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Abstract. Following a Markov chain approach, this paper establishes asymptotic
properties of the least squares estimator in nonlinear autoregressive (NAR) models.
Based on conditions ensuring the stability of the model and allowing the use of a
strong law of large number for a wide class of functions, our approach improves some
known results on strong consistency and asymptotic normality of the estimator. The
exact cohvergence rate is established by a law of the iterated logarithm. Based on
this law and a generalized Akaike’s information criterion, we build a strongly consis-
tent procedure for selection of NAR models. Detailed results are given for familiar
nonlinear AR models like exponential AR models, threshold models or multilayer
feedforward perceptrons.
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1. Introduction

Nonlinear models have become a standard tool for analysis of time series endowed
with a complex dynamic. An important and widely used subclass is R%-valued NAR(p)
processes defined by

(11) X = f(Xt_l, . .,Xt_p;ﬂ) + &4, t> 1.

Here (¢,) is an i.i.d. error process and f a known measurable function depending on some
parameter 6. As extension of familiar AR models, NAR(p) models include threshold AR
models (Tong (1983)), exponential AR models {Haggan and Ozaki (1981)} or multilayer
feedforward perceptrons, among others. Recent reviews on these models can be found
in Tong (1990) and Pdtscher and Prucha (1997).

For parameter estimation purpose, least squares estimation (LS) is a mostly used
procedure for these models. Although the method is classical and well-known, its the-
oretical properties have been reported in recent years only. The literature can roughly
be classified according to the type of dependence properties of the process which are ex-
ploited to derive the asymptotics of the LS estimator. One approach, based on stationar-
ity and ergodicity conditions is proposed by Tjgstheim (1986). Another approach is based
on mixing conditions or uniform mixing, see ¢.g. White and Domowitz (1984). A third
approach, based on the concept of “near epoch dependence” and “L,-approximability”
of a stochastic process, has been proposed, see e.g. Gallant (1987), Gallant and White
(1988), Péitscher and Prucha (1997). A fourth approach treats the process as a Markov
chain {after rewriting it in companion form}, and uses limit theorems for Markov chains.
This approach seems to be initiated by Tjgstheim (1990).

In this paper, we follow the Markov chain approach and try to improve some results
of Tjpstheim (1986) in the following way. While previous results require the associated
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Markov chain to be Harris ergodic (i.e. positive Harris recurrent and aperiodic), it is
known that this requirement is stronger than needed for asymptotics of the LS estimator.
Actually, we shall show that strong consistency and asymptotic normality both hold
under a weaker condition, called stability of order a. Roughly speaking, such a stability
holds when the chain has an unique invariant measure having moments up to order a and
such that a strong law of large numbers holds for functions which are bounded at infinity
by the moment function |®|®. As expected, a Harris ergodic chain with a suitable moment
condition fulfills such stability condition. However, we shall show examples where we
are able to establish asymptotic properties of the LS estimator, although the associated
Markov chain is not Harris ergodic. On the other hand, for exponential AR models or
threshold AR models, we found conditions on the error process which seem to be weaker
than previously used ones.

Another contribution in this paper is a law of the iterated logarithm for the LS
estimator which is established under the above stability condition. This law is not of
theoretical interest only: it has an important application in building a strongly consistent
procedure for selection of NAR(p) models.

[t is worth noting that in the specific case of NAR(p) models, application of general
results on conditional LS estimation as proposed in Klimko and Nelson (1978), and
especially Lai (1994) is not obvious. Actually, the conditions given in these papers need
to be explicited in such a way that they depend only on the regression function f and
the error process.

An overview of the paper is as follows. In Section 2, the main assumption of stability
of order « is stated and various known criteria are recalled for checking this stability.
Section 3 is devoted to asymptotic properties of the LS estimator, including a law of the
iterated logarithm (LIL). By using this LIL and Akaike’s principle of parsimony, we give
a strongly consistent procedure for selection of NAR models (Section 4). To illustrate
our results, we treat some important examples in Section 5. Finally, Section 6 collects
all proofs.

