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Abstract. There is a good deal of literature that investigates the properties of
various operational variants of Theil's {1971, Principles of Econometrics, Wiley, New
York) minimum mean squared error estimator. It is interesting that virtually all of
the existing analysis to date is based on the premise that the model’s disturbances are
i.i.d., an assumption which is not satisfied in many practical situations. In this paper,
we consider a model with non-spherical errors and derive the asymptotic distribution,
bias and mean squared error of a general class of feasible minimum mean squared error
estimators, A Monte-Carlo experiment is conducted to examine the performance of
this class of estimators in finite samples.

Key words and phreses: Asymptotic expansion, quadratic loss, minimum mean
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1. Introduction

Much of the literature of biased estimation in regression analysis is concerned with
the search of estimators for improvements in mean squared error (MSE) terms over the
unbiased least squares rule. See Mayer and Willke (1973), Draper and Van Nostrand
(1979) and Vinod (1978) for surveys of the relevant literature. Within the context of
the linear regression model, Theil (1971) exhibits an estimator which is shown to have
the minimum MSE property among the class of all linear homogenous estimator for the
regression coefficients. The problem with this estimator is that it is non-operational as
it depends upon the unknown regression coefficients and disturbance variance. Fare-
brother (1975) consequently proposes a feasible minimum mean squared error estimator
(FMMSEE) which is obtained through replacing the unknown parameters with their
estimates from ordinary least squares {OLS). Several authors, including Vinod (1976)
and Dwivedi and Srivastava (1978), have subsequently studied the FMMSEE’s asymp-
totic and finite samples properties. Stahlecker and Trenkler (1985} suggest incorporating
prior information and derive a minimum MSE heterogeneous estimator of the regression
coefficients. Other authors, such as Liski et al. (1993) and Tracy and Srivastava (1994),
have considered various other generalisations and extensions. Recently, there has been a
resurgence of interest in the FMMSEE, as reflected in the work of Ohtani (19964, 19965).
The former relates to the derivation of an expression of the exact finite sample risk of
the FMMSEE under a quadratic loss function, whereas the latter considers an adjusted
(for degrees of freedom) feasible minimum mean squared error estimator {AFMMSEE).
A striking feature that emerges from these investigations is that the AFMMSEE can be
a superior alternative to the Stein rule estimator (SRE) and Stein positive rule estimator
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(SPRE) over a wide range of experimental settings. Other relevant work includes Ohtani
{1997), where the exact MSE of the FMMSEE of individual coefficients is considered,
and Ohtani (1999}, which explores a pre-test strategy involving the AFMMSEE.

It is interesting to note that all the aforementioned studies invariably assume that
the underlying model’s disturbances are i.i.d., an assumption which is not satisfied in
many practical situations. Some authors, such as Toutenburg et ol (1992) and Rao and
Toutenburg (1995) discuss the (non-operational) minimum mean squared error linear
estimator for models with non-spherical errors, but do not consider its operational vari-
ants. This gap is remedied in this article. In Section 2, we discuss a class of adaptive
versions for the minimum mean squared error estimator for the case of non-spherical
errors. Section 3 is devoted to the derivation of the asymptotic distributions of this class
of estimators, along with the conditions of dominance of this class over the feasible gen-
eralized least squares estimator (FGLSE) using the risk under quadratic loss criterion.
A result of Rothenberg (1984) on the asymptotic distribution of the FGLSE is nested as
a special case in our results. By means of a Monte-Carlo experiment, Section 4 explores
the performance of these estimators in finite samples. Some concluding remarks appear
in the final section.

2. The model and estimators

To motivate discussion and establish notations, we consider the linear regression
model, ¥y = X3+ ¢, where y is a n x 1 vector of observations on the dependent variable,
X is a n x & matrix of observations on k independent variables, 8 is a & x 1 vector of
regression coeflicients and ¢ is a nx 1 vector of disturbances assumed to follow the Normal
distribution N(0,0?W). We assume that the elements of the covariance matrix W are
functions of a ¢ x 1 parameter vector & belonging to an open subset of the g-dimensional
Euclidean space.

