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Abstract. We consider the model selection problem in the class of stationary vari-
able length Markov chains (VLMC} on a finite space. The processes in this class are
still Markovian of high order, but with memory of variable length. Various aims in
selecting a VLMC can be formalized with different non-equivalent risks, such as final
prediction error or expected Kullback-Leibler information. We consider the asymp-
totic behavior of different risk functions and show how they can be generally estimated
with the same resampling strategy. Such estimated risks then yield new model selec-
tion criteria. In particular, we obtain a data-driven tuning of Rissanen’s tree struc-
tured context algorithm which is a computationally fessible procedure for selection
and estimation of a VLMC.
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1. Introduction

We consider the model selection problem in the class of stationary variable length
Markov chains (VLMCY) on a finite space X'. The processes in this class are still Marko-
vian of high order, but their memory can have variable length. They are also known under
the names ‘tree models’, ‘FSMX models’ or ‘finite-memory sources’, cf. Rissanen {1986),
Weinberger et al. (1992) and Weinberger et al. {(1995). With a variable length memory,
the minimal state space becomes smaller and unlike full high order Markov chains with
fixed memory-length, the process is not heavily exposed to the curse of dimensionality
when estimating the unknown transition mechanism. VLMC’s are particularly attractive
when there is long memory in certain ‘directions’.

Estimation of the minimal state space and the probahbility distribution of a VLMC
can be done with the tree structured context algorithm (Rissanen (1983)). This algorithm
is consistent in very general situations, cf. Bithlmann and Wyner (1999). Moreover, it is
known to be asymptotically efficient in the sense of coding, cf. Weinberger et al. (1995),
and also in a more statistical sense for estimating a smooth functional, cf. Bihlmann
(1999). Successful applications of the context algorithm have been reported among others
by Rissanen (1994) for modeling chaotic processes and by Weinberger et al. (1996) and
Bunton (1997) for data compression.

This paper addresses two further problems which are closely connected to each other
and which play an eminent role when fitting a VLMC with a finite amount of data. We
sometimes refer to them as the model selection problem for VLMC's.

FProblem 1. How can we generally measure in a data-driven way model complexity
in the class of VEMC’s? The word ‘general’ refers here to various aims for which an
estimated model is used: they can he formalized in terms of various risk functions.
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Problem 2. What is a computationally feasible way to estimate a (sub-)optimal,
with respect to a risk function as mentioned above, member in the combinatorially very
large class of VLMC’s? In view of Problem 1, this question involves some (restricted)
minimization of estimated model complexity measures.

Regarding Problem 1, the following should motivate a more rigorous analysis than
asymptotic consistency of model or state selection in the class of VLMC’s. For finite
sample size, the true structure of a model, here the true minimal state space of a VLMC,
is not necessarily optimal in terms of minimizing a risk for estimating the whole prob-
ability distribution of the true underlying VLMC (or a functional thereof). Thus, even
under knowledge of the true model structure we may not want to use it for estimating
the true underlying process, and consistency for the model structure (which we then
hypothetically would have by knowing the true structure) is not always relevant. The
phenomenon corresponds to a bias-variance trade-off, accounting for additional variance
when estimating additional parameters in larger models which have smaller bias. Many
commonly known model selection techniques are based on a goodness of fit measure and
a penalty term, the latter taking the high variance in large models into account. But the
context algorithm is not of this nature: it makes local test decisions which can be proven
to be consistent for estimation of the underlying VLMC. However, this local decision
approach then never takes a global view aiming to minimize an overall risk {for finite
sample sizes), for example with a penalized goodness of fit measure. A solution to Prob-
lem 1 in the case of finite-state (FS) models has been considered by using the minimum
description length (MDL) criterion in Weinberger and Feder (1994). They show that the
final estimate for the whole probability distribution of the underlying process, based on
the estimated model structure via MDL, achieves an asymptotic lower bound in terms of
per-symbol code-length (Rissanen (1986}}). However, minimizing an MDL criterion over
the class of F'S models is computationally much too complex to be ever realized, which
relates to Problem 2, and the above result is mainly of theoretical interest. We study
here model complexity, and also selection of a VLMC, by measuring statistical perfor-
mance of the estimated distribution of a VLMC with a general risk function, such as final
prediction error with the quadratic or the zero-one loss or the expected Kullback-Leibler
information. By specifying a certain risk function we can tailor the model selection
problem towards specific aims. The estimation of the various risks, and thus of model
complexity, can be done consistently with a resampling scheme.

Regarding Problem 2, we propose a tuning of the non-predictive context algorithm
with respect to some risk function, or measure of model complexity, as mentioned in
connection with Problem 1. When using the context algorithm for fitting VLMC’s, one
needs to choose a tuning parameter, the so-called cut-off. So far, this problem of tuning
has not received any systematic attention. Similar to estimation of a risk function, we
propose a resampling technique for estimating a cut-off which aims for glohal optimality
of a VLMC model, in contrast to only considering local test decisions which are the
basis of the context algorithm. The optimality of the cut-off is with respect to a chosen
risk function, as in Problem 1. Searching for an optimal cut-off is a computationally
feasible task: varying over a real-valued cut-off parameter produces finitely, and not
extremely many VLMC tree models. This operation achieves a similar task as ‘cost-
complexity pruning’ in CART (Breiman et al. (1984), Chapter 3.3). Our approach thus
equips the intrinsic local nature of the context algorithm based on test decisions with
a global optimality criterion: the local nature of the algorithm is crucial for obtaining
a computationally feasible procedure, the global optimality view is crucial for obtaining
at least a suboptimal solution to the computationally intractable problem of minimizing
a model complexity criterion among all VLMC submodels, say of dimension less than
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a reasonable bound of smaller order than the sample size. Our approach yields then
a practical data-driven rule for determining the cut-off tuning parameter in the non-
predictive context algorithm.

A very interesting alternative proposal uses the context algorithm in a predictive
way, cf. Rissanen (1994), Weinberger et al. (1996) and Bunton (1997). This predictive
scheme does not require selection of a cut-off tuning parameter as in the non-predictive
case. Model complexity for VLMC’s is now estimated by predictive losses which pro-
vides an answer to Problem 1. A remarkable answer to Problem 2 with the predictive
context algorithm is described in Bunton (1997): by using dynamic programming, the
loss is computed in every predictive step on some global basis. This can be implemented
in conjunction with a general predictive loss function and thus shares the same wide
applicability as our approach. Asymptotic properties of such a predictive scheme are
unknown so far. We discuss some open questions in the last paragraph of Section 6.
In the sequel, we focus on the non-predictive case: it fits into the framework of model
selection with classical maximum likelihood estimation for unknown parameters which
is a very commeon set-up in non-sequential applications.

In the combinatorially simple case of estimating the order of a full Markov chain,
Tong (1975) has proposed the Akaike information criterion {AIC) which should aim to
minimize an expected Kullback-Leibler information. This proposal is improved by our
general resampling strategy in the special case of order selection in classical full Markov
chains. The problem of order selection for full Markov chains has also been considered
by Merhav et al. (1989). They don’t consider a risk for estimating the true underlying
Markov chain (or a functional thereof) but rather a minimization of the underestimation
probability of the true order constrained to an upper bound for the probability of an
overestimation event. This approach is thus mainly concerned with finding the true
model structure but not very much with statistical performance (in terms of a risk as
mentioned in Problem 1) when using the estimated distribution of the Markov chain.

In Section 2 we define the VLMC’s and describe the context algorithm, in Section 3
we show the behavior of different risks as a function of estimated VLMC's, in Section 4
we show how estimation of these risks can be done via resampling and discuss the tuning
of the cut-off parameter for the context algorithm, in Section 5 we present results from
a simulation study, Section 6 outlines some conclusions and in Section 7 we give the
proofs,

2. Variable length Markov chains

In the sequel, we denote by 7 = z;, z;-1,...,%; (i < j,i,j € ZU {-00,00}) &
string written in reverse ‘time’. We usually denote by capital letters X random variables
and by small letters x fixed deterministic values. We define now what we call a variable
length Markov chain {(VLMC). As a starting point, consider {X;),cz, being a stationary
Markov chain of finite order k with values in a finite space &. Thus,

21) PX; =2 | X%, =2 | =PX; =21 | X%, , =2%,4], forall zl_.
Such full Markov chains are very hard to estimate since they involve |X|*{|X| — 1) free
parameters, where |X'| denotes the cardinality of X. To get less complex models, the
idea is to lump irrelevant states in the history X%, ., in formula {2.1) together, resulting
in a sparse Markov chain.