2. Stability of order o for the associated Markov chain

Let be X, = (XT,..., X )T Following the Markov chain approach (Tjestheim
(1990)), we rewrite the NAR(p) process in its companion form

Xt f(Xt—ls"'JXt—p;g) £t
Xi- X1 0

21 X-=| "7 |= ' +| . | = F(Xe 0+,
Xi—pt1 X p 0

where F' and n are implicitly defined. Since (=) is an i.i.d. sequence, the vectorized
process (X;) is an homogeneous Markov chain with initial (deterministic) state @ =

d
(§,...,25,,,)T € (R*)P.
Some notations are necessary. To any norm || - || on R?, we associate a norm on
(RHYP by setting |2| := ||z + -~ + |lgp]| for = := (2F,...,2z1)7T in (R?)?, where z;

are vectors in R?. The true value of the parameter is denoted fy and Py, stands for
the probability distribution of the chain (X;) under the true model. Moreover, any

convergence —(resp. —12») means an a.8. convergence (resp. convergence in distribution)
under Py, which hold independently of the initial state xy.
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A basic tool for deriving asymptotic properties of the LS estimator is to exploit
limit theorems of the Markov chain (X,}. As stated in Section 1, previous results mostly
required Harris ergodicity for this chain. We shall show that an asymptotic theory is
possible under the following weaker condition called stability of order a.

DEFINITION [S]. Stability of order a. Let be a > 1. We say that under Py, the
chain (X,) has a stability of order a if
(i) The chain has an unique invariant measure pug,, .
(ii) Moment conditions: The marginal distributions of X;, t > 1 as well as the
invariant measure g, has a moment of order a, that is

Bl Xl* <o0,t2 35 g1 = [ feltnn(dn) <o

(ili) Strong law of large numbers {SLLN): For any scalar function ¢ on (R*)P which
is pg,-a.s. continuous and satisfies |¢(-)} < const. (1 + |- |}, it holds

1«
a2 KN [ dl@n(d)

In a model where such a stability holds, the above SLLN will be fundamental to
derive asymptotic properties of the LS estimator. Actually, we shall successively apply
this law to the LS criterion function and its first and second-order derivatives. Conse-
quently, model assumptions will be set in such a way that these functions are bounded
by a polynomial of type const. (1 +|-]%).

An immediate question from this definition is to find conditions on a NAR(p) model
to guarantee such a stability, For general stability theory of Markov chains, we refer to
representative monographs (Meyn and Tweedie (1993), Duflo (1997)) and papers from
Borovkov (1991), Borovkov and Korshunov (1994). Here we shall emphasize on specific
criteria for a NAR(p) model. A clear classification of existing criteria can be obtained
according to whether or not the error process is a Lebesgue noise: we shall call an i.id.
error sequence (g;) a Lebesgue noise if £; has an everywhere positive density function
with respect to the Lebesgue measure.

Criterion [C.1] for a Lebesgue noise. Assume for the NAR(p) model (1.1)
(i) (e¢) is a Lebesgue noise and E|je; ||* < co for some a > 1.
(ii) The function & — f(z;8) is continuous and there exists positive numbers
ALy ..., Ap satisfying Ay +--- 4+ Ap < 1, and a constant £ > 0 such that for some norm
I |l on R,
IF(2; 80)ll < Mlwrli+-- + Agllzpll + 5, @ € (RT)P.

Then, the NAR(p) model under 6, has the stability [S] of order a.

In the case p = 1, the criterion [C.1] is well-known, see e.g. Doukhan and Ghindés
(1980), Mokkadem (1987), Tjgstheim (1990). Based on Tweedie's results, these authors
proved that under [C.1], the chain (X;) is Harris ergodic with an (unique) invariant
measure g, equivalent to Lebesgue measure. The moment condition in [C.1](i) ensures
that pg,(] - |*) < oo. The required SLLN thus follows from e.g. Theorem 17.1.7 in Meyn
and Tweedie (1993). Extensions for general p > 1 are recent. We are only aware of
results from Duflo (1997) and Attali (1998).
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However, Condition [C.1|(ii) is an approriate criterion only for those models which
are basically nonlinear. To specify, assume in contrary f(z;8g) is close to a linear model
in the sense that

f(®500) = o121 + - - - + apx, + (x5 6p),

where ¢ is a small nonlinear component satisfying

lim sup M =0,

|z |—o0 h:l

(v = 0 corresponds to AR models). For such models, Condition [C.1|{ii) is too strong.
Fortunately, the conclusion of [C.1] still holds if we replace [C.1](ii) by the following (ii)":
the function x — f(x;8) is continuous and the polynomial 1 — ZJ- a;2’ is causal,

If the error process is no longer a Lebesgue noise, the situation is more intricate
and very few is known. In general, a stronger contraction condition on f is necessary to
ensure stability. The following Lipschitz condition is found in Duflo (1997).