It has been shown (see, for example, Rao and Toutenburg (1995)) that the estimator,
By = [ X'Wly/(o? + FX'W-1Xp)]3, is the minimum mean squared error linear
estimator of 3. It is obvious that 8a is not a true estimator as it depends upon the
unknown parameters 3, 02 and 8. In order to make 35 operational, we replace 3 and o2
by their estimates from feasible generalised least squares and 8 by a consistent estimate.
This gives rise to the following feasible minimum mean squared error estimator as an
adaptive version of B

(2.1) Bu = BXWXB/(r/v+ FX'W1XB)]B,

Where W is obtained by replacing & by its c:on51stent estnnator say, 6, inW, 3=
(X'W=LX)"1X'W 'y is the FGLSE of 8, 7 = (y — Wiy - XB) andv =n -k
A slight modification of the FMMSEE is to adjust ﬁ' X'W ’ -1X3in (2.1) by its degrees
of freedom (Ohtani (199658)), which leads to,

Ban = [(BX' W XB/k)/(r/v + B XWX B/k)8,

the adjusted feasible minimum mean squared error estimator of 3. Further, a general
form of ﬁM and ﬁA A may be written as,

(2.2) Bo =BX'WXB/(rd/v + FX'WX5)5.

For d = 1, B¢ reduces to the FMMSEE and for d = &, it becomes San. Also, the
FPGLSE results when d = 0. Both 3y and B84 are consistent estimators of 3, but
neither estimator has any minimum mean squared error property.
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It is worth noting that for the case E(eg') = I, the FMMSEER satisfies Baranchik’s
(1970) condition and therefore dominates the OLS estimator in terms of risk under
quadratic loss when & > 3. In the same context, Ohtani (19964, 19964 ) provide numerical
evidence suggesting that even if & < 3, the FMMSEE is risk superior under a quadratic
loss structure to the QLS estimator in a wide region of the non-centrality parameter

= ' X'X /0% and that the AFMMSEE is risk preferred to both the FMMSEE and
the Stein posmve rule estimator over a wide range of A values.

In the next section, we consider the properties of 3 and EAM under the more
general framework of non-spherical errors, which is heretofore unexamined.

3. Asymptotic distribution, bias and mean squared errors

In this section we first derive the asymptotic distributions of the proposed estima-
tors. For convenience purposes, we write W = Q7! and W = ! so that (2.2) can be
written as, . L i o

Bm = [BX'QXB/(rd/v+ F' X QXB))5.
Now, let §; be the j-th element of 8,

ﬂj = BQ/BBJ, ij - 89/393;5, e
A=X'0X[n A; = X' X[n, Ajk = X' Qi X/, ...
= X’DE/ﬁ, &y = X’ﬂj&‘/\/f_l, Qi = X'ije/\/ﬁ, cae

and the set of all matrices having the same number of indices be denoted by that matrix
subscripted in bracket by that number. For instance, A(yy denotes the set of matrices
Aje, 4,k = 1,2,3,...,¢. Furthermore, we require the following regularity conditions
for the validity of the asymptotic expansion for the distribution of 3¢ (see Rothenberg
(1984) or Chaturvedi and Shukla (1990)):

Cl. The matrix A converges to a finite matrix as n — oo;

C2. Each matrix in the set A(yy,..., Ay and covariance matrix of each random
vector ey, ..., a5y converges to a finite matrix as n — oo;

C3. For all matrices I in £, n~1X'T?X is bounded as n — oc;

C4. The estimator & of # has a stochastic expansion of the form,

~

VRl —8)=6=e+0u(n"")

where ¢ follows a normal distribution with mean vector of order O(n~1/2) and covariance
matrix A + O(n~!). Further, the third order cumulants of (ayy,..., ok} are of order
O(n~'/?) and higher cumulants are of order O(n=").

Now, we denote,

Py = (X’Qj - AjA_IX’Q)/\/E,
.Ffjk = (X'ij - QAJ'A_IX’Q,I: + 2AjA‘1AkAﬁ1X’Q — AjkA_lX’ﬂ)/(2\/ﬁ),
¢=p0AB, ¢;=0A4;8, bix=0Aub,
<= —dop/pvm, and
g
A=A1441 Z PO P x| A7V n— 2do® (AT - 288 /4)/ng,
dk

where Ajy is the (j, k)-th element of A.
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THEOREM 3.1. Given the regularily conditions C1-C4, the asymptotic distribution
of ¥ = Vil — B)/a, up to order, Op(n™1), is N(5,A) as n — oo