For a time point ¢ € Z, maybe only some values from the infinite history X =1 of
the variable X, are relevant. This relevant history can be thought as a contezt for the
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actual variable X;. To achieve a flexible model class, ranging from some type of sparse
to full Markov chains, we let the length of a context depend on the actual values X L
For example, we might have for the variable X, a context of length 1 and for X (t' # t)
a context of length 5. We can formalize this as follows.

DEFINITION 2.1. Let (X;);cz be a stationary process with values X; € X, |X| <
00. Denote by ¢: X® — UX_;X™ a (variable projection) function,

c:xl m‘lgﬂ,where £ is defined by
£=min{k;P[X; =1, | X°,, =29 ]

=PX) =21 | X% = 2%, forall =z €&}
(£ = 0 corresponds to independence).

Then, ¢(-) is called a context function and for any t € Z, ¢(x%7}) is called the context
for the variable z;.

The name condext refers to the portion of the past that influences the next outcome.
By the projection structure of the context function c(-), the context-length £(:) = jc(-)]
determines ¢f-) and vice-versa. The definition of £ implicitly reflects the fact that the
context-length of a variable z, is £ = |e(z*"L)| = £(z*"]), depending on the history 27}

DEFINITION 2.2. Let (X;)¢cz be a stationary process with values X; € X, |X| < oc
and corresponding context function ¢{-) as given in Definition 2.1. Let 0 < k£ < oo be
the smallest integer such that

lefz? )| =€z ) <k forall 2%, €A™

Then ¢(-} is called a context function of order &, and (X;);cz is called a stationary
variable length Markov chain (VLMC) of order k. We always identify (X,;)icz with its
probability distribution F, on A'*°,

Instead of the name VLMC, the terminology tree model, FSMX model or finite-
memory source has also been used, cf. Weinberger et al. (1992) and Weinberger et al.
(1995). Clearly, a VLMC of order k is a Markov chain of order k, now having a memory
of variable length £. By requiring stationarity, a VLMC is thus completely specified by
its transition probabilities,

Po(z | e(als,)) = Pr Xy = 71 [ (X0) =e(22s)], 2l € X%

In retrospect, we could define a context function ¢(:) : X% — Uk _oX™, since there
is no functional dependence of the funetion ¢(z% ) on a variable x_g1-m(m > 0).
We sometimes use the definition on A*® and sometimes on X*. The context function
projects the k-th (or infinite) order history :1:0_,c 41 ioto Uk _oX™. Often the range space
of the context function ¢(-) is not the full space A*, but also not the empty space. If
the context function c(-) of order & is the full projection 2%, — 2%, forall 2%,
the VLMC is a full Markov chain of order &£. The class of context functions of length &
is rich enough to obtain a broad class of Markov chains, including special sparse types
given by the notion of a short context. In particular, some context functions ¢(-) would
vield a substantial reduction in the number of parameters compared to a full Markov
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Fig. 1. Context tree 7. in Example 2.1.

chain of the same order as the context function. The VLMC's are thus an attractive
model class, which is often not much exposed to the curse of dimensionality.

In order to explain our procedure for adaptively selecting and fitting & VLMC, it is
most convenient to represent a context function, and hence the set of relevant histories of
a VLMC, as a tree. We consider trees with a root node on top, from which the branches
are growing downwards, so that every internal node has at most |X| offsprings. Then,
each value of a context function () : X* — U, _,AX™ can be represented as a branch
of such a tree. The context w = ¢(z% ., ) is represented by a branch, whose sub-branch
on the top is determined by zg, the next sub-branch by z_; and so on, and the terminal
sub-branch by #_g(g,.... x_.1)+1- Note that context trees do not have to be complete,
i.e., every internal node does not need to have exactly |X| offsprings.

Example 2.1. |X| =2, k= 3. The function

0, ’l:f zo=10

1,0,0, ’if ro=1,2.1 = 0,.’13_2 =0
1,01, if zo=12_1=0z_a=1
1,1, if zo=lz,=1

c(zo, X-1,%-2) =

can be represented by the tree 7. in Fig.1. A ‘growing to the left’ sub-branch represents
the symbol 0 and vice versa for the symbol 1.

DEFINITION 2.3. Let ¢} be a context function of a stationary VLMC of order k.
The corresponding (|X')-ary) context tree  and terminal node context tree ¢ are defined
as

T=Te = {‘LU,'[U = C(l'(lk+1),$(]_k+1 = Xk})
7t = -rg ={wwer,andwu g 7. forallue U_, A™}.

The context tree 7, is nothing else than the minimal state space of the VLMC F;
{we sometimes refer to the elements of 7. as branches and sometimes as nodes in a tree).
Definition 2.3 says that only terminal nodes in the tree representation 7. are considered
as elements of the terminal node context tree 77, and states w € 7, do not need to
correspond to terminal nodes in 7.. But we can reconstruct the context function c(-)
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from either 7, or 7¢. Note that an internal node with b < |X| offsprings can be implicitly
thought to be complete by adding one complementary offspring, lumping the |X'| — b
non-present nodes together.

2.1 The context algorithm

Given data X1,...,X, from a VLMC P., the aim is to find the underlying con-
text function ¢(-) and an estimate of P,. We will attack and solve this problem by
incorporating ideas from data compression as given by Weinberger et al. (1995). We
describe now the algorithm for the aim mentioned above. In the sequel we denote
by wu the concatenation of two strings w, v € U%_,A™, written in reverse time

wu = (..., ws,wy,...,uz,%); also, we always make the convention that quantities in-
volving time indices t ¢ {1,...,n} equal zero (or are irrelevant). Let

n
(2.2) N{w) = Z 1[){:““""1:11:]’ weur_ A,

t=1

denote the number of aecurrences of the string w in the sequence X7'. Moreaover, let

N (vw)
N(w)’

The algorithm below constructs the estimated context tree 7 to be the biggest context
tree such that

(2.3) P(w)=N{w)/n, Plv|w)= v,w € UZ_1 X™.

(2.4) z;YP(:I: | wu)log (%) N(wu) > K forall wuc¢ #(ueX)

with K = K, — oo{n -+ o) a cut-off to be chosen by the user. The idea behind
this strategy is to search for the largest state space such that its terminal nodes wu (in
the tree representation) have sufficiently different transition probabilities, compared to
their parent nodes w and measured with a scaled Kullback-Leibler information between
P(- | wu) and P(- | w).

Step 1. Given data Xy,...,X, taking values in a finite space A, fit a maximal
(IX]-ary) context tree, i.e., search for the context function ¢max(-) with terminal node
context tree representatlon 7Y ax> Where 75 is the biggest tree such that every element
(terminal node) in 7%, has been observed at least twice in the data. This can be
formahzed as follows: Tmax is such that w € 7, implies N(w) > 2, and such that for
every T¢, where w € vt implies N{w) > 2, it holds that 7% =< 'rm..;Lx (f X v means:
we T => wu € 74 for some u € UL_,A™ (2('0 #)). Set 7-(0) =7t e

Step 2. Examine every element (terminal node) of 7/ as follows (the order of
examining is irrelevant). Let (-} be the corresponding context function to ’r(tO) and let

— 0 .0 . _ .0
wu=2z",; =ec(Tly), U=T_g41, W=IT_ g4y

be an element (terminal node) of 7(,,, which we compare with its pruned version w =

2%,,, (if £ =1, the pruned version is w = @, i.e., the root node}). Replace the context
wu =2, by w=2%,, if

Z P(z | wu)log (M) N{wu) < K,

ZEX (CE | 'LU)
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with P (+) and 15( | -) as defined in (2.3). Decision about pruning for every terminal
node in 7/, vields a (possibly) smaller tree 7(1) < T(to). Let

T(tl) = {w;w € 71y and wu & 7y for all w € UR_ A™}.

Step 3. Repeat Step 2 with 7(;, 'r(‘” instead of T(; 13, T(ti_])(i =1,2,...) until no
more pruning is possible. Denote this maximal pruned context tree (not necessarily of
terminal node type) by 7 and its corresponding context function by &(.}.