Criterion [C.2] for arbitrary noise. Assume for the NAR(p) model (1.1}

{i} Ejie1||* < oc for some a > 1.

(ii) There are p positive numbers A1,..., Ap such that Ay +---+ A, < 1, and for
some norm || - || on R?,

1@ 60) — fw:00)] < Allwr = wall+ -+ Mpllep — 3ll, @y € (RYP.

Then, the NAR(p) model under #, has the stability [S] of order a.

For illustration purpose, consider the following univariate AR (1} model

1
X = 5Xt—~1 +&, t21

started with Xy = 0 and where (&) is an i.i.d. Rademacher sequence, i.e. P(e; = 1) =
P(e; = —1) = 3. It is known that {X,) is not Harris ergodic. However, by applying
Criterion [C.2], we see that the model is stable with an order which can be arbitrarily
high. Hence our asymptotic results on LS estimator are valid in such a case.

3. Asymptotic properties of the LS estimator

In the sequel, || - || denotes the usual Euclidian norm with associated inner product
{-,-). Let (X_p41,...,X,) be observations from the NAR(p) model (1.1). The {(normal-
ized) sum of squares (U},) is

1 n
(3.1) Un(8) = =D I Xe = f(Xem1s Kema - Xep 1)1
t=1

and the LS estimator is defined by

_~

(3.2) 6, = Arg min U.(8).

We shall derive successively strong consistency, asymptotic normality and a law of the
iterated logarithm for this estimator.
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3.1 Strong consistency
We shall call continuity modulus any increasing function g satisfying lim,— g(x) =
{0) = 0. Let us make the following assumptions.

ASSUMPTION [M].
(i) The parameter 6 belongs to a compact subset @ in R®. The error process (£¢ )0
is centered and i.i.d., with a known covariance matrix T.
(i) Under the true model 8y, the Markov chain {X,} has a stability of order a > 1
according to Definition[S] .
(iii) (a). For all 8, & — f(z;0) is ug,-a.s. continuous. (b). ||f(z;6p)] < const. {1+
l&|*/2). (c). There exists a continuity modulus G such that:

vre (RY?, V(@B €8 |f(z;ia)- flz:B)]| < G(le - B+ =),

Condition (i) is standard. Condition (ii) is the basic requirement that we need
on the stochastic behaviour of the true model. Condition (iii) roughly means that the
autoregression function f is continuous, and with respect to z it is bounded by 1+ |2]2/2
(up to a constant factor). Such a control together with the stability assumption (ii)
guarantee a SLLN for functions like | f|| or || f{]2.

First we identify the limit of the estimating function U7,.

PROPOSITION 1.  Assume that M| holds. Then for any fized 8 € ©,
(33)  Un(8) — Un(6o) = . 173 8) — f(2;00) 18, (d) =: K (8, 060).

Moreover, the limit function K(6,8,) is continuous in 8.

Clearly, 8y is a global minimum of the limit function X. Whether or not it is the
unique one depends on the identifiability of the model. We shall use the following

CONDITION OF IDENTIFIABILITY [D]. For any 8 € ©, f(-;8) = f(-;65)ue,-a-5.
itnplies & = 6.

The LS estimator is then strongly consistent if both the assumptions [M] and the
identifiability condition [D] hold.

THEOREM 1. Assume that both Conditions [M] and [D] hold. Then the least squares
estimator 8, is strongly consistent.

3.2  Asymptotic normality R

For asymptotic normality of 8,, we typically need some additional conditions on
second order differentiability of the process (U/,). We make the following assumptions,
where partial derivatives of a scalar function g{f) are denoted Dyg = 8g/86;, Dl,9 =
829/(89,(9&})

AssuMPTION [N]. Assume that #, €0 and there exists a neighbourhood V of 8,

where for any & € (R%)P, the d coordinate functions fi,..., fz of @ — f (x;6) are twice
continuously differentiable such that, forall k=1,...,dand i, j=1,...,s, we have:
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(i) Forall 8 € V, & — D, fi(x;6) and x + D? i fr (z;8) are pg,-a.5. continuous.
) (ii) |D;fiu(x;6p)| < const, (1+|m|“/2) JD fk{:z: #o)| < const. (1+|:1:|“/2) T €
(R)*.
(iii} There exists a continuity modulus ;;4 such that

(34) D% fi(;8) — Diifu(2 3 00)| < 0ije(l6 — Bol)(1 + |2]*%), 0 €V, =€ (R,

It is worth noting that Counditions [N](ii)-(iti) are similar to [M]|(iii}. In particular,
they also guarantee a SLLN for functions involving first or second order derivatives of f.
Let us denote the matrices:

Df(x;8):=[D;fi(x;0)], dx smatrix,
(3.5) M(z;8):={Df(z;0))}"Df(x;0), s xsmatrix,
(3.6) ijf(:z: 18) = [ijfk(a:;ﬂ)], d x 1 vector,

with1 <4, j <sand 1 <k < d. The gradient vector and the Hessian matrix of U,, are
respectively:

(37)  DULB)=-> = X Xt - £(Xe:0)|TDF (X 56),
0<t<n
(3.8) -D2U #) = Z M(X,;8)
0<t<n
—% [ Z [(Xe+1 — F(Xe;8)]TD3 f(Xt;B)]
0<t<n 1<4,j<s

First we prove two results on [DU,(o)] and [D2U,(6p)]-

PROPOSITION 2. Assume that Conditions [M], [D] and [N] hold. Then

(3.9) DU, (6p) 2% Iy with Ip:=2 M(x ; 80) e, (d),
(R
(3.10) VDU {80) = N0, Jo)

with  Jy 1= 4[Rd)p{Df(£a l90)}Tl—‘l)f(ﬂ"': to)tie, (dz}.

We now establish the asymptotic normality of the LS estimator.

THEOREM 2. Assume that Conditions [M], [D], [N] hold and in addition Iy is reg-
ular. Then

V[l — 0] B N0, I JoITh).

One may note that in the univariate case (d = 1), the two matrices Iy and Jo are
proportional: Jy = 202], with the noise variance ¢2 = I'. In this case, the above asymp-
totic covariance matrix is reduced to 20215, It is also worth noting that Theorem 2
can be applied to subhypothesis testing.
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3.3 A law of the iterated logarithm R

The following law of the iterated logarithm gives exact a.s. convergence rate of 9,,.
In addition of its own interest, such a law would be a basic step in search of a strongly
consistent procedure for selection of NAR models (see Section 4).

THEOREM 3. Assume
(i) Conditions [M], [D)and [N] hold with some a > 1 where the condition [M](ii} is
strenthened with a replaced by seme a’ > a.
(i} Both the matrices Iy and Jy are reqular. Then, for ellu € R®, u # 0, 4t holds
a.5.

(3.11) Lmsup (DU, (60), u} = vVuT Jyu

1
2loglogn
1]

= —liminf , /| ————
hnhm 2log log'rr,(DUn(BU)’w’

T o~
3.12) (8 — = uTlg JoIy!
( } hmnsup 210glogn(0" o, u) ully "Joly 'u
.. n -~
——hmnltlf1fm(9n—60au)~

4. A strongly consistent procedure for selection of NAR maodels

For model selection, Akaike {1969} and Schwarz (1978) introduced the method of
penalized quasi-likelihood. There is a huge literature on selection of linear models, see
e.g. Hannan (1980), Quinn (1980), Tsay {1984). In contrast, few well-established results
are known for nonlinear models, despite the widely-spread use of the method in practice.
Some related works can be found in Nishii (1984), Haughton (1991). An approach based
on the accumulated prediction errors has been recently proposed by Lai and Lee (1997).
We establish below the strong consistency of a generalized information criterion based
on the LS estimates.

Let us denote by ApaxA and Apin A the greatest and the smallest eigenvalue of a real
symetric matrix A, respectively. Here we follow the presentaion given in Guyon (1995)
and consider a generalized information criterion defined in Eqns. (3.17) and (3.18) thefr\e
with the sum of squares U,(#). Therefore [¢{(n)] denotes some penalization rate and &,
the selected model based on the observations {X:) p<t<n- Since a law of the iferated
logarithm is established for the LS estimator (Theorem 3), straightforward application
of Theorem (3.4.8) from Guyon (1995) yields the following

PROPOSITION 3. Within the theorem 3 framework, if the penalization rate c(n) is
such that:

. e(n) L c(n) Amasxfo
4.1 lim —= = li f s .
(1) = 0, g loglogn =~ 2Amindo

then &y, converges to the true model & Py, -almost surely.

