600 2.679 3.341 2.875
(3.015) | (3.556)
0.25 2.397 2.991 3.410 | 3.586 3.838 oc 4.378
(4.174) (c0)
0.30 2.822 4073 5.009 5.645 6.331 o0 8.284
(6.229) (oo}
0.3509 | 3.353 6.160 8.866 o0 12.50 oo 28.90
(10.93) (c0)
0.40 3.996 10.96 24.79 o0 30.58 oo 1232,
(23.26) (c0)
0.4465 | 4.765 28.27 oo o0 104.7 oo [s3]
(71.84) | (oo}
0.50 5.928 o0 fes] o0 o0 oo oo
(o0) (oc)
IssupV (T, F) yes not yes no no not
attained at Fiore? | (Thm 1) | known (Sec 5) | (Sec 5) known

and define V (13, ) by

_ J¥e Ty(F)dF
[ ¥/(a — Ty(F)dFTE

We note that when ¥ € ¥ and Fj satisfies Assumption 1, there is a dense subset
of Pr, . (containing F,,} for which the estimator Tj;(F) is uniquely determined by (3.4)
and its asymptotic variance is given by (3.5).

(3.5) V(Ty, F)

THEOREM 1. Let Y € ¥, 0 < e < % and let Fy be a distribution satisfying As-

sumption 1. Then
sup{V (Ty, ) : F € Pp,} = V(Ty, Fx)

where Fy, = (1 — £)Fy + eb.
A proof of Theorem 1 is given in the Appendix.

Conclusions following from the calculations and results in this section are given in
Section 6.
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4, Scale invariant M-estimators

Consider the model F((z — 6)/0), with F € Pg, . with both # and ¢ unknown.
Since the L- and R-estimators of & are scale-invariant, the asymptotic bias and variance
compatisons of Ty . and Tg . in the previous section go through in the scale unknown
case. However the M-estimators Tar . are not scale-invariant, so they will now be re-
placed in the comparisons by some scale-invariant versions. Without loss of generality,
we will assume that # =0 and 6 = 1. .

One well-known scale-invariant version is the Af-estimator of location with a pre-
liminary estimator of scale, defined by

(4.1) /¢ (L;gi) dF =0,

where S(F) is a scale functional. We consider two different scale functionals: the o-
interquantile range

F Y1l —a)— F Ya)
k

(4.2) Sa(F} =
and the symmetrized o-interquantile range

13‘"1(1 —a) — F“l(a)

(4.3) Sa(F) = 8a(F) = k ;
where
(4.4) F(z) = % {F(sc) +1-F [2F‘1 (%) —z— 0] } :

Here k is a positive constant; in the calculations of the next section, we set k = F; ' (1 —
a) — Fy (@) to ensure Fisher-consistency of both S, and S, at the uncontaminated
symmetric Fy. For the special case a=.25, §35 is the IQR and S 95 is the MAD.

Another well-known scale-invariant method is by simultaneous estimation of location
and scale: that is, to solve the system of equations

?ii [x(e5i)er o

for (T{F),S8(F)}. This is considered here for the particular choice of score functions
known as Huber’s Proposal 2 (Huber (1964, 1981)): set ¢ = 1. (as in Section 2) and
x(z) = vz} — Ble), with B(c) = [ ¥2(z)dFo(z) to ensure Fisher-consistency at Fo.
Note that the breakdown points for the M-estimators of location with preliminary
estimators of scale are the breakdown points of the latter: 0.25 when § = 525 and 0.5
when S = S§35. For Huber’s Proposal 2, combining the breakdown point for fixed ¢,
B(c)/[8(c) + ¢?} (Huber (1981), p. 143}, with the relation (2.2) easily yields ¢* = 0.4255.
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The influence function of an M-estimator of location with preliminary estimator of
scale S(F') is given by:

4.7y  IC(x; F,T)
" (x_—T(F)) S(F) - IC(z; F,8) | = —TF) (m — T(F)) F(dz)

S(F) S(F) S(F)
fx=T(F) ’
1v (5 ) Fuas)
where IC(z; F, S) is the influence function of S(F). Hence the corresponding asymptotic
variance functional {see formula (2.5)) is given by:

(4.8) { / P2 ( )F(da:)
5 xE(TF()F v (“a ) Fan

/ o (o)) 10 ) Plas)