Step 4. If interested in probability sources, estimate the transition probabilities
Pe(zy [ e(2%0)) = Pr[X1 = 21 | e(X %) = (22 )} by Plan | &(22)), where P(-{ )
is defined as in (2.3).

Step 1 in the context algorithm ensures a large tree 1%, as a basis to start the
pruning process in Step 2. The construction of 7%, is fast and simple, the requirement
N(w) > 2 for all w € 7%, guarantees at least two observations per branch w (the lower
bound 2 for N (w) accepts any potentially interesting branch w whose relevance from the
data is supported by at least two observations). The pruning in Step 2 can be viewed as
some sort of hierarchical backward selection. Dependence on some values further back
in the history should be weaker, so that deep nodes in the context tree are considered, in
a hierarchical way, to be less relevant. This hierarchical structure is a clear distinction
to the CART algorithm (Breiman et al. (1984)), where the tree architecture has no built
in time structure,

Consistency for finding an underlying true context function ¢p(-) and probability
distribution F,, goes back to Weinberger et al. (1995). We denote by

(2.5) P. the maximum likelihood (ML) fitted VLMC, given ¢{-) or 7.,
(2.6) P;, the fitted VLMC, induced by Step 4 of the context algorithm.

Note that the ML fitted VLMC on 7, is given by the estimated transition probabilities
P(- | w), w € 7, where P(- | .) is as in (2.3).

For the algorithm described here, consistency even in a setting where the dimension
of the true underlying process is allowed to grow with increasing sample size has been
given in Biihlmann and Wyner (1999), where also more detailed descriptions of the con-
text algorithm and cross-connections can be found. An efficiency result in the statistical
sense is given in Biihlmann (1999). For deriving all these results, we need besides some
technical assumptions which we state in Section 3 a lower bound for the cut-off value
Ky ~ Clog(n), C > (2|X| +4). In this paper we also develop a strategy for estimating
this cut-off K, as the minimizer of certain risk functions.

The context algorithm as given above is defined on the whole available data sequence
XT in a non-predictive way. Another version of the context algorithm can be defined
in a predictive fashion, based on successive observation-strings X{(¢ = 1,...,n). Such a
version driven by a predictive code length difference, which is then related to predictive
stochastic complexity, has been employed in Rissanen (1994), Weinberger et al. (1996)
and Bunton (1997). For such a predictive scheme, there isn’t any need to specify a
cut-off parameter as in Step 2 of cur version and the problem of cut-off estimation does
not appear. The predictive context algorithm could also be optimized with respect to
any risk function by considering a predictive risk as a criterion to be minimized. No
consistency or optimality result seems to be known for any of these predictive schemes,
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see also the discussion in Section 1. In the following, we focus only on the non-predictive
case which fits into the model selection framework with classical maximum likelihood
estimation for unknown parameters.

3. Risk functions and candidate models

We restrict ourselves now to the following framework: the data XI is a finite re-
alization of a VLMC with context function co(-) of finite order ko and corresponding
context tree T.,. As candidate models we consider VLMC’s of finite orders & in the
range 0 < k < ox,

M ={P,: P, a VLMC of order k,0 < k < oo}

Often in model selection, the relevant feature of a candidate model P. € M is its
structure, here given by the context tree 7. or the context function ¢{-). We study the
problem of model selection in terms of two different risk criteria, the prediction error
and the expected Kullback-Leibler information.

3.1 Final prediction error
For & predictor Y, ;1 based on the infinite past Y for a random variable Y54,
we consider the loss functions

La(Yos1, Yas1) = (Yot1 — Yasr)?
§(Ynsr1, Yor1) =1y, v

The L, loss can be of interest for ordinal data equipped with some ‘Gaussian’ scale
{quantized Gaussian data) or also for binary data. The § loss, or zero-one loss, is
interesting for categorical data without any order or scale.

The final prediction error (FPE) for the quadratic L, loss dates back to Akaike
(1969, 1970) and can be generalized in an obvious way for any convex loss function. The
terminology ‘final prediction error’ is used inconsistently in the literature. We refer here
to FPE as a theoretical quantity, defined below, and not to the alternative use as an
estimator. Let the data X7 be a finite realization of the true underlying process P,
and let (¥;)sez be another realization of P.,, independent of XT. Optimal (theoretical)
prediction of Y41 given the infinite history Y™ projected on an element of the models
in M with context function «{-) is given by

Er. [Yoi1 | e(YZ, )] for the Ly loss,
AMp, (c(YZ,)) = atgmax,c xPp, [Yoy1 =2 c(Y2)] for the é loss.

When estimating the theoretical predictors by the data X, we get

n n Ep, [Yni1 | e(Y7)]  for the Ly loss
(3‘1) @(C{Y_m)? -XI) - {AMPG(C(Y:‘OO)) fOI' the § loss 1

where P, is the estimate in (2.5) based on the data X7, The predictor ¢(-, -} could also
be defined in terms of the estimnated probability measure }350 in (2.6). Under appropriate
conditions, the two versions are asymptotically equivalent: it is known that for 7. corre-
sponding to an element in M, and for 7o, Py [V, = 2| o(Y2,) = w] = PP&o [Yot+1 =
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z | c(Y?,) = w +op(n!) for all z € X and all w € 7., ¢f. Bijhlmann and Wyner
(1999).

The FPE’s for an element P, € M with corresponding context tree 7. is then defined
as

R(7e, Pop) = Epo [L(Yat1, 0(e(Y 00), XT))],

where L{-,+) = Ly or 6. The general notation R{.,-} indicates that the FPE’s are risk
functions. Specifically,

FPEL, (1) = Ep, [(Ya+1 — Ep [Ynt1 | (Y207,
FPE5 (Tc) = PPcO [Yn+1 # AM}E’C (C(Y_nco))]

The FPE measures the risk for predicting the observation Yn4+; in a new sample Y*
when estimation is based on the observed data-set XJ'. Note that X[ is also referred to
as training set and Y™1! as test set. The following two Theorems describe how the FPE
decomposes into an ‘oracle part’ which is not depending on the model feature 7, (when
we would know the whole true underlying probability distribution P,,), a bias part {due
to misspecification of the model) and a variance part (due to estimation of the unknown
parameters in the model). In the sequel of the paper, we denote by P(z) = Pp(X[* = z]
(x € &™) and Pz | w) = Pzw)/Plw) (z,w € UX_,X™), where P is a probability
measure on X2, We then make the following assumption.
(A) Fe, satisfies
xe(‘gflé}réfcq Peolz | w) > 0.

Assumption (A) ensures that the VLMC P, is stationary and geometric ¢-mixing. Fur-
ther consequences of (A) are given in Section 7, formulae (7.1) and (7.2).

THEOREM 3.1.  Consider a finite realization X7 from B, satisfying (A) and with
context tree representation 7o,. Then, for any element of the models in M with context
function ¢ and corresponding tree representation 7., the following decomposition holds:

FPEL,(r.) = S+ B + Vy,

S = Ep,, [(Yosr — Ep., [Yas1 | co(Y70)1)2],

B = (Ep,, [Yat1 | (Y70)] — Ep, [Yni1 | co(Y )%,
Vi =Ep [(p(e(Y,), XT) - Ep., [Ynt1 | (Y N,

where @(e(Y ), XT') = Ep [Yat1 | e(Y2)] a5 in (3.1) and

Ve — C(7e, Pey) = 0f1),
C(chpco) = Z Z .'L'].’EQPCO(Z’z ‘w)

WET IlstGX
o0

. Z (pPCO [Xglwl = w | Xf:_lwl = g:zw] — Pco(xlw))'

k=—00

The § term is the ‘oracle’ FPE of order O(1), the B term is the bias term of order
O(1) and the V,, term is a penalty term, which behaves asymptotically like n~1C(r, Py, )-
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The_ cor}stant C(7e, Py,) is of more complex nature than say the variance term for pre-
dlCtl(‘)I.l in an AR(p) model (which behaves as p/n). But by (A), implying a Doeblin type
condition as given in (7.1), we still can bound the penalty term linearly in |r.| as

Cl7e, Poy) < |7e| M{X, ko),

where 0 < M{X, ky) < oo is a constant, depending on the space X and the order kg of
the VLMC F,,.

For analyzing the FPEs; we make the additional rather weak assumption about
uniqueness of the AMp,_,

(B} For an element P, ¢ M with corresponding context tree 7,

. p B
wen.k:énAlgich(w)l o (AMp, (W) | w) — Pey(k | w)| > e for some & >0,

and denote by ® = minyer, zex Fe, (zw) > 0.
Note that the fact = > 0 is implied by assumption (A).

