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Abstract. In a variety of statistical problems the estimate 8, of a parameter @ is
defined as the root of a generalized estimating equation Gn(én,ﬁrﬂ) = 0 where 4n Is
an estimate of a nuisance parameter v. We give sufficient conditions for the asymp-
totic normality of 8, defined in this way and derive their asymptotic distribution. A
circumstance under which the asymptotic distribution of #, will not be influenced
by that of %, is noted. As an example, we consider a covariance structure analy-
sis in which both the population mean and the population fourth-order moment are
nuisance parameters. Applications to pseudo maximum likelihood, generalized least
squares with estimated weights, and M-estimation with an estimated scale parameter
are discussed briefly.
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covariance striucture analysis, pseudo maximum likelihood, generalized least squares,
equivariant M -estimation.

1. Introduction

Let G(8,7), n = 1,2,... be a sequence of p-variate stochastic functions of 8 € © C
B? and v € T' C RY. That is for each & and +, G, (6,4} is a random vector. Frequently
G, will have the form

(1.1) Gal®7) = 2 3" 06,
i=1

where each ¢;(8, ) is a p-variate random vector. We would like to define an estimate b,
of & as a root of G, (f,,v) = 0, but we don’t know ~ which for this purpose we view as
a nuisance parameter. Suppose we have an estimate %, of v and define 6, as a root of

(L.2) ' Gl i) = 0.

When g; is the derivative of the logarithm of a density function, Gong and Samaniego
(1981) called 8,, a pseudo maximum likelihood estimate of €. In the context of a gen-
eralized linear model for longitudinal data, Liang and Zeger (1986) used an equation of
the form (1.2) to estimate mean parameters §,, given independent estimates %, of some
covariance parameters. They called their equation a generalized estimating equation
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(GEE}. We will adopt this terminology whenever %, is given and 8, is defined by an
equation of the form (1.2).

Many estimates are GEE estimates: the generalized least squares estimate with
estimated weights considered by Carroll et al. (1988) and Chapters 2 and 3 of Yuan
(1995); the pseudo maximum likelihood estimate considered by Gong and Samaniego
(1981) and applied to an elliptical population by Kano et al. (1993); the AM-estimate
with an estimated scale parameter discussed in Bickel (1975) and in Sections 6.5 and
7.7 of Huber (1981); etc. A recent review of applications and historical developments of
GEE estimates is given by Liang and Zeger (1995). When « is a nuisance parameter,
Godambe and Thompson (1974} considered how to choose an optimum function g* that
does not depend on . Unlike Godambe and Thompson’s perspective, we assume that
a sequence of functions has already been chosen for estimating § and g; involves both
# and v. We do not restrict ourselves to optimal g; because as indicated in Yuan and
Jennrich (1998) many nonoptimal g; are of interest.

The «v in G, (6,7) may be a vector of covariance parameters in generalized least
squares; may be part of the mean parameters (e.g., the population mean in covariance
structure analysis); may be the extra parameters of an elliptical distribution as considered
by Kano et al. (1993). One may want to minimize an objective function that involves
both & and «y. It may be difficult or for some other reason undesirable to minimize the
function simultaneously with respect to 8 and . If an estimate 4, can be obtained easily
one may elect to minimize the objective function with respect to ¢ given 7 = %, and
thereby be led to solving a stationarity equation of the form (1.2) for 6,,.

Section 2 discusses the asymptotic distribution of the GEE estimates &,,. Section 3
considers an example from covariance structure analysis in detail. In this example, 8
represents the covariance parameters and those of primary interest. The mean vector p
for the population sampled and the weight matrix W used in generalized least squares
estimation are treated as nuisance parameters. QOther areas of applications are considered
briefly in Section 4. These include pseudo maximum likekihood estimation, generalized
least squares, and scale equivariant M-estimation.

2. The asymptotic distribution of 6,

For notational convenience let § = (#,v) and D = © x I be the parameter space of
&. We will use:

ASSUMPTION 1. On D and with probability one, G, = dG,, /d8 exists, is continu-
ous, and converges uniformly to a non-stochastic limit J.

This is & uniform strong law of large numbers. It is fairly easy to verify when the
stochastic functions g; are continuously differentiable and identically distributed. If the
G, converge with probability one to a non-stochastic limit G, one can show that J = G,
but we will not use this.