* [s(lp) - sg)F) 4 (m sg)m) F (d‘”)] 2

: [ / 1C3(x; F, S)F(dz)]z}
s /¢ (Ssm )T (d"‘:)r‘

The influence function of the o-interquantile range S,(F) = [F~1(1 — a) — F~Ya)|/k
is given by (Hampel et al. (1986), p. 110)

(1~ o ¢
f(a} —m, or r<a,
(4.9) k - IC(z; F,8,) = ¢ ~a [ﬁ + %] , for e<z<b,
l—«o c
\—f(b) - m, for .'E:’b,

where @ = F~'(a) and b = F~1{1—a). For the symmetrized version S, {F), the influence
function is given by (Collins (1991), formula (3.6)):

(4.10) k-[(f@) + (b)) - 1C(a; F, Sa)
1-2a - (f(a) ~ fBY/[2f(m)], for z<a,
for a<z<m,

—20 — (f(&) — F(B))/12f(m),
—2a + (f(a) — f(bY)/[2f(m)], for m <z <b,
1-2a+(f(@) - FB)/[2f(m)], for z>b;

where m = F~1(1/2), & = F Y{a) and b = F~1(1 — &) = 2m — &. In order for formula
(4.9) ((4.10)) to make sense, we assume that I has a density f in some neighborhood of
each of the points o and b (@, m and b).



360 JOHN R. COLLINS

For simultaneous estimation of location and scale, the influence function of T'(F} is

, _ p)SWE) [xX (yF(dx) — x(y)S(F) [ 4 (9)yF(dz)
W) 1@ BT = o5 Yilde) [ (y)yF(da) — [ x @) F(dz) | 9 ()vF (@)

where y = (z — T(F))/S(F} and where (T'(F}, S(F)) is the solution to (4.5) and (4.6}.
The corresponding asymptotic variance functional is

1) v p) ={ [ ewsra | [ x’(y)yf‘(dm)r
~2 [woxsi R | [x@wran) - | [vours)
+ [ s | [ vra) }
{ [vwras) [xwwre - [xwra [ w'(myF(dx)}z,

where y = (z — T(F))/S(F).
5. Asymptotic bias and variance comparisons for scale-invariant M-estimators

In this section we consider, for each of the three scale-invariant M-estimators:
(i) computation of the asymptotic biases and variances under F,,; and {ii) the question
of whether the suprema of the asymptotic biases and variances over Pg, - are attained
at F.

Inserting Fo, = (1—¢€)Fg +e6 into (4.1) and (4.2) yields that T(F) is determined
by

(5.1 1-) [0 (S5 ) htadaa + svtoe) =0,
with §(Fx)} given by
(5.2) S(Foy) = Su(Fay) = [F"_l(lga) ;F‘;l (1:)]

for the M-estimator with e-interquantile range as auxiliary scale estimator. For the
symmetrized version, substitution of F, into (4.3) and (4.4) yields

(5.3) S(Fre) = §u{ ) = 20— %0)
where mg = ®71(.5/(1 —¢)) and @ is the solution of

(5.4) (1 —&)[®(2mg — @o) — P(a0)] = -

The values of T(F,,)/e in Column (7) ((6)) of Table 1 were calculated from (5.1)
and (5.2) ((5.1), (5.3) and (5.4)) with Fy = ®, a = .25, k = 28~1(.75), and ¢ = 9. with ¢
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given by (2.2}, The values in Column (8) were obtained by inserting Fip, = (1-€)®+eds,
¥ =, and x = Y2 — [2d® into (4.5) and (4.6) and solving for (T(F), S(Fe)).
The values of the asymptotic variances V (T, F,,} for the three scale-invariant M-
estimators, given in Columns (6)—(8) of Table 2, were computed from formulas (4.7}~
(4.12) by inserting F' = Fiy = (1 — &)@ + £, a= .25, k = 2@ 1(.75), ¥ = 1, with ¢
given by (2.2), and x = ¥2 — [ 42d®.
Consider now the question of whether

(5.5) sup{|T(F) : F € Pp.} = T(Fx)

holds for the cases tabulated in Columns (6)-(8) of Table 1. For Huber's Proposal 2
(Column (8)), (5.5) holds as a special case of a result proved in Section 4 of Martin and
Zamar (1993). For the M-estimator with MAD as preliminary scale estimator (Column
(6)), it is not known whether (5.5) holds. For the M-estimator with IQR as preliminary
scale estimator (Column (7)), (5.5) holds as a special case of the following theorem,
which gives some general conditions on Fy and 1 under which the maximal asymptotic
bias is attained at Fi..