THEOREM 3.2 Consider a finite realization X7 from P, satisfying (A) and with
contert tree representation 1.,. Then, for any element of the models in M with con-
text function ¢ and corresponding tree representation 7., satisfying (B), the following
decomposition holds:

FPEs(7.) = §+ B+ V,,
§=Pp, [Yoi1 # AMp, (co(YZ))],

B = PP.:O [Yn-H 7& AMP:@ (C(Y_nm))] - I]:DP,:O [Yn—{—l ?é AMPCO (CO(YEDO))]’
Vo= IFDl—",:0 [YH-H #e(e(Y2L), XT) - PP.:O Yo # AMPP{J(C(YEDQ))L

where p(e(Y ), XT) = AMg (e(YZ,)) as in (3.1), and for n sufficiently large,

[Vl < [X|Crexp (_0252“25%5) ’

k. the order of c(-) (the depth of 7.}, C1, C2 > 0 some constants.

The ‘oracle’ FPE is again denoted by S being of order O(1), B is the bias term of
order O(1). The penalty term V, decays at least exponentially in n — k. with k. the
finite order of ¢(-) (the depth of 7.) and the size |7.| entering only implicitly into the
speed of the exponential decay: larger candidate models have typically smaller values
e and 7 yielding smaller values £2#2 and hence slower, but still exponential decay for
the bound of V,. This suggests that the bias part B is more dominant in FPEs than in
FPE.,.

For both types of FPE, Theorems 3.1 and 3.2 show that the S- and B-terms are of
constant order O(1), whereas the variance terms V), decrease as sample size increases.
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3.2  Kullback-Leibler information
When considering the goodness of a model in terms of its whole n-dimensional
distribution, the Kullback-Leibler information (KLI)

KLI(7) = I(Po, ) = / log (ff;((—ﬁ)l) dP., (")
el

measures a loss between the n-dimensional marginals of P, and the maximum likelihood
estimate P, of a model P, € M with context tree representation 7. Similar as with the
prediction error, P, is estimated based on the observed data X ', whereas the integration-
variable y7 can be thought as a new sample (test set). Often one uses as a risk function
the expected KLI(7,),

(3.2) EKLI(r,) = Ep,, [In(Fry, £22)].

Comnsidering the Kullback-Leibler information for model selection has been proposed in
the seminal paper of Akaike (1973).

THEOREM 3.3. Consider a finite realization X7 from P, satisfying (A) and with
context tree representation v.,. Then, for any element of the models in M with contezt
function ¢ and corresponding tree representation 7., the following decomnposition holds:

KLI(Tc}/n = In(Pcm Pc)/n = Bn + Vm
B, :IR(RSQ:PC)/]”:

nV, = %ZTE(TC,PCU)Z(n — 00),

where P. is ¢ VLMC, induced from P,, on the model structure ., generated by the
transition probabilities

Pz|w)=P, (zw)/Peg(w) for z€ X, w& T,

Z ~ Np)(0, 1), D(r.) = I7|(|JX| — 1) the dimension of the candidate model, and
(7, Pey) a non-degenerate D(7.) x D{7,) matriz, depending on the model structure 7,
and the underlying process P,.

The By, term is a bias part of the constant order O(1} due to misspecification of the
model, and V,, is a penalty term of the order Qp(n~!). More insight about the matrix
(7, P,,) can can be obtained from the proof in Section 7.

Remark 3.1. Tong (1975) derives the limiting x?-distribution of the 2nV,, term
for a full Markov chain. Although not explicitly pointed out, this only holds for 7. =
Teo being the true model: then X(7e, Pey) = Ip(r,,) and the limiting distribution of
nV, equals x%,(,rcu)/ 2. The limiting distribution of nV}, in general is connected to the
derivation of the TIC criterion {Takeuchi (1976)), see also Shibata ((1989) Section 2):
this approach accounts for the effect that the true model is generally not equal to the
fitted model.
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4, A bootstrap method for estimating risk functions

An often used approach to estimate the various risk functions in Section 3 is given
by estimating the different terms in Theorems 3.1-3.3. Criteria like AIC, BIC, TIC, cf.
Shibata (1989), are aiming to minimize a criterion function ‘goodness of fit + penalty’.
They essentially estimate the unknown asymptotic values in Theorems 3.1-3.3: the
(8 + B)-terms by a goodness of fit statistic, i.e., residual sum of squares in the Gaussian
case, and the V,-terms by different strategies. More recently, the idea of bootstrap in
model selection has been pursued, but mainly for bias correction in the estimation of the
penalty term, cf. Efron {1983, 1986), Cavanaugh and Shumway (1997}, Shibata (1997)
clarifies about different bootstrap strategies for bias corrections.

We propose here a model selection approach for the dependent setting with VLMC's
which is entirely driven by a bootstrap scheme, rather than only making a bias correc-
tion via resampling for estimation of a penalty term. This seems more appealing than
combining estimation of (S + B)-terms, V;,-terms and bias correction for the V,,-terms.
Also, resampling schemes are potentially able to pick up not only a bias but also higher
order cumulants. In principle, estimation of (conditional) prediction errors could also be
done with some cross-validation technique for dependent data. However, cross-validation
estimates are usually highly variable, cf. Efron (1983), and thus not very accurate.

Below is the general principle for estimating a risk function of P, with structure 7,
being a candidate model in AM. Assume that we have given data X, ..., X,.

Step 1. Fit with the context algorithm in Subsection 2.1 a VLMC P as in (2.6).

Step 2. For a model in M with structure 7., compute the bootstrap risk functions,

FPE*(r.) = tEf’ao LY 1,0(c((Y*)0) (X)) | X7, L= La,6,
KLI®{r.) = fn(f:’emﬁ:)a

where {-,-) is as in (3.1) and

1 -1
(Y*)n+ o P T atls

(4.) |
(X )111+1 ~ Pﬁn °© Wfl
with (Y*)7*! and (X*)7 being independent finite realizations of the fitted model P, in
(2.6) based on the data X{*, and m . m (m € N) the coordinate function. The estimate

(4.2) By =T.((X*)7)
is the plug-in version of the ML fitted VLMC P, = T,(X}) on 7, as in (2.5).

The bootstrap FPE*(7,) is then directly used as an estimate of the true FPE(7.), the
bootstrap KLI*(r.) is a random variable depending on {X*)} (given the original sample
X7): often, one is interested in EKLI* () = Ep,, [I.(Ps,, P?) | X]] as an estimate
of EKLI(7.) as defined in (3.2). In practice, the expectations with respect to P, are
evaluated via Monte-Carlo. Minimization of such estimated risks over all models in A4
(or all VLMC models having order 0 < k < K for some K large} with context trees 7,
yields in theory the estimated optimal (or sub-optimal} model. The initial estimate P,
serves as an approximation for the true underlying process F,.
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THEOREM 4.1. Assumme the situation and notation in Theoremn 3.1. Moreover,
suppose that the cut-off K, > (21X| + 4)log(n) in Step 2 of the context algorithm for
constructing the estimate P . Then,

FPE} ()= 8"+ B +V,,
5" =8 +op(l){n — o0},

B* = B+ op(l}(n — o0),
Vi =V, +op(n™H(r — o0).

The quantities S*, B* and V,} are the plug-in versions of §, B and Vx, respectively with
Py, instead of P, and & instead of cy.

THEOREM 4.2. Assume the situation and notation in Theorem 3.2. Moreover,
suppose that the cut-off K, > (2|/X| + 4)log(n) in Step 2 of the contezt algorithm for
constructing the estimate Py . Then,

FPEj(r.} = 8" + B* + V.,
S* =8+ o0p(l}{n — o0),
= B+ op(1)(n — ),

Ve =0p (exp (AC(—IO—g%)—)Q—)> (n o), € >0 aconstant.

The quantities S*, B* and V,} are the plug-in versions of S, B and Vy,, respectively, with
.F‘cﬂ instead of P, and & mstead of cg.

THEOREM 4.3. Assume the situation and notation in Theorem 3.3. Moreover,
suppose that the cut-off K, > (2|X| + 4)log(n) in Step 2 of the context algorithm for
constructing the estimate Fz,. Then,

KLI*(7c)/n = In(Ps, P2}/ = By + V7,
B} = B, + op{1)(n —+ 00),
nV,; = (limiting distribution of n V,,) in probability as (n — oc).