A popular choice for the penalization rate is a BIC-like rate ¢{n) = const. logn.
Clearly it satisfies Conditions (4.1). Hence a BIC-style procedure is strongly consistent.
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5. Examples

5.1 Threshold-exponential AR process
Let I, ¢ = 1,...,K be non-overlapping and non-empty intervals of R such that
Uil; = R. A combined threshold-exponential AR process is defined by

K
(5.1) Xe =D (o +BiXi) Ix,_yer, +ce 71X, 1 42y,

i=1

with Xy = ¢, and where (s;) is a sequence of i.i.d and zero-mean variables. The
parameters are # = (a;, 3;,¢,y) of number s = 2K + 2. We shall denote the trues values
by 60 = (Q’:n@;ac*,%)-

Note that when (£;) is a Gaussian noise, Tjgstheim (1990) has proved that the
maximum likelihood estimator is strongly consistent and asymptotic normal. Application
of previous results will prove the same for the LS estimator with more general noise. We
also give an LIL for this model. One should remark that the likelihood method is feasible
only if the density function of the noise is available.

THEOREM 4. Assume
(i) (et)e>0 is an i.i.d., zero-mean Lebesgue noise with 0% := Ee? < oo,
(i) ee £0,v% >0and |87 <1 foralli=1,...,K.
(iii) @ € 8, a compact set of R T2 such that 8, cO.
Then,
(a) B 2% 6.
(b) Vribs ~ 6o} > N(0,20215Y).
Moreover, if IEE?Wj < 0o for some § > 0, then the LIL from Theorem 3 holds.

It may be useful to explicit for this model the information matrix Iy defined Eq. (3.9).
Let ¥ be some real random variable with probability distribution ug, and set

W= (| Li(Vhci<k, Y I (Nicick, YooY, —e. Y™ Y)T,
Straightforward calculus give

(5.2) Ip = EWWT.

5.2  Multilayer perceptrons

Multilayer perceptrons {MP) have become popular in nonlinear modelling due to its
universal approximation ability, see e.g. Hertz et el. (1991). Such a example is the model
described Eq. (5.3) which has p input units feeding by the variables X;_y,...,X;—, at
time ¢, a hidden layer with K units and one cuput unit which provides the variable X;:

K P
(5.3) Xe=Y o (Z Bi Xyi+ ﬁo;;) + ap + €.
i=1 i=1
Here () is the system noise. Parameters are 8 = (ag,...,0x;8,;,0<i<pl1<j <

K)T with a parametric dimension s = 1 + K(p + 2). Their true values are denoted
by 0y = (af, *:)- For the so-called activation function i, there are two widely spread
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choices: the sigmoid map %(x) = tanh(z) or the logistic map ¥{z) = 1/(1 + ™).
Cottrell et al. (1995) describes an interesting use of this model in time series forecasting.

To simplify, we fix ¢(z) = tanh(z) and shall assume the univariate case. Application
‘of previous results yields

THEOREM 5. Consider an univariate MP model (5.3) with (z) = tanh(z}. As-
sume

(i) (£:)e>0 5 an i.i.d., zero-mean Lebesgue moise such that &e
& >0

(i) 8 € ©, a compact subset of R” such that 6y €©.

(iii) For all 6 different from 8y, there ezists © € RP such that f(x,6) # f(z,00).

(iv) The matriz Iy, defined (3.9), is reqular.
Then, with o = E<?,

(a} gn 25 60-

(b} v/nlf, — 60] B N(0,20%I;1).

(¢} The LIL from Theorem 3, as well as the strong consistency of the model selection
procedure from Proposition 3 both hold with d = 1 and Jy = 25%1,.

54 < oo for some

It iz worth to point out that the strong consistency of the estimator, statement (a),
is obtained as soon as the noise has a moment of second order.

6. Proofs

The following definitions and notations will be used in proofs. Let F = (Fr)nz0 be
the natural filtration associated to the NAR(p) process where Fp, = o{g;,1 £t < n) for
n > 1, and Fyp is the degenerated ¢-algebra. If (M) is a square integrable martingale
w.r.t. F, we denote by ({M),) its increasing process defined by:

(M>0 =0, (M>n - <M>n—1 +E [HMn - M'n—1H2 | -?:n—l] for n>1.

PROOF OF PROPOSITION 1. We denote Af;, = f(X; ;%) — f(X:;0). We have:

B, C,
Un(g) - Un(ao) = ? + ?v
with:
B, = Z [AfH?  Ca=2 Y (e, Af)
0<t<n o0<t<n
From [M](iii},
(6.1) 17 (380} — f(z:8)|* < comst. (1 +2[*), =€ (R,

Since the true model under 8y meets the assumption of stability [S], the SLLN [S](iii)
ensures that:

Br as.