THEOREM 2. Let v : R — R be continvous, odd and monotone nondecreasing
with 0 < P(oo) < 0. Let 0<e<a< %, and suppose that Fy satisfies Assumplion 1.
Let Py, . be the subset of F'’s in Pr, . for which F has a density f in some neighborhood
of each of the points F~'a/(1—¢€)) and F~'((1 - a)/(1 - €)). For F € Py, ., let T(F)
be the (necessarily unique) solution of

z—T(F) _
]«p (——SQ(F) ) dF =0,
where S,(F) = [F~1(1 — ) — F~Y{a)|/k for some fized k > 0. Then sup{T(F): F €
Pr,.c } is attained at Fiy = (1 — £)Fp + 6.

A proof of Theorem 2 appears in the Appendix.

Consider now the question of whether sup{V (T, F) : F € Pg} is attained at
Fy. First consider the M-estimator with IQR as preliminary scale estimator. Since
the influence function of S, (formula (4.9)) is discontinuous at both ¢ = F~'{«) and
b = F~1(1—a), the influence function of the corresponding M-estimator (formula (4.7))
is also discontinuous. For F in Pj, , the term [ IC*(x; F, 84 )F(dz) in formula (4.8) is
equal to

(5.6) 1 fa(l-0a) ol-a) 202 ]

ey B @i

Collins (1991) showed that the supremum of (5.6) is (depending on the values of @ and
£} either attained at £, or is equal to a(l — a)/{k%(1 — £)2f2[F ! {@)]}. The latter is
achieved as a limit of a sequence of F's in P . with most of the contaminating mass
near oo but with a small (approaching 0} proportion of the mass in a neighborhood
of a = F~l{a) with f(a) approaching co. This suggests that the asymptotic variance
functional (4.8) can likewise sometimes be inflated by moving some of the mass in Fi
to a neighborhood of the discontinuity at a.

The values in parentheses in Column (7) of Table 2 were obtained from (4.8) and
(4.9) by formally substituting f(a) = oo, f(b} = (1 — e)fo[F (1l — a)] and F(dz) =
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Foo{dz). These values, clearly attainable as a limit for a sequence of F’s in Pp ., exceed
V(T, Fy) for the tabulated values of £ up through 0.20, so that we have

(6.7 V(T Fy) <sup{V(T,F): F € Py .}.

Anclogous calculations for the case of the M-estimator with MAD as preliminary scale
estimator yield the values shown in parentheses in Column (6) of Table 2. In this
case (5.7) holds for the tabulated values of & up through 0.25. In both the cases of
the IQR and the MAD as preliminary scale estimates, it is not known whether the
values in parentheses — now established as lower bounds for sup V(T, F} — are equal
to sup V(T, F).

In the case of Huber's Proposal 2, the influence function of the estimator is contin-
uous, but it is not known whether the values of V (7', F,) in Column (8) of Table 2 are
equal to sup V(T, F).

6. Conclusions

The bottom row of Table 1 {Table 2) summarizes answers to the question of whether
sup{|T'(F)| : F € Ps.} [sup{{V,F) : F € Pg}] is attained over Py at Fo = (1 -
e)d + €64, with citations to new results in this paper given in parentheses.

The following conclusions are drawn from Tables 1 and 2.

1. In the scale-known case (Columus (3)-(5)), using maximal asymptotic bias as
the criterion, the M-estimator outperforms the R-estimator, which in turn outperforms
the L-estimator, uniformly over the tabulated values of e.

2. In the scale-known case with maximal asymptotic variance as criterion, the
M-estimator outperforms both the R- and L-estimators for all the tabulated values of £.

3. In the scale-unknown case (Columns (4)—(8)) with maximal asymptotic bias as
criterion, the R-estimator outperforms the L-estimator, which in turn outperforms each
of the three scale-invariant M-estimators for the tabulated values of £ up to 0.30.