The quantities B, and V] are the plug-in versions of B, and V,, respectively, with }5,50
instead of F,, end &y instead of ¢p.

Remark 4.1. Theorems 4.1-4.3 describe the consistency of the bootstrap risk es-
timator, even for the higher order V, -terms. Consistency for the V, terms is important
for high-dimensional parameter spaces and in case of overestimation. If the numbers of
parameters, here given by D{r.), is large, then the V,,-terms are typically not that much
negligible compared to the (S + B)-terms. For the case of overestimation, let us consider
more ¢losely the behavior of the Kullback-Leibler information: the analysis for the FPE
is analogous. Assume that,

Tow =X Tey = Teq

with 7, the context tree corresponding to the true underlying P, , 7., a super-tree of
Teo (Possibly equal to 7.,) but a sub-tree of 7., (for a definition of ‘<’ see Step 1 in
Subsection 2.1). In this case it can then be easily shown that

{4.3) n! (KLI(7e,) — KLI(1,)) = Va(7e,) — Valre,) = OP('nWl)s
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u‘rhere Vo(r.) is the Vy-term in Theorem 3.3 for a context tree 7.. For the bootstrapped
risks we get under the conditions of Theorem 4.3 an analogous formula,

n N KL (1,) — KLI* (7, ) = V. (72,) — Vi (7,) + 0p(n 1)
which is of the order n=!. Moreover, by Theorems 3.3 and 4.3 we then obtain,
P*[(KLI* (7., )} = KLI*(7,)) < 2] — P[(KLI(7,,) — KLI(r,)} < z] = op(1)(z € R),

establishing the consistency of the bootstrap risk estimator even in the more subtle case
where the difference between VLMC models is of the order n~!, see formula (4.3). Such
a higher order result is not implied by (and is different from) an optimality result for the
context algorithm in Weinberger et al. (1995}, considering the per symbol code-length
(Rissanen (1986}).

Remark 4.2. The risk KLI*(7,) can be related to information criteria such as AIC.
Under the assumptions of Theorem 4.3,

2EKLI"(7.) = 2Ep, [KLI*(7c) | XT]

(4.4) .
~C - 2Ep, [log(FI((X™)IN] +4Ep, [RV];

where log(P*{(X*)T)) is the log-likelirood based on (X*)7, i.e., P?(-) is estimated with
and evaluated at (X*)?; C is a random variable depending on the data X7, but being
constant with respect to 7, and hence irrelevant for model selection. For a justification
of (4.4) see Section 7. The expressions —2[E}~,ED [log(ﬁg((X )11 and 4IE}560 [nV,}] are
related to an information criterion playing the roles of a quantity similar to twice the
negative log-likelihood —2log(P,(X7)) and of a penalty term, respectively. Note that
by our definition of V;, there is a factor 1/2 in its limiting distribution, see Theorem
3.3: the factor 4 in the penalty term here then corresponds to the more common factor
2 in the penalty term of AIC. Twice the negative log-likelihood plus the penalty, Le.,
—2log(Pr (X)) + 4t Pey inV*] is approximately unbinsed (with respect to Ps,) for
2EKLI"{r.). In particular, the penalty term 4F Py [nV¥] accounts for the fact that there
is a plug-in bias in Eﬁao [log(P*({X*)T))], since the bootstrapped data (X*)] is used in

the estimate P and also as an argument in the log-likelihood log(P*(-)): this is the
same phenomenon as in log(P.(XT)) whose bias effect is corrected in the commonly

known information criteria. In general, the term 4Ep [nV;}] penalizing large models in
<0

2EKLI*(7,) is not converging to (the wrong constant) 2D(7.) which would be the penalty

term in AIC. The exception is when 7, = 7., being the true model, see Remark 3.1. In

our set-up, AIC is generally not an unbiased criterion for minimizing EKLI{7,).

Remark 4.3. It has been pointed out by Efron (1983) that estimation of a predic-
tion error with the nonparametric bootstrap in the i.i.d. case has a potential to underes-
timate. But the informal distance arguments, leading also to Efron’s .632 estimator, lack
any heuristics here because our resampling is based on a {semi-) parametrically estimated
VLMC &;,.
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4.1  Tuning the context algorithm
We denote in the sequel by

FPE,(7)
R(r.) = { FPEs(7.)
EKLI{7.)

one of the different risk functions in Section 3 (thereby notationally neglecting the de-
pendence on P.,). Even when we would know the risk function R(7.} for all models in M
with cantext trees 7., the search over all these models can be computationally infeasible
(even when considering only models in M having order 0 < k € K with K large). We
focus here on the problem of finding the best model among the ones produced by the
context algorithm.

Denote by 7y = 7%, the maximal context tree as in Step 1 of the context algorithm
in Subsection 2.1. By successively increasing the cut-off value K in Step 2 of the context
algorithm, we get a finite sequence of nested context tree estimates,

(45) "f'[] e SRR 'f'ﬁ-;—l > Ti = Troots

where 7,0t is the root corresponding to independence. Note that the trees 7, (0 <k <
7 — 1) and 17 depend on the data XP'. We can thus think of a cut-off K as a selection
rule,

(46) K: X'{l — T, TE E {‘Iﬁ'o,...,f'm_l,‘rmot}.

What we want is to minimize an overall risk R’{K') over cut-off parameters (or selection
rules) K, with R(-) now also taking into account the randomness of the tree 7x. Note
that the randomness comes in by the context algorithm and would also be present, even
if risk functions for fixed models 7. would be completely known. Denote by éx the
estimated context function with corresponding tree representation K(X7') = fx as in
{4.8). We define the overall risk /() as

Er, [L(Yar1, 0k (G (Y70),XP)]  for FPE with L=L,,6
Ep., Un(Puy, Pry )]

(47) R/(K)= ,
=[p, / log ( M) dP,, (y") for EKLI
A Frey (y?)
where

Ep,, Yot | 6 (¥Y™,)] for the Lj loss

~ Yn ’Xn =
‘PK(CK( —oc) 1 ) { AMPaK (éK(ono)) for the 6 loss

and Pﬁk as in (2.6}, but now with a notation emphasizing the dependence on the cut-off
K.
The optimal cut-off is then

(4.8) Kopt = argming R'(K).

Estimation of R'(-} is again proposed by a bootstrap scheme. Let é} be the boot-
strap version with corresponding context tree #7, = K((X*)7}, K(-) as in (4.6). The
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bootstrap estimation of the overall risk R'(K) is then pursued similarly as in the previous
section by the plug-in principle.

Step 1. For a cut-off K, fit a VLMC 13'5,,0 as in (2.6).
Step 2. Compute the bootstrap risk functions

FPE*(K) = EP% LYo E (YT (XD | XT], L= Ly,4,
EKLI*(K) = E P (Tn (P, » Pz )| X7),

where (Y*)7+!, (X*)7 are as in (4.1) but with *ﬁéxo replacing the notation P;,.

The data-driven cut-off values are then defined as

Iy ~

(4.9) K = argming FPE*(K) or K = argmin, EKLI*(K).

Rigorous mathematical results for FPE*(K), EKLI*(K) or K in {4.9) are difficult to
obtain due to the randomness of a context function éx for a given cut-off K. When
treating &x as fixed and hence incorrectly ignoring its stochastic nature, we are back in
the set-up of Theorems 4.1-4.3. It is an open question how to fill this gap in theory. The
performance of the algorithmic implementation for finite sample sizes is investigated in
Section 5.

We relate now the optimal cut-off K, or K in (4.8) and (4.9), respectively, to
optimally pruned subtrees. Assume that we know the risk function R(7.) for all fixed
models in M with structures 7,. Optimality within the sequence of nested trees {7}«
in (4.5) then motivates the definition

'ant = ‘Fopt.(XT) = a,rgmin;.kR(f‘k).