Boesy [ 1f(@i6) = £(360)ny(d2).

n (e
M, := C,/2 is a square integrable martingale ([S](i)). Its increasing process (M}, is
equal to:

(M) = S AFITAf,

0<t<n
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and tends to some positive variable (M) < co. From the SLLN for square integrable
martingale, we know that on {(M). < oo}, (see e.g. Duflo (1970), Theorem 1.3.15, p.
20}, M, converges to a finite variable, and so M,/n tends to 0. On {{M}, = oo},
M, /{M}, converges to 0. As almost surely,

(M), — [RJ)F[f(w 18) — f(@:00)]"T(f {2 6) — (= ;60)le,(dz) 2 0,

J |

again M, /n—0. Hence C,,/n tends to 0 in both cases.
On the other hand, the assumption [M](iii) and the inequality (6.1) makes the map
& — K(0,6y) continuous. O

ProOF oF THEOREM 1. If we denote W, the uniform continuity modulus of U,
Le.

Wa(n):= sup [Un(a) —Un(B)l, n>0.
e
lee—Bl1<m

a sufficient condition ensuring the strong consistency of (8, ) is (see Guyon (1995), Section
3.4) the existence of a deterministic sequence (uy), decreasing to 0, such that for all £,

(6.2) Py, [limsup {Wﬂ (%) > uk}] =0,
For a, 3 € ©, set §(za,3) := flz ;o) ~ f(z; ). From[M](iii), we have:

(63)  nlUn(e) — Ua(8)|
S (6(Xu300,0) + 8(Xe300,8) + 26021,5(Xs; 0 )

o<t<n
< Glla— BN+ 1X*%) Y [eonst. (1+]Xe|*?) +2]leesll
N<t<n
<G(la=BI) D [lless1li* + const. (1+ | X:[*)].
Q<t<n

We denote §,, the sum from the last inequality. Applying the SLLN to the integrable
ii.d. sequence (||€¢+1]|%) on one hand, and to the function (1 + |- |*) on the other hand,
Sn/n tends a.s., to a constant limit £ > 0.

By (6.3), we find W, (n) € G(n)Sn/n. For any positive integer k, let us define
u = 26G(1/k). This sequence decreases down to 0. Then, for fixed k (where i.0. means
infinitely often),

e () 2] - (1)

On A = {18, >2¢i0.}, 18, can not converge to £ ; then A is a null event. The
condition (6.2} is satisfied, and the strong consistency established. O
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Some preliminary computations are useful for next proofs. Since © is compact and
by Conditions [N](ii} and (iii), there exists v > 0 such that:

(6.4) Vi,j, k,¥8 € V,Vz € (RY?,  |Di fulz;0)] < (1 + [x]*?).
It follows an estimate of increasing rate of first order derivatives
(65) Vi,k,¥8c V.vz € RY,  |Difi(w;8) — Difu(e;60)| < 18— 60ll(1 + 2[*).
And finally, there exists another constant +' such that:
(6.6) Vi, k, V8 € V,vz € (RY)?,  |Difu(m:0) < /(L + |z[*/?).
For the matrix function M (x;6;) define Eq. (3.5), the estimates (6.5)-(6.6) lead to:

(6.7  ||M(=;8) - M(x;8)| <const. |6 — 81+ |x]*), =¢ (Rd)p,ﬁ cV
(6.8) ||M(=z;8)| < const. (1+|z|?), =€ (Rd)p,t’? cV.

PROOF OF PROPOSITION 2. Let us first prove (3.6} Within the expression (3.5} of
DU, (80), the first term converges a.s. to the matrix Iy. Indeed, the SLLN [$](iii} can
be applied from the control (6.8) of the matrix function M (zx, fy).

For the second term, its element (4, 7), say My := 3 gcpcnErr1 D5 [(Xeibo), is &
square integrable martingale. Its increasing process (M), is equal to:

(Mo = > tr [T {D5 (D5} (Xe:60)] -

0<t<n

Given (6.4), an argument, similar to the one used at the end of the proof of the proposition
1 ensures that A, /n tends a.s. to 0. The conclusion (3.6) follows.
For (3.10}, let us denote this time:

(6.9) M, = —gDUn(eo)z 3" el Df(Xy;00).

0Lt<n

By (6.6}, it is a square integrable vector martingale. And (M}, is equal to:

(6.10) (Myn = > {Df(X,00)}"TDf(X,00).