4. In the scale-unknown case with the maximal asvmptotic variance criterion,
the L-estimator outperforms both of the A -estimators with preliminary scale estimates
for the tabulated values of £ up to 0.30. The L-estimator also outperforms the Huber
Proposal 2 M-estimator for values of ¢ ranging from 0.10 to 0.30, but comparison for £
ranging from 0.01 to 0.05 is not possible because the values in Column (8) are known
only to be a lower bound on the supremum of the asymptotic variance over Pg . Also
although the tabulated values of V(Tg ¢, Fa ), for £ ranging from 0.02 to 0.40, are less
than the established lower bounds on the maximal asymptotic variances of the four other
scale-invariant estimators, no comparison can be made since the question of whether
V(TR,, Fio) is equal to sup{V (T, F) : F € Py ¢} is open.
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Appendix

PrOOF OF THEOREM 1. First note that
(- ) [ ¥R (e — te) fo(z)dz + (o)

V(Ty, Feo) [(1—2) [z — too) fol@)da]”
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where ., 15 the solution to
(1-¢) [ ¥z ~tec)fol)de + (o) = .

It suffices to show (see formula (3.5)), for all F = (1 — ) Fy + €@, that:

(@) [v2(z — Tyu(F))fo(z)dz < [ $*(z — teo) folz)da;

(b} [ ¥*(z — Ty(F))dG(z) < 4*(c0);

(e} [¢'(z — Ty(F)) folz)dz > [¥'(x — teo) folz)dx > 0; and

(@) J¥/(z - Ty(F))dG(z) > 0.

Both (b) and (d) are immediate consequences of the definition of ¥. To show
{a), first note that #,,, attained at F, is the maximum possible value of Ty(F) as
F ranges over Pg, .. By symmeiry, we need only consider the F's in Pg,  for which
Ty(F) € [0,t). Since ¢ is odd and both 9’ and fj are even, differentiation with respect
to t under the integral sign (justified by dominated convergence) yields:

%/1})2(: —t)folz)dz = — 2/'l,b(:c — ' (z — t) folz)dx
=2 /0 " @ @)l = v) — folt + )dy > 0

for all ¢ € [0,t,], since ¢ and ¢’ are > 0 on [0,00) and since fo(t —y) — fo(t +y) = 0O
for all £ > 0 and y > 0 by Assumption 1. Thus [92(z — t) fo(x)dz takes its maximum
value over [0, fn] at t = to, proving (a).

To show that [ ¢'(z—t) fo(z)dz attains its minimum over [0,%5,] at t = ¢, first note
that it follows from Assumption 1 that f) exists a.e. z, is odd, and satisfies f3(z) < 0
a.e. ¢ > 0. Then we calculate that

% / (5 — 1) folz)da = % ] W(2) folz + t)dz
- [ ¥ @@ + s
- [7 R0y so

for all t € [0, ), since f3{z) <Oae. z>0and ¥ (z—t) - (z+¢t) > 0foralz >0
and t > 0, since ¥’ is even and monotone nonincreasing on [0, cc|. This proves (c) and
completes the proof of the theorem. O

PrOO¥F OF THEOREM 2. First note that the range of values of S5,(F) as F varies
over Pg, . is the range of

qafl—a—evy 1 fox—ey
= |F | ——— | - F! k
=l (552) w1 (52)]/
as «y varies over [0,3]. Furthermore, s('y) is strictly decreasing in v and s(0) =
sup{Sa(F): F € Pr,.} = Sa(Fs) (see the proof of Theorem 1 of Collins (1991)).
By symmetry, we need only consider F's in Py, ¢ for which T'(F) > 0. Also we will

use the notation e = F~1(a), b = F (1 -~ ) and s = (b — a)/k, where it is assumed
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throughout that the only triples (a,b,s) considered are those which are attainable by
some F € Py .. With this notation, T'(F) is the solution ¢ of

(A1) -P;E/ ( )ﬁ@ﬂm / ( )qw)

where G necessarily satisfies the following two conditions:

(A.2) Ga) = [a - (1 - &)Fola)] /e
and
(A.3) Gle+sk)=[1—a—(1—e)Fala+ sk)i/e.