ProoF. Following Chaturvedi and Shukla (1990), up to order Op(n™!), we can

write, . ara
Va(B—B)/e =1 + 112+ -1 + Op(n”~ 2y

where 5, = A la/o,

g

q
N-1/2= ZA_IPJ'E'SJ'/(J\/T_EL n-1 Z gké‘ﬁ &/ (on)
J

ik

and §; is the i-th element of . Further, we have, 7/v = 02 + Op(n~!) and
-1
q
1/(dT/U + ﬁfX"leB) = (dg’Q/n + ¢' + 2Jﬁ'Ano/\/T_l+ qujéj/\/ﬁ) /n
' 3

q
= (1 — 203 Ano /R — D $56; /Wﬁ) / n¢ + Op(n~?).
J

Therefore, up to order Op{n~1), we have,
(3.1) r=vnlg - 8- (dr/v)/({dr/v) + B X'QXB)|B/o
q
=T+ N-1/2 + -1 — do (1 — 208" An./p/n — Z‘?j@/‘i”ﬁ)
i

(B +n.o/v/n)/pvn
=M+ M-172 + N1

q
—do (ﬁ +(L—280'A/¢)n00/ VR~ Y @-@ﬁ/qﬁﬁ) / VR,
J

Utilizing (3.1), we obtain the cumulant generating function of r, up to order O(n1), as,

K(h) = —idoh'B/dv/n + lnE{e“"“" [1 +ih'n 1z +ih'n_1 — (R'n_1/2)%/2

q
- ido? (h’(l — 288 Al — > cbj&jﬁ/w) / dm] }
J
Now,
E(eihlq") _ ewh’A_lh/z, E(hin_llgeih'm) — E(h!n_leih’m) — 0?

q
E((hr'n_l/g)zeih’ﬂ”) - egh'Ah/Z Z thfljjjﬂflpliAAlhAjk/n’
Ik

q
E(neet ™) = e W AWM A7), and B (e“""“ qujéj) = 0.
¥
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Hence, up to order O(n~1),

q
1= KA PQT Pl AT AA/(20)
7.k

+doh! (A7~ 2ﬁﬁ’/¢)h/¢m]

K(h) = —idoh'B/¢v/n— KA h/2 +In

q
= —idoh'B/on — K [A-l + AT (RQTI PN AT

a3
— 2d0*(A”" - 266’/¢)/(¢n)l h/2
= ih'c — h'Ah/2

which is the cumulant generating function of a normal distribution N(¢, A). Hence
Theorem 3.1 follows.

Remark 3.1. The asymptotic distribution of 3 given in Rothenberg ((1984), 814
819) is a special case of Theorem 1 by substituting d = 0. The equivalence of ours and
Rothenberg’s expressions can be proven by observing that for any & x 1 vector ¢, the
asymptotic distribution of \/nc'(3 — 3) /e, up to order O(n™1), is N(0, ¢/'®1¢), where

gik=1

q
By =A4"1+ 47! (Z Pjn—lp,;,\jk) A7 n.

Coroirary 3.1.  Utilizing Theorem 3.1, it is straightforward to show, up to order
O{n™1), that the bias vectors of fc, B, v and Ban are,

B(Bc - B) = ~a*dB/én, E(B-8)=0,
EBy - 8)=-0%8/¢gn, and E(fam —8) = —o2kB/én

respectively.

) COROLLARY 3.2, Using Theorem 3.1 again, the MSE matrices of Bc, {5‘, ﬁM and
Bas, up to order O(n~2), are given by,

E(Bc - B)(Bc - B = 02{A_1 + A'I( > ﬂﬂ_lpfi/\jk) A n

4.k=1

40?2471 - (4+ dmﬁ’/@/(nm} / n,

E(B-B)(B-8) = crz{A*1 +A7 ( i Pjnlp,;)«,-k) A-l/n}/n

dg=1
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q
E(Bur - B)(Bm - 8) = aQ{A‘I + A7 ( 3 Pjﬂ—lp,;,\Jk) A‘]/n

2k=1

— 02247 - 566’/¢)/(n¢)} / n and

q
E(BAM _ﬁ)()éAM "ﬁ)’ = 0'2{14_] + A_l(z PjQ_lPLAjk)Al/n
2

k=1

—ko?(2A 1 - (44 k)ﬁﬁ'/¢)/(n¢)} / n

respectively.

. THEOREM 3.2. Up to the order of our approzimation, the estimators 8, BM and
Bam do not strictly dominate one another with respect to the criterion of MSE matriz.