The tree 7op;, which depends on the data, is called the ‘optimally pruned sub-tree’ with
respect to the risk function R(-}, f. Breiman et al. ((1984), Chapters 3.3-3.4, 10). Note
that it is only ‘sub-optimal’ in the sense that the optimization is over the computationally
feasible class of nested trees in (4.5) rather than over all possible sub-trees of #y = 7%,
When the risk R(-) is unknown, we can replace it by some estimate, in our case by
the bootstrap estimate R*(-) (which can be evaluated at context trees) as in Section 4.
However, the tree Top might not be optimal with respect to some overall risk R'(-) as
in {4.7), treating 7, as random. Qur algorithmic implementation as described above in
the current section 4.1 (with bootstrap overall risk estimates R*(-) evaluated at cut-off
values) can then be interpreted as aimed for optimal subtree pruning with respect to

some overall risk R'(-).
5. Numerical examples

We study our method for tuning the context algorithm on some simulations for two
different models.
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0
1,3

(8/9,119) (V17,1617

Fig. 2. Context tree and transition probabilities for (M1).

r=12/15
s=1/15

(rsss) (5155 {5515 (85850 (rss.s) {5155 (5518 (5550

Fig. 3. Context tree and transition probabilities for (M2).

5.1 Computational implementation
Approximate calculation of FPE*(K} in Step 2 of the algorithm in Subsection 4.1
can be done via Monte Carlo with B replicates in a quite standard way. We always use
here B = 100.
1. Generate fori=1,..., B,

* __ * * F -1
X = 3,1 "’7Xi,n) ~ PEKU Oy .1

* * * * 7 -1
Y, —(Yi,u---sY +1)NP5KQO7TI,...,H+11

TN LM
where X*, Y independent for all 4, j, X;*, X independent for ¢ # 7, ¥, Y inde-
pendent for i #£ 7.
2. For i = 1,..., B, compute &] g, based on X and given by the context tree
representation 7z = K(X;'), with K(-) being the selection-rule (cut-off) as given in
{4.6). Then calculate @i (¢ 5 ((Y;")7), X;") and set

Li = L{Y] 1 e (F e (YT, X))

3. Use B! Eil L; as an approximation for FPE*(K).
Instead of EKLI(K) as a risk for selection of K, we consider the negative expected log-
likelihood function (NELL), which is equivalent for the purpose of minimization, but
computationally cheaper,

NELL(K) = — / log( Py, (47))dPeo (U7 )

(3

ENELL(K) = Ep, [NELL(K)].

(5.1)
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Fig. 4. Risks for sample size n = 200. Model (M1) for FPEg,, model (M2) for FPEs and
ENELL, respectively. Dots: R’(K); dotted line; E[R’(K)); dashed line: E[R'(K)].

The approximate calculation of ENELL*(K}, analogous as for EKLI*(K) in Step 2 of
the algorithm in Subsection 4.1, can be done without integrating over A™. We proceed
again by Monte Carlo with B replicates,
1. Fori=1,..., B, generate similarly as above,
'Xi*:( zf,l!""Xi‘:n)s Yi*z(},i:h"':}/ifn)‘
2. For ¢ = 1,..., B, compute & p, based on X;" and given by the context tree
representation 7¢; . = K(X}'), and then calculate

B, = -log(P% (¥/)),

where P, . is given in {4.2), based on X

3. Use B! Zf__l E; as an approximation for ENELL*(K).
We use again B = 100. It is interesting to note that it is sufficient to compute for every
replicate set with label 7 only one value E; instead of an n-dimensional integral. The
one single Monte Carlo iteration over the index set ¢ = 1,..., B takes care about the
integration with respect to y* ~ 15@,(0 in NELL*(K'}, compare with formula (5.1), as well
as of the expectation E Peye, [NELL* (K}].
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Table 1. Risks for sample size = = 200.

model, risk, Kq Elg/ (k)] E[R(K)/R (Kops) ELR(K)]/Roracte
(M1), FPEL,, Ko = 1.35 0.21 (0.02) 1.17 1.21
(M1), FPEL,, Ko = 0.82 0.23 (0.03) 1.28 1.33
(M2}, FPE;, Ko = 3.13 0.21 {0.04) 1.00 1.11
{M2), FPE;, Kp = 2.32 0.22 (0.04) 1.05 1.16
{M2), ENELL/n, Ko =3.13 0.87 {0.01) 1.02 1.20
(M2}, ENELL/n, Ko = 2.32  0.87 {0.01) 1.02 1.20

5.2  Simulations
We consider VLMC's F,,, represented by the following context trees. The tuple of
values at a terminal node w represents the transition probabilities (P, (0 | w),..., P,
(IX] = Ljw})).
(M1) Binary VLMC of order 8 (X = {0,1}), as specified in Fig.2.
(M2) 4-ary VLMC of order 2 (X = {0,1,2,3}), as specified in Fig.3.
We consider estimation of the different overall risks R'(K) (FPE,(K),FPEs(K)
and ENELL(K) as in (5.1)) with different initial cut-off values Ky and the risks B'(K)
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Table 2. Risks for sample size n = 1000.

model, risk, Ko B[R/ (K)) E[R'(K))/R'(Kopt) E{R/(K)]/Roracie
(M1), FPEL,, Kp = 1.35 0.20 (0.02) 1.11 1.14
(M1}, FPEL,, Ko = 0.82 0.22 (0.03) 1.26 , 1.23
(M2), FPE;, Kp = 3.13 0.20 (0.04) 1.11 1.11
(M2), FPE;, Ky = 2.32 0.21 (0.04) 1.17 1.17
(M2), ENELL/n, Ko = 3.13 0.742 (0.001) 1.01 1.03
(M2), ENELL/n, Ko = 2.32 0.754 (0.003) 1.02 1.05

when plugging in the estimated cut-off parameter K in (4.9). The sample sizes in this
study are n = 200 and n = 1004,

The estimated risks R'(K) are computed as described in Subsection 5.1 based on
100 bootstrap replicates. We choose as initial cut-offs Ky the values xl2xi—1;0.9 /2 and
xﬁﬂ —1;0.3/2’ respectively: the x2/2 quantiles, as the limiting quantiles for one log-
likelihood ratio test when considering to prune one terminal node in the context al-
gorithm, serve as a good platform for the magnitude of a cut-off.

Figures 4 and 5 show a sample version of Ep, [R’ (K)], based on 100 simulations of

the true process P, . The cut-off values K in (4. 9) are estimated for every individual
realization, based on 100 bootstrap replicates. A sample version of Ep, [R'{K)] is then
computed over 100 simulations. We compare this with sample versions of R'(Kopt) =
ming R'(K) and with sample versions of Rgracle, i-€., the risk when knowing the true
process P.,: The oracle FPE is the risk for the theoretically optimal predictor Ep, [¥Yn41 |

co(Y2)] or AMp, (co(YZ,)), respectively. The oracle ENELL is —Ep,, llog( Py (Y1)
All the sample versmns are based on 100 simulations of the true process Py,

Results are given in Tables 1 and 2 and are graphically displayed in Flgs 4 and 5
The risk function ENELL is always standardized by the factor n~!. We can summarize
as follows.

1. The increase in risk by using K instead of the theoretically optimal Kops is
biggest in the cases [(M1), FPE.,], at most 28% for » = 200 and 26% for n = 1000. In
the best cases, the loss is 0% for » = 200 and 1% for n = 1000.

2. The ratio E[R’ (K)]/R(Kopt) does not necessarily improve with larger sample
size. This is due to the fact that the gain for R'(K,p) with larger sample size can
dominate the gain of E[R’(K)| with increasing sample size. But E[R'(K)|/Roracte always
improves with increasing sample size, up to the non-significant difference in case [(M2),
FPE;, Ky = 2.32] due to the finite averaging over 100 simulations.

3. The sensitivity on the initial cut-off K is not very big. The most sensitive
cases are [(M1), FPEy, ], which are also the most difficult cases in terms of performance.

4. Figures 4 and 5 show that even if estimation of R'(-) has a substantial bias, i.e.,
[E[R'(K)] — R'(K)| large, the substituted minimizers of R'(:) and E[&'(-)] yield rather
similar risks, i.e., |R'(argming E[R/(K)|) — R'(argming R'(K))| small. This explains vi-
sually that using K instead of Ky, works reasonably well.

6. Conclusions
We have shown in Section 3 the asymptotic behavior of different risk functions for

models in the class of finite space variable length Markov chains. The choice of the
loss function matters and asymptotic equivalence among different risks is not true in
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general. Depending on the application and pre-knowledge, the flexibility of choosing loss
functions can be important.