Let J be defined as in Assumption 1 and let A and B be the components of J{4)
corresponding to & and v so J{§) = (A, B). Before considering the asymptotic normality
of én, we need some lemmas.

. P
LEMMA 1. Let x, be a sequence of random vectors in X C RP such that z, —
zp € X. If fn is a sequence of continuous stochastic functions from X into RY such that

fn Ll [ uniformly on a neighborhood of zo, then fo(zn) LA f{za)-
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Proor. There is a subsequence n; of n such that z,,, — zp a.e. and sup,, || fn,{z) —
f{z)]| — 0 a.e. Because the uniform limit of continuous functions is continuous, f is
continuous a.e. and

fni (xﬂ.) = fni (mﬂg) - f(x‘fli) + f(a:nc) - f(xﬂ) a.c.
It follows that f,(z,) Ll f{xp). See for example Port ((1994), Chapter 40}. O

LEMMA 2. Let x, be a sequence of random vectors in X C IF such that x, il
zg € X. If fno is a sequence of continuously differentiable stochastic functions from X

into R9 such that the Jacobians f, 5 f uniformly on a neighborhood of xo, then there
is o sequence of p by q stochastic matrices C,, such that

(i) fr(zn) - falzo) = ColTn — 20),
(ii) Cn = f(zo)-

ProoF. Tt is sufficient to give the proof for scalar valued functions f,. By the mean
value theorem, f.{x,) — falza) = fu(Za)(xn — 20) for some T, on the line from zy to

r. The choice Cy, = Fn(F,) satisfies (i) and Zp, £ zo. Using Lemma 1, C, = fr(Zn) £
flzg), so C, satisfies (ii). O

THEOREM 1. Assume Assumption 1 holds and A is non-singular. If én Lt 8, A is
vn-consistent, and

- £
(2.1) VALGA(8) + B3 — 1] 5 N(O, ),
then /(f, — 6) £ N(0,9), where @ = A~'TTA-T.
Proor. Using Lemma 2 we have
Vi(Cn(bn) = Ga(8) = Auv/A(6n — 8) + Bav(Fa — ),
where A, 5 A and B, > B. Since Gp(6,) = 0,
(2.2) = AnyVn(fn — 6) =y/nG0(8) + BYn(in — 7)
+ (Ba — B)Vnl(in —7) & N(0,TI).
The theorem follows from (2.2) and the Slutsky's (1925) theorem. O
Pierce (1982) and Randles (1982) studied the relationship of the asymptotic distri-
bution of T0,(%5,) = Tn(®1,...,%n; ¥} and that of 4,,, where T, is an explicit function of
the z; and 4,,. Gong and Samaniego (1981) and Parke {1986) studied pseudo maximum
likelihood estimation where the estimating equation &, is the scare function. Theo-
rem 1 generalizes the former by choosing G,{8,7) = 6 — Th(7) and the latter because

the estimating function &, need not be derived from a density function.
Note that (2.1) is satisfied if

o (GO £ n (o7 1)),
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which is assumed in Gong and Samaniego (1981}, Pierce (1982), Randles (1982), and
Parke (1986). In such a case,

(2.4) I =V + BVyy + Vi3, BT + BV, BT.

From (2.1) or {2.4) we observe that if B = 0, the asymptotic distribution of %, does
not influence the asymptotic distribution of 8, as long as 4, is y/n-consistent for 7,
so knowing %, is equivalent to knowing v. When B # 0, the asymptotic distribution
of 4, does influence the asymptotic distribution of 6, the effect can be seen from the
asymptotic variance of 6,. In the context of pseudo maximum likelihood A = -V}, and
Parke (1986) observed that for the pseudo MLE, Vip = 0 generally. So

(2.5) Q=V7'+ A 'BV,,BTA.

The first term on the right hand side of (2.5) is the inverse of the information matrix
corresponding to @, the second term is nonnegative definite which reflects the cost of not
knowing . When Vi3 = 0 in the context of GEE,

(2.6) 0=A"W,4 T+ A7'BV,BTAT.

The second term on the right hand side of {2.6) also reflects the cost of estimating the
extra parameter v in (1.2). For a good estimating function G, it usually happens that
A = -V}, as will be the case in an example in the next section. Since we do not assume
any density, there is no formal information matrix in the context of estimation based on
GEE. But Vi plays the role of an information matrix.