PROOF. First, consider the dominance of 3p over 3. From Corollary 3.2, this
requires the matrix (24-! — 538/¢) to be positive definite. This cannot be true as
can be seen by an application of Theorem A.57 of Rac and Toutenburg ((1995}, p. 303),
according to which a necessary and sufficient condition for (24! —533/¢) to be positive
definite is 53’ A3/ (2¢) < 1 or 5/2 < 1, which can never hold. This means that 34 cannot
dominate é with respect to the criterion of MSE matrix. Consider the converse of it,
i.e., dominance of 3 over Aa. This requires the matrix (5883 /¢ — 2A~!) to be positive
defmlte This also cannot be true by virtue of Theorem A.59 of Rao and Toutenburg
((1995), p. 304). So, in other words, 3as neither dominates 3 nor is dominated by 4
with respect to the MSE matrix criterion. It can be established in the same fashion that
similar is the case between EAM and ﬁ, and between 337 and S4n.

It is thus seen that of the estimators considered, no one strictly dominates any of
the others in terms of MSE matrix. Such is, however, not the case if we consider the
following weighted quadratic loss function,

(3.2) L($9) = (§ — 9) Q0 — 9

as a (weaker) criterion to appraise estimators’ performance, where J is any estimator of
¥ and ) is a k x k, positive definite, symmetric weighted matrix of the loss function. In
particular, if we choose @ = A, then we have the following sufficient conditions:

THEOREM 3.3. Under the gquadratic loss function (3.2) with Q = A, up to order
O(n™2), we have,
i) ,@M dominates 3 whenever k > 5/2 or equivalently k > 3;
ii) ﬂAM dominates ﬁ whenever k > 4;
iii} ﬁAM dominates ﬁM whenever k > 5 .

PROOF. From the MSE expressions of 3 and 8y, it is readily shown, up to order
O(n~2), that,

E(3-8)Q(8 - 8 — E(Bu — BYQIB - B) = o*[2tr(A71Q) — 55'QB/ 8]/ (n*8).
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Therefore, the FMMSEE dominates the FGLSE as long as, w = [tr(A™'Q/u(A71Q)] >
5/2, where i denotes the maximum characteristic root of the matrix A~1Q. Similarly,
the difference between the risks of the estimators 3 and Baas, to the order of our ap-
proximation, is given by,

E(8-8YQ(B~ B)— E(Bar — BYQ(Bam — B)
= *k[2tr(A Q) — (4 + k)F'QB/¢l/ (n*)

which is non-negative whenever w > 2 + k/2. Further, comparing the risks of Bar and
Ban, we observe, up to order Q(n2), that,

E(Br — B QBar — B) — EBart — BYQ(Bart — B)
= (k- 1)2te(A7'Q) — (5 + k)B'QB/¢]/(n*¢),

so that a sufficient condition for 34 to dominate 8as is w > (5 +&)/2. If Q = A, then
w = k and Theorem 3.3 follows.

Notwithstanding the results being large sample approximations, Theorem 3.3 offers
a simple prescription regarding the choice of estimators to be followed in practice, in
a form that overcomes the unobservability of the model’s parameters. The following
simulation experiment sheds further light on the finite sample performance of s and
Ban in comparison with various other estimators including the SRE and PSRE.

4. Monte-Carlo results
Our experimental design is based on the following model with AR(1) error terms:
y=Xf+e, e=pe_1+u,

where u is a random vector with elements u; ~ IN(0,02), t = 1,2,...,20. In addition,
we consider the following parameter values:

02=10, k=246 p=00,+04 +08 X = various values.

Furthermore, the design matrix X is chosen such that XX’ = I. Estimators’ perfor-
mance is compared on the basis of the loss function given in (3.2) with @ = A. The
matrix  is constructed using the Prais-Winsten (1954) transformation. Each part of
the experiment is based on 5000 repetitions, and our computations are undertaken with
the SHAZAM econometric package version 8 For the experiments with k¥ > 2, we
also include the Stein-rule estimator discussed in Chaturvedi and Shukla (1990) and its
positive-rule counterpart, with & — 2 chosen as the {optimal) value of the Stein-rule’s
shrinkage parameter (see Chaturvedi and Shukla (1990} for details on the choice of value
of this parameter). To the best of our knowledge, there are no previous results on the
empirical performance of the SRE and SPRE in models with non-spherical disturbances.
A selection of the results being representative of the general patterns are illustrated
in Figs. 1 through 6, with the risk of the FGLSE scaled to 1 in each case for ease of
comparisons.