A semiparametric type bootstrap scheme is then proposed in Section 4. It is shown
to be asymptotically valid for estimating risks, even for higher order variance terms,
and it can then be used for model selection among variable length Markov chains. The
bootstrap approach is attractive since it is generally applicable for various loss functions,
and model selection can then be done with an optimality focus for specific aims, such as
predicting a new observation or estimating the underlying n-dimensional distribution.
In the special case of estimating the order of full Markov chains, our methodology also
improves the AIC criterion which has been proposed in the past.

From the abstract semiparametric bootstrap principle for estimating risks in Sec-
tion 4 we obtain a method for choosing the cut-off parameter X in the context algorithm,
see Subsection 4.1. The problem of tuning the context algorithm is very important for
practical applications. The idea is related to optimal tree pruning in Breiman et al.
((1984), Chapter 11.7) for CART with independent observations, but our approach takes
the randomness of a pruned tree into account. As in risk estimation mentioned above,
our method allows again a tuning tailored towards some specific aims, which can be
chosen by the user via an appropriate loss function. A simulation study in Section 5
confirms the usefulness and robustness of our tuning proposal.

The following questions about the alternative, competing predictive context algo-
rithm for selection and estimation of VLMC'’s, briefly mentioned in Section 1, remain
open. What do asymptotic results tell for the predictive schemes? In particular, what
kind of (sub-)optimality, in terms of an overall risk function R as in section 4.1, is
achieved by the global-type predictive context algorithm in Bunton (1997)7 And how
does the latter compare with our (sub-)optimal solution for tuning the non-predictive
context algorithm?

7. Proofs

We usually suppress the index P,, for moments or probabilities with respect to the
measure F,.
We first remark that assumption (A) implies a Doeblin-type condition,

(7.1) sup  [pP(Aw) - pP (4w <1 -k
Agit"‘O;w.w'ea:'"D

for some k> (0 and some r € N,

where P( )(A w)=P[X7_, ., € A| X%, ., =w)|denotes the r-step transition kernel of
the embedding Markov chain (X} 4, +1)tEZ of order kg (the order of ¢o{-)) with (X;)icz ~
Fey. In particular, (7.1) implies a bound on the decay of the ¢-mixing coefficients for

car

(7.2) $W) < (-r)7, iz

PrOOF OF THEOREM 3.1. The decomposition FPE,,(r.) = § + B + V,, follows
by the fact that

Erey (Yat1 = E[Ynt [e(YZ0)) | XT,c(Y2)] =0 as. (Pe),
Ep.y[Ya+1 — El¥ntt [eo(YT )] | X7 co(Y2) =0 as. (Pa).
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It remains to analyze the V, part. Denote by

£=E(e(YT,)) = w(e(YP o), XT') = Ep [Yar1 | c(YT0)),
£= E(C(Y—oo)) = [EPco [Yn+1 ! C(ono)]

Then,

(7.3) V= E[E[(€ — &% | (¥ )]
= E[Var(£ | c(Y™.))] + E(E | e(Y™ )] — €)? | e(Y70)] = T + L.

We first show that 17, is asymptotically negligible. Fix w = (Y™, } and note that by
assumption (A) P, (w) > 0. Then, with n’ = n — |w| and for z € X,

N(zw) n'"IN{zw)

1—1

- T ) - P
n'IN(zw), .
m—( LN (w) — Py (w))?,

where | P(w) — Poy(w)]| < |0~ !N(w) = Py, (w)|, and N(-} as in (2.2).
By assumption (A), which ensures the geometric ¢-mixing property, see (7.2}, we
get

1,2( TN (w) — Pey(w)) = N(0,0%(w)),

7.5 =
( ) Z COV(}.[Xm— _w], [Xk+m 1 w]): m = lw|!
and
n Cov(n'~IN(zw),n' I N(w)) — 7*(zw),
(7.6}

o0
7'2(mu) - 2 Cov(Lixp=zu), I[X:+m_1=w})1 m = jwl.

k=—o0

Using (7.5), (7.6) and uniform integrability of ”‘;;‘(Tw’“;w a(n' "IN (w) — Peo(w))? (this

can be shown by using P(w) > 0 as. (Py,), 0 < ' ' N(zw) € 1 and by the geometric
¢-mixing property of P, given in (7.2), together with the boundedness of indicator
functions) we get

Peolr|w) 2

o () o)

(7.7} nE[Pu(z | w) — Pop(z | w) | w) = ~ 72 (zw) +

Lt
P (w)
With (7.7) and the finiteness of 7. we get

(7.8) I, = E[(EE | c(YT0)] ~ €0 | (Y70 )] = O(n7%).
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For the variance part I,, we write for fixed w = ¢(Y™,.),

nVa.r(cf | w) Z z17a1 Cov (NA(T:E:;T;J), NI\E_-’I(?;T;’)) )

T1,X2EX

and using an expansion similar as in (7.4) we obtain with n/ = n — juw|,

nVar(f | w) = Z T1To X )nCov(n"lN(aslw),n"lN(argw)) +0{1).
Similar to (7.6) we then get with m = |w|,

nVar(&lw) ) Z 2119 Z Cov(ljxzm _mlw],l[xum,mzw;)-{-o(l)

c‘n T1,T2€X k=—o0

Z Iln:gpc,)(l‘g | w)

Iy,L9EX

(W)

Z (Pp, [X5" = zw | XFHm = gaw] — Py (zw)) + o(1).

k=—co

Thus, by integrating over w = e¢(Y* ), nl, = C(7., P.,) + o{1). This, together with
(7.3) and (7.8) completes the proof. O

Proor OF THEOREM 3.2. The decomposition FPEs{r.) = S + B + V,, follows by
the definitions. It remains to analyze the V, term. We write

(7.9) Vil = [E[E[Liv s 2aMp, (Ym0 = L¥assteterng ) xp)l | XM
< E[E[l[w(c(YL‘w},X )#AMFCO(C{YTOQ))]l ( —oo)]]

We now fix w = ¢(Y" ). By assumption (B),

(7.10)  Plp(w, XT) # AMp, (W) | @] < PlUger{|Pelx | w) — Peo(z | w)| > /2} | ]

< STPL(z | w) = Peolz | w)] > &/2 [ w].
zeX

Similarly as in (7.4) we get with n’ =n — |w|,

(111) Pz w)- Pole|w)
_ Pcol(w)( "IN (zw) - Py, (zw)) -

=1, - IIru

n' "IN (zw)

152(1!)) (n’_lN(w) - Pcu(w))

where P(w) = P, (w) +v(n'"'N(w) — P.,(w)), 0 < v < 1. Consider the sefs

Dp(z,w) = {|In""*N(zw) — P, (zw)| > P, (zw)e/6}
En(w) = {lnl_lN(w) — Foo(w)] > Pro(w)e/6}.
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Then,
(7.12) ln| < €/6P,(z |w) <e/6 on DES(z,w).

For the second term I7, in (7.11), consider first i;—;%ff)—wl. The denominator can be
bounded on ES (w) as

P2 w) > Pey (w)?(1 — €/6)2 > Pey(w)?25/36,
since ¢ < 1. For the numerator, on ES (w),

W' TN (zw) < Poy (w)(1 +¢/6) < Pry (w)7/6,
since £ < 1. Thus, on DS (z, w) N ES (w),

n'~IN(zw) < 2
Pw) T Py(w)

On the other hand, on EY(w), In'"'N{(w) — P, (w)| < P,y (w)e/6. Thus,
(7.13) II,|<e/3 on DS(z,w)nES(w).
Therefore, by (7.11)-(7.13),

|Pof | w) — Peyla | @)l > /2 on Da(z,w) U En(w).
Thus, by formulae (7.9) and (7.10),

(7.14) Val € Y 3 (PDnlw,w)] + PlEn(w)]) Pey (w)

wET, €A
S|XI( max  P[Da(z,w)] + max P[En(w)]).

It remains to give some uniform bounds for P[D,(z,w)] and P[E,{(w)]. For the set
Dy, (x,w), we write

[/ "IN (zw) — Py (zw)| < [0/ N(zw) — E[n'~ N (zw)l| + P, (zw)/n'.

Thus, for n’ > 30/e, Pe,(zw)/n' < £/30P.,(zw). Hence for n’ > 30/e, [n'~*N(zw) —
E[n'~N(zw)]| > P.,(zw)e/5 implies |n'~1N(xw) — Py {zw)| > P, (zw)e/6. We then
consider the sets

Dy(z,w) = {{n' " N(zw) - E[n' " N(zw)]| > Pe(zw)e/5}
D Dp(z,w) for n' > 30/e.