When 4, is asymptotically efficient, Vi2 = 0 (e.g., Pierce (1982)). Since neither
Go(f,7) nor 4, need to be efficient in the context of GEE, Vi3 may not be zero. When
Via # 0, it is possible that BViz + Voy BT + BV BT < 0. Thus én(ﬁrn), the estimate
based on the estimating equation with an estimated nuisance parameter, can be more
efficient than 6, (7), the estimate based on an estimating equation with knowing the true
value . Pierce (1982) gave a simple example where T, (9,) has a smaller asymptotic
variance than T,(v). Our example in the next section shows that a covariance structure
parameter estimate using a mean parameter estimate can be more efficient than the one
using the true value of the mean parameter.

3. An example

Let Xy,..., X, be iid. random vectors with E(X;) = p and Var(X;) = £(8). In
covariance structure analysis, the interest is in getting a good estimate of 8. Generally,
4 is a nuisance parameter. The usual practice (e.g., Bentler (1995}} in covariance struc-
ture analysis is to fit £(f) to the sample covariance S by maximum Wishart likelthood
assuming X; ~ N(g, 2{#)). When the X; are not normal, we may choose some other
method, e.g. least squares or generalized least squares. Here we consider the properties
of the generalized least squares estimate §, by employing the result in Section 2.

For a symmetric matrix A, let vech{ A} be the vector formed by stacking the columns
of A leaving out the elements above the diagonals. We denote ¥; = vech(X,; XT), o(8) =
vech(Z(0)), and 7(p} = vech(upT). Suppose I' = Var(¥;) exists and is nonsingular.
Using E(X;XT) = B(6) + up”, we define

n

Qu(0,1, W) = =3 (¥i = o(0) = (1)) "W (¥i ~ 0(0) — 7(w),

=1
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where W is any positive definite matrix. For consistent estimates ftn, and W, the
estimate 8, which minimizes Qn( s fins W) is called a generalized least squares estimate
of 8. Let 6(#) = do/df and

gi(8, 1, W) =T (OW(Y; — a(8) = ().

Then we have

(3.1) Gall W) = = 66,10, W)
i=1
= T OW(T - o(6) - 7(w),

and it is easily verified that G, (6., fin, W,) = 0.

Since u is a nuisance parameter and we know [, = X is strongly consistent for u
and satisfies \/n(X — p) 5 N(0, £(8)), replacing p in (3.1) by X, we get Go(8, X, W) =
T (0)W (s—a(0)}, where s = vech(S). Since I is generally unknown, we need an estimate
for W = I'~1. Two such estimates for W are the inverse of the sample covariance matrix
of the ¥; and the inverse of the matrix formed by the cross products of the fitted residuals
considered by Yuan and Bentler (1997). Both of these estimates are \/n-consistent.

An estimate 6, which satisfies Gn(én, X, Wn) = 0 is a GEE estimate. To apply our
result, we need to check the related assumptions. Assume that ¥(8) is twice continuously
differentiable, then G, exists and is continuous. Since the second-order moment of X;
exists, Gn also converges uniformly to a non-stochastic limit on a compact set of 6. It
is obvious that +/n[G.(8) + B, (X — u)] 5N (0,IT}, where B,, is the submatrix of B
corresponding to p. It is easily verified that By, the submatrix of B corresponding to
W, is zero. So it follows from Theorem 1 that for either of the weight estimates of W' in
Yuan and Bentler (1997), b, is asymptotically normal. The asymptotlc distribution of
W,, does not influence the asymptotic distribution of b, as long as W, is /n-consistent
for I'~1. But the asymptotic distribution of fi,, does influence the asymptotic distribution
of én. Since

A=—-¢T(6)We(8), B,=-¢T(O)W+(u),
and

_(6TOW6) STOWA
V‘(JATW&?H) " 50) )

where A = Cov(Y;, X;), using (2.4}, we have
Q =V - AT OW () AT + AT () — () 2(B0)F7 (n)}We (0} A7

In this example 4 = —V};4.