0<i<n

Still by (6.6), each term of the matrix function @& — J(x;60y) := {Df(x;8)}TDf
{(« ;6p) is bounded (in norm) by const. (1 + |#|?). So, from the SLLN [S]{iii),

1 as. 1
(6.11) —(M)n — J(x; 00)poo (die) = < Jo-

n (ret)p 4
The CLT (3.10) is proved if (M,,) fulfills the following Lindeberg’s condition (see e.g.
Duflo (1997), Corollary 2.1.10):

(6.12) forall 60,

1 P
Lni=— 3 E[IM: = Miall® Tyyag,—ar, izsymy | Fomn] = 0.

0<t<n
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Let be 4 > 0 and:

1 1
Fn{d) =~ > E[M = Mooy [? Tyag,—ng,_yyz6a | Fer] = - > (X, A),

0<i<n 0<t<n
with:
M, A) =E[{Df(@;00)} e1] Df(2560) Lij(Ds(a:00)yTery>A}] -
It is clear that from (6.6), '
(6.13) h(z, A) < const. (1 + |z|%).
Hence, by [S](iil) again,
Fa(A) 5 ¢(4) = /(Rd) h(w, A)pioy (d).

The last function ¢ is positive and decreasing. Moreover, by the dominated convergence
theorem, ¢(A) tends to 0 as A tends to cc.

On the other hand, when A is fixed, we have 6y/n > A for n large enough, and
Ly, = F,(6y/n) < F,(A). So as., limsup, L, < #(A). Since A4 is arbitrary, we have

as., limL, = 0. The Lindeberg’s condition (6.12) is thus fulfilled and M, /v =
N(O, Jo/4). 0

PROOF OF THEOREM 2. Since 8, =% 8, for almost all w, there exists ng(w) such
that 8, € V for all n > ng(w). By Taylor’s formula

(6.14) 0 = DUn(8n) = DUy (60) + An(0,) (0, — 65),

where 1
An8,) = f DU [ + u(B,, — 60))du.
0

Taking Proposition 2 into account, we deduce Theorem 2 from the following lemma. 13
LEmMMA 1. Within the context of the theorem 2, we have:

(6.15) AnlB,) — DU, (00) 250,  Ap(fn) 25 I
ProoF. For @ € V and by (3.8), we have

DU, (0) = D*Un(fo) = = [A(6) + Bal(6) + Cal(8)

Sl

with

A,(0) = Y [M(X:;8) - M(X¢;60)],
0<t<n

Bo(6)= Y [f(X:;6) - f(Xe:00))T [DE(Xe38)] ., e

O<t<n

Cul0) = = > el [DEF(Xe:8) — DL F( Xy 580 15ij<s-

0<Lt<n
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Furthermore,

| An(8)]| < const. |0 —fol] D (1+|X,[%), by (6.8)
1B ()]} < const. G (|6 —6oll) > (1+]X[*), by [M|(iii) and (6.4)

0<t<n

IC(8)]] < const. oiik(2) | D leerali(L + [ Xe|*?)
_i,j,k _Ogt<n

< const. | aisu(2) | [X eewtl® + (1 +1XiD)|

3.k

On the other hand, by (6.14)
IlAn(gn) - D2Un(90)”

. H / (DB -+ u(r — 80) — D*Vi(00)

< 2[[An() + BalBu) + Co @)

Since both -};E lletx1]? and ;1;2(1 + || X:||*) converge a.s., and B =2 o, An(gn) -
D21, (6p) converges to 0 a.s. The second result is a consequence from Proposition 2. 0

PrROOF OF THEOREM 3. We shall apply Lemma 2 below to the regressive series

Mp = =2 (DUn(b0),u) = Y &F1 DF (Xiibo)u.

0<i<n

Following the notations used there, let ¢, == D f(X;; 8)u and we check Conditions (i),
(i) and (iii) of Lemma 2. We have,

Tp=T, T2=u"{Df(Xn;0)} TDf(Xn;60)u, 2= > T¢
0<t<n

Let o be a positive number such that a < min(l,a’/a — 1). The conditions (i) and (ii)
are clearly fulfilled. For (iii), first note that by SLLN, s2 /n tends a.s. to 1u” Jou, which
is strictly positive (see assumption). Tt is thus sufficient to prove that there exists an
n € (0,1) for which
T2+20

kil

(6.16) 2(1-n)(1+a)
Sn

cConverge a.s.

Since s ~ const. n, we have to prove

T2+2a
T
E m converge a.s.