The discussion that follows is based on a full set of results available upon request.
Considering first the case of k = 4 (Figs. 1 and 2), it is found that the AFMMSEE is
better than all the other estimators in almost all parts of the parameter space, except
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Fig. 1. Relative risks of estimators for n = 20, & = 4 and p = —0.4. Plotted for 1 = FGLSE,
2 = FMMSEE, 3 = AFMMSEE, 4 = SRE and 5 = SPRE.
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Fig. 2. Relative risks of estimators for n = 20, £ = 4 and p = 0.0. Plotted for 1 = FGLSE,
2 = FMMSEE, 3 = AFMMSEE, 4 = SRE and 5 = SPRE.
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Fig. 3. Relative riskis of the AFMMSEE for n = 20 and k = 4. The curves labeled 1, 2, 3, 4
and 5 are for p = —0.8, ~(0.4, 0.0, 0.4 and 0.8 respectively.

when A is relatively large (> 100), where the SRE and SPRE can have a slight advantage
over the AFMMSEE. In general, the SPRE risk is never greater than the SRE risk, and
the FGLSE usually has the largest risk followed by the FMMSEE. For all the cases
that we have considered, the FMMSEE risk is always greater than the risks of the SRE,
SPRE and AFMMSEE. At A = 0, the risk reductions of the AFMMSEE and FMMSEE
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Fig. 4. Relative risks of estimators for n = 20, k = 6 and p = 0.8. Plotted for 1 = FGLSE,
2 = FMMSEE, 3 = AFMMSEE, 4 = SRE and 5 = SPRE.
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Fig. 5. Relative risks of estimators for n = 20, k = 2 and p = —0.4. Plotted for 1 = FGLSE,
2 = FMMSEE and 3 = AFMMSEE.
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Fig. 6. Relative risks of estimators for n = 20, k = 2 and p = 04. Plotted for 1 = FGLSE,
2 = FMMSEE and 3 = AFMMSEE.

are quite striking relative to the FGLSE-depending on the values of p, the risks of Banr
and G are, at best, 36 and 70 percent, and at worst, 48 and 77 _percent, respectively,
of the risk of ﬁ Regardless of the p value, the relative risks of ﬁ 4 and ﬁM increase
as A increases, ceteris paribus. On the other hand, increasing p results in decreasing the
risks of these estimators relative to the FGLSE risk over quite a large range of values
for A (Fig. 3). For small to moderate values of A (say, < 10), the risk of 345 averages
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80 to 90 percent the risk of the SPRE. Generally speaking, the larger is A, the smaller
is the risk difference between the AFMMSEE and the SPRE, with the former estimator
having the edge on the latter in most circumstances.

Much of these general patterns persist as & increases (Fig. 4). Exceptions occur
at and near A = 0, where the SPRE can be marginally superior to the AFMMSEE
when k is large. Other things being equal, the risk difference between Ban and the
SPRE decreases as k increases. Over much of the parameter space, however, the former
estimator continues to be the preferred estimator over the SPRE.

For k£ = 2, the SRE and SPRE reduce to the FGLSE. Comparing the risks of the
FMMSEE and AFMMSEE, neither estimator dominates the other (Figs. 5 and 6), and
both of these estimators can have greater risks than the FGLSE for larger A values. At
worst, the FMMSEE and AFMMSEE risks are, respectively, 5.6 and 12.9 percent larger
than the FGLSE risk. This is more than compensated for by a substantial decline in risk
of using the former estimators in place of the latter for small values of A. Typically, the
FMMSEE dominates the AFMMSEE in regions where both estimators are dominated
by the FGLSE. On the other hand, over much of the rest of the parameter space, the
AFMMSEE habitually enjoys a smaller risk than the FMMSEE. The value of A at which
the risk function of 3as crosses with that of B4 seems to increase as p increase, celeris
paribus.

Overall, while none of the estimators performs best under all circumstances, the
AFMMSEE is often found to provide the smallest risk in a variety of situations. For
large values of A, the choice of estimators appears to make very little difference. On the
other hand, when A is small, and especially for small number of regressors, moderate to
large reductions in risk can often be made by replacing the FGLSE with the AFMMSEE.

5. Conclusions

In this paper, we have extended the existing results on a class of operational variants
of the minimum mean squared error estimators, by considering models with non-spherical
error structures. The motivation of considering this class of estimators is stressed in Sec-
tions 1 and 2. We examine approximations to the distribution of this class of estimators,
and explore the finite sample performance of these estimators in a Monte Carlo study.
In many cases, our results reinforce the conclusions of Ohtani (19966} that the adjusted
feasible minimum mean squared error estimator is often a superior and viable alternative
to the Stein-rule estimators, and the gains of using this estimator generally outweigh the
losses. Of course, as with all Monte-Carlo experiments, the simulation results presented
here are of a limited nature. It remains for future research to consider other forms of
autocorrelation processes, and the effects of the choice of design matrix have upon the
properties of these estimators.
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