It is interesting to observe that when the X; obey an elliptical symmetric dis-
tribution, A = 7(u)X(0) as showed in Yuan and Bentler (1995). This implies that
B, = -ViaV,,! and Q simplifies to

(3.2) Q=V7'—A7'B,V;BT A7

So 6, is more efficient than the estimate obtained using the true value x. Equation
(3.2) can be compared with equation (1.3) in Pierce (1982). Here we do not assume
that 4, = X is asymptotically efficient. Indeed X is not an efficient estimate of y when
sampled from a multivariate #-distribution.
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4. General areas of application

In the last section we demonstrated how to use our results in a specific problem and
how to check the relevant assumptions. In this section, we will outline some important
areas to which our result can be applied. Since we outline the applications in some
general areas, we can not give exact assumptions for these applications. But we will try
to check Assumption 1 and give some relevant references whenever possible.

4.1 Pseudo mazimum likelihood

Let ¥;, ¢ = 1,...,n be independent random vectors with densities f;(y;,8,7), i =
1,...,n. Suppose we have an /n-consistent estimate ¥, for the nuisance parameter -.
Replacing ¥ by #n, and we maximize Y. In f; (1,6, %) for 6,. Then 8, is called a
pseudo MLE. Corresponding to (1.1),

f !9 (y‘i 3 6! '7)

4.1 : — digrF Ty 1T

(4.1) g:{0,7) 8.7

where flo(y:i,8, %) = 8fi(y:,6,%.)/00. Assume the g; in (4.1) satisfy the assumptions
of Theorem 1, then 6, is asymptotically normal. When the ¥; are ii.d. scalar random
variables and both 6 and  are scalar values, Gong and Samaniego (1981) investigated the
consistency and asymptotic normality of én. They also gave an interesting application of
pseudo MLE. When the Y; are a random sample from an elliptical distribution, Kano et
al. (1993) considered statistical inference based on pseudo MLE. They discussed several
ways of estimating nuisance parameters by some inexpensive methods. Our assumptions
are different from those of Gong and Samaniego and Kano et al. We only require that ¥;
are independent, they can be of different dimensions as is often the case in applications
as for example repeated measures.

4.2  Generalized least squares

Let Y; = p;(#) + e;, i = 1,... n, where for each 4, y;(-} is a vector valued function,
E(e;) =0, and Var(e;) = E;(y). Several methods of estimating - by modeling the first
two moments of the ¥; were discussed in Chapter 6 of Yuan (1995), all these estimates
satisfy y/n-consistency. When the Y; are scalar random variables and z;(#) are linear in
#, Davidian and Carroll (1987) gave a comprehensive review on how to estimate . Let

9:(8) = il (OYWi(v)(Y; — pi(6))

for some weight functions W;(-). For a \/n-consistent estimate of +, the estimate §,, that
satisfies Gn(én,ﬁ/n) = 0 will be called a generalized least squares estimate of 8. Under
some specific assumptions on u;, Wi, and e;, the consistency and asymptotic normality
of 8, is rigorously investigated in Chapter 2 of Yuan {1995). Generally B = 0 for the
generalized least squares estimates. So the asymptotic efficiency of 6, will be the same
for all the \/n-consistent estimates for v. When the Y; are scalar random variables and
the p;(6) are linear in @, Carroll et al. (1988) investigated the small sample effects of
the estimated weights. We suspect that their results can be generalized to the GEE
estimates.
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4.3 Scale equivariant M-estimation

Suppose we have independent random vectors {x;, ¥;) with y,; scalar valued, and we
want to fit a model y; = 278 + e;, where E{e;) = 0 and Var(e;} = 2. Our interest is
in getting a good estimate of & when possible outliers exist in the data. An equivariant
M-estimate 8,, of ¢ can be defined (Huber (1981), Chapter 7) as

1w e
_Z"p yi L SU,;:O,
ni=1 o

when o is known. We view & as a nuisance parameter. But in arder to get an equivariant
estimate for #, we need an equivariant estimate for o. Let

gi{8,0) =9 (M) ;.

o

If we have an /n-consistent equivariant estimate 62 of o2, then the estimate &, which
satisfies Gn(én, 85 ) = 0 will be an equivariant GEE estimate. In the simple location case,
Huber ((1981), Section 7.7) recommended &, = MAD(y;). Bickel {1975) used a similar
equivariant ,. Yuan (1997) checked the uniform convergence of the G, with Tukey’s
biweight 1. Similar technigues can be used to check for Assumption 1. We generally
have B = 0 for symmetrically distributed errors, so as in generalized least squares the
asymptotic distribution of 2 will not influence the asymptotic distribution of 8,.
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