Set Xy, := T212* 4 ... 4. 72422 The choice of @ ensures that

(6.17) wWT{Df(x;00)YTT{Df(z; 00)}u/"+* < const. (1 +|2|%).
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Therefore X, /n converges a.s. towards some constant y > 0. By Abel’s transformation
rule,

A Vel pIM = 1 1
kz_; FA-nU+a)  pl-n)ita) + Z [k(l—n)(lﬂ’z) B (k + 1)(E-n)(1+o k-

Furthermore,

1 1 ]Ekm(l—n)(Q—i-a) Yk

R-0ta) (k4 1)(1-nHi+e) [EEET I

Now choosing 7 < af{1 + ) yields (1 —5){(1 + &) > L. The last series converges and
T /nl-ml+a) tends to 0. So the convergence (6.16) holds. Applying Lemma 2 ends
the proof of (3.11). Finally, (3.12} follows from (6.14) and Lemma 1. O

LEmMMA 2. {Law of the iterated logarithm for regressive series) Let F = (Fn)nzo
be some filtration defined on a probability space (2, A, P), and (£,)n>0, ($n)n>0 two
F-adapted sequences of R*-valued random vectors. Set forn > 1,

(6.18) M= (b 1,8), Tni=E(snriena | Fa)y

t=1
n
T2 = Tndn, and sh:=> 77
t=1

Assume that there exists some o € (0,1) such that a.s.
(i} for alln >0, E(gnt1 | Fu) = 0; sup,, E({lenst 272%™ | Fr) < .
(i) liminf, Amin(T'yn) > 0.
Th (iil) s2—o00, 3. T2+2e /5242 « on qnd T2 = ofs2 {loglog(s2)} /2.
en,

My,

(6.19) limsup =1=—liminf M
2

s2_,loglogs? \/3?1—1 loglog s2_;

Q.s.

We do not go into more details since this LIL can be deduced from Stout’s LLI
for martingales, (Stout (1970)) and a troncature technique developped in Duflo et al.
(1990). It is worth noting that this LIL does not require any moment conditions on the

regressors {¢p).

PROOF OF THEOREM 4. First by applying results from Tjestheim {1990) or ap-
plying Criterion [C.1]), we know that, under Conditions (i) and (ii) of Theorem 4, the
process (X;) under the true model f{-;8p) has a stability of order 2 (resp. 2 + &) if
Ele1[? < oo (resp. if E|er|*t® < o). Moreover, its invariant measure uq, has a every-
where positive density with respect to the Lebesgue measure. In particular, taking into
account (5.2} and the fact v, > 0, this makes Iy regular.

The remaining conditions [M], [N] and D] could be readily checked. This is mainly
based on the following estimates which hold since the parameter space © is compact:

(6.20) [f(z;0) < const. {1+ |x]),
am

(621) 8611 IAER Bim

flz;8)| <const. (1+|z{), (i1, im) € {1,..., 8},

m=12,...
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forallzeRand 8 € ©.0

PROOF OF THEOREM 5. Note first that the map (z} = tanh(z) is C*, and all its
derivatives are bounded. In particular, we have for r ¢ R, 0 < ¢(z) < 1,0 < ¢'(z) < 1
and —2 <¢"(z) <0.

AsSUMPTION [M]: [M](i) is clearly fulfilled. Since ¢ is bounded, & — f(x ;) is
bounded too. The true model under 8, fulfills the stability criterion [C.1} from Section 2.
The model has the stability property [S] with a = 6 and [M](ii) is proved. For [M](iii),
let bepG = (ay, Bi;), and ¢ = (o}, 4;). A straightforward calculus shows that for all
z < RP,

|[f(z;0) — f(z;8')| < const. || — &lI(1+ [|=]])-

CONDITION OF IDENTIFIABILITY [D]: Because (g;) has an everywhere positive
density with respect to Lebesgue measure, the invariant probability pg, of the vectorized
chain X{P) (under Py,) is also equivalent to Lebesgue measure. The condition [D] is met
taking into account the assumption (iii).

Q
AssumpPTION: Consider V =©. [N](i) is straightforward. For [Ni(ii) and (iii), we
can show easily that, for all 2 € R?, we have:

|D; f(x;60)| < comst. (1+ =), i=1,...,s
|DZ f(x;80)| < comst. (1+ [z[*), &,5=1,...,s

|Di2jf(m;9)—ijf(x;00)|Sconst. &~ 8li(L + |2|*), 8€8, iji=1,...,s

The upper bound in the last inequality involves a polynomial of degree 3, that is why
we need a moment of order larger than 6 for the noise.
At last, the required conditions in theorem 3 are directly fullfilled.
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