By the conditions on 9, it follows that: (i) the left side of (A.1) is an increasing function of
t; (ii) the right side of (A.1) is decreasing in t for fixed G; and (iii) f¥[(z—1)/s]G*(dz) >
J ¥l(x —1)/5)G(dz) for all values of £ whenever G* is stochastically larger than G. Using
the notation t(G) for the solution t of (A.1) when s is fixed, an immediate consequence
of (i), (ii) and (iii) is that ¢(G*) > ¢(G) whenever G* is stochastically larger than G.

The stochastically largest distribution G satisfying both (A.2) and (A.3) clearly
places mass G(a)} at a, mass G(a + sk) — G(a) at a + sk and mass 1 — G(a + sk) at co.
The supremum of T'(F) over the subclass of P, . on which F “Ha)=aand S(F)=s
is therefore the solution ¢ of

(A.4) ( )h@m
= ler (—;‘) Fmala)y (:M) + ma(a)(o),
where
md@:a—UEQﬂ@%
nmm)=(1—&ﬂ~(1—@EMa+kﬂ—PM@L e
mala) =1 4= = —:){Fo(a +ks)]

Now consider finding the supremum of T(F) over Pf, . subject only to the side
condition S,{F) = s. The derivative of the right side of (A.4) with respect to a is

ma(a2y’ (254) + mafo) v (LHE2T)

8 8 5

—={ e ko) [pto0) - ()
w e [ (2= —u (9]}

which is nonnegative a.e. . Thus the maximal ¢ satisfying (A.4) occurs at the largest
possible value of @ corresponding to So(F') = s. To find the latter, write the identity
s ={b—a)/k as

wo () et (552,

1
+
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and note that finding the largest possible value of a subject to this constraint is equivalent
to finding the smallest value of G(a), 0 < G(a) < 1, for which (A.5) is satisfied for
some G(b) with G(a) < G(b). As G{a) — 0 the choice of G(b) satisfying (A.5) is also
decreasing, until ¢ is large enough that G{a) = G(b). Thus a(s), the maximal possible
value of a corresponding to $, = s, is given by

(A6) als) = Fy! (2—_57@) ,
1-¢
where 7y(s} is the unique number in [0, %} determined from s by
1 f{1—e—eav(s) 1 {a—ev(s)
127 S)y  pa (@YY g
(A.T) Fy ( T ) R ( - ks;

and the values of mi, ma and mg at a(s) are clearly ¥(s), 0 and 1 — 7(s), respectively.
The final step is to show that t(s), defined by

Ay -a-o [ w( )fo(w)dx—av(s)w(a(s) 1) 4 1= 2(olweeo)

is nondecreasing in s. First note that ¢/(s) < 0 at all possible values of s, and use (A.6)
and (A.7) to calculate

Ao op—CC
@ “C) = Hliate) ~ oo >
where b(s) = F;! (h%:;is;(»—")) The inequality in (A.9) follows from symmetric uni-

modality of Fy (Assumption 1) and the fact that b(s) > |a(s)| for all v(s) € [0, 3], with
strict inequality when y # 1.

Differentiating (A.8) with respect to s yields the following identity after a rearrange-
ment of terms:

(A.10) [(1__5) / iw'( — 1) ) fo(z)dz + ev(s) - Ly (“(3) f(s) )]t’(s)

)f (x_t )w ( t(s))fu(:c)dm+e7(s)¢' (w“(s);t(s))
'(sa o 1) 6 o) (0) v (HFH))

The coefficient of ¢/(s) on the left side of (A.10} is clearly positive for all possible values
of s. The first term on the right side of (A.10) can be written as

1 —
g2

: /0 W () Lolt(s) - sy) — fo(t(s) + su)] dy,

which is nonnegative for all s since ¢(s) > 0 and Fy satisfies Assumption 1. Since ~(s),
a(s), t(s) and v’ are nonnegative, the second term on the right side will be nonnegative
1f 1t can be shown that a( ) < 0 for all possible values of s. But a(s) € Fy Ya/(1-¢€)) <

o e/(l - a)) < Byt (1) =0,sinced ce<a<l 1 by hypothesis. Finally the third
term on the right side is nonnegative since ¥'{s) < 0 and ¢ is monotone nondecreasing.
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It now follows that #'(s) > 0 for all possible values of 5. Since t(s) is nondecreasing in
s, T(F) must attain its maximum over Pp, . at the same F' where 8,(F) attains its
maximum over P, ., namely at F' = F. O
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