Now, we employ some exponential inequalities to bound the probabilities for E,(w) and
D, {zx,w). We follow a technique described in Doukhan ({1994), Proposition 2, Chapter
1.4.2), using the bound on the ¢-mixing coeflicients in (7.2). Thus, in the notation of
Doukhan’s Proposition 2, &, < C(x)log(n'}), C{x) > 0 a constant depending on ». For
the sets E,(w) and D, (z, w) we have in Doukhan’s notation x = Py, (w)sv'n’/(6c) and
z = P, (xw)evn' /(50), respectively. Now choose A > 0 sufficiently small such that (in
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both cases) = > & = Amev/n’/ log(n'), thereby using P, (zw) > 7 for all zw. Moreover,

A > 0 is chosen sufﬁmently small such that the restriction 0 € £ < ‘é;/_' in Doukhan
holds. Note that n' > n — k.. Then, Proposition 2 in Doukhan ((1994), Chapter 1.4.2)
applied to Z, yields for n — k. > 30/e, i.e., for n sufficiently large,

cax PlDn{z,w)] < C1 exp(—Ca{k)en?(n — k) / (log(n — k.))?),

where €y, Cy = Cz(k) > 0, and the same bound applies for max,er, P[En{w)]. By

setting C; = 2C, these bounds together with (7.14) complete the proof. O

ProorF oF THEOREM 3.3. We decompose

(7.15) KLI{(7,)/n=Bp+ V., nVp= [ Ilog (P o(Uf )) dPe, (47}
xn Fe(y?)

~

It is then helpful to parameterize the probability measures on XY™ as P. = P, 3), Pe =
‘P(c,é)’ Foy = By 60), Where 6, & and 6 are the transitions probabilities on 7. and 7,

respectively. Without loss of generality we assume X = {0,...,{X| — 1}: then, these
transition probabilities are indexed as

(g)wm = Fro(z | w) :Pco(mw)/PCD(w)! wE Te,
(B)we = Bo(z | w) = N(ew)/N(w), w € 7, (the MLE on 7.),

(90)"‘"’5 = CD(I | w) = PCO(mw)/PC()(w)1 W Tey-
As in standard maximum likelihood theory we expand
log(P. ) (1)) = 10g(Pio.g) (7)) + Uiy ()7 (6 - 8)
+1/2(0 - )" H, 3, w7) (0 - B),
16 -8l < 118 - 8ll,

where Uiedy(u?) = 55 1og(P.6,(y7))g—s is the score statistic at § and He, 5T =

'"'_Taeae 1og(P.6)(y7))|g—5 is the Hessian matrix at f. Since E[U.5(¥")] f‘,(.,. Uiy (07)
dFcy,80)(¥]) = 0 we have by (7.15),

(7.16) WV = =L/26 -0 [ B TP (- B)
For the MLE é we consider first the score statistic

7l
Ueof(X7) = Y Uesy(Xi_p) +0p(1),
t=k, +I

é
Ueoy(Xt_p,) = log(P(c 0 (X | (X[ ) = 26 08 Weixiot ) x.

where &, is the order of ¢(-) (the depth of 7). At § and for the component index wr,

. 1 1
— fpt —
et @t-sNwe = 5= Leme efaio y=u) = = TG, el teteizh =ul
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It follows that Ep_ . [U(c 5)(X{_.)] = 0. Then, by the geometric mixing property of
P, (see also Remark 7. 1),

n
n"Y2 N7 Ueay(Xiok,) = N0, F(c,0)),
(7.17) bkt
F(c,6) = Z 0.5y ( X2k )OL 5y (XTs)].

m=—o00

Note that if 7, = 7, that is under the true model , then @ = 0y and we can exploit the
Markov structure so that F(c,8) = [E[U(C 5 (X2 )U(C‘g)(XEk‘)T]. The Hessian matrix
in (7.16) is of the form

(H(c,sj(fg?))wlzi,wzmg
- 1
=“5w1wz Z (émlxz'eg l[yz=:c1,c(y§:ic)=w1}
t:kc+1 w1
1
Ay g, g X LetiTh )=l
+ o(1).

Thus, the limit of the expected value is given by

J(c,f) = lim n™! /X _Hioy(47)dP o 00) 07)

n—oo

(7.18) . 1

= —§, i) - +
1urg ( T1To ewia;l 1 szA_ﬂD 1 Bwlr

It is straightforward to show 8 = 8 + op(1). We then get for the expression in (7.16),

) P(C(),BD) (T.U]).

(7.19) ST )P0 () = 7(0,8) + 00 (1),

Also, by standard arguments for MLE, using (7.17), (7.18) and the mixing property of
F,,, we get

(7.20) n2(0 - 8) = —J(c, ) F(c,0)%Z,  Z ~ Npiy(0,1).
Thus, by (7.16), (7.19) and (7.20) we get

nVy = 1/2ZTF(e, )2 J(c,8) "' F(c, §)1/* Z.
Since # is a function of P, on 7, and since the quantities F(-,-) in (7.17) and J{:, -}
in (7.18) implicitly alse depend on F., we set X(7., P,) = F(e, )I/QJ(c 6)~1F(c, 9)1/2
This, together with (7.15) completes the proof. O

Note that if 7, = 7, then § = 6 and Flep,80) = J{cq,6p). Then, {1, Py} =
Ip(r,,) and nV, = 1/2X2D('rcg)'
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For proving the Theorems in Section 4, we first restate a result about the context
algorithm in Subsection 2.1.

LEMMA 7.1. Consider a finite realization XJ* from P.,, satisfying (A). Assume that
the cut-off K, > (2|X| +4)log(n) in Step 2 of the context algorithm for constructing the
estimate 13,50 in (2.6). Then,

(i) Pp,, () = col)] =1+ o(n™)(n — oo},

(i) Ps(x7) = Py (27) + 0p(1) for all 27 € X™(m € N),

(iii) On a set A, with Pp, [An] — 1(n — o), P;, satisfies (A) and also (7.1) with
%2 replacing the value k assumed for Py,.

PrOOF. The assertions (i)—(iii} are special cases of Theorems 3.1, 3.2, 5.1 and 5.2
in Bithlmann and Wyner {1999). O

_Remark 7.1. Assertion (iii) of Lemma 7.1 implies the geometric ¢-mixing property
of Fgy with ¢ (i) < (1 — £/2)/" on the set A,.

_ Proor oF THEOREM 4.1. By Lemma 7.1, the bootstrapped process (X )ez ~
P, satisfies again (A), implying (7.1) and (7.2) on a set A, with P[A,} — 1. Therefore,
by the same arguments as in the proof of Theorem 3.1, the decomposition FPE} () =
S* + B* + V; holds on the set A,. It remains to show the convergence of §*, B*, V7 to
S, B and C(P,,, 7.}, respectively.

The convergences §* = S + op(l) and B* = B + op(l) follow directly by the
finiteness of 7., 7, and Lemma 7.1{1} and (ii}.
By using Lemma 7.1(iii) we get as for analyzing nV,, in the proof of Theorem 3.1,

nV, = C(Tc,ﬁ’eo) + op{1)(n — o).

Using the geometric ¢-mixing property of 15@0 on the set A, (see Remark 7.1) we obtain
C(7e, P3y) = C(1¢, Fey) + 0p(1), which then implies nV,} = nV,, + op(1}. O

PrROOF OF THEOREM 4.2. Asin the proof of Theorem 4.1 we rely again on Lemma
7.1. The decomposition FPEg(,) = §* + B* + V! follows by the definitions.

By Lemma 7.1(1) and (ii} and the finiteness of 7. and 7., we obtain the convergences
S* =8+ o0p(l) and B* = B + op(1).

Again by Lemma 7.1(i) and (ii}, assumption (B) with F,, replaced by P:, holds in
probability (with £/2 replacing the value £ assumed for F.,). Finally by using Lemma
7.1(iii), which implies the geometric ¢-mixing property for Ps, on the set A, (see Remark
7.1), we get the exponential bound in probability, as for analyzing V;, in the proof of
Thecrem 3.2. O

ProOOF OF THEOREM 4.3. The decomposition KLI*(r.)/n = B} + V¥ is immedi-
ate. The convergence B, = B, + op(1) follows by Lemma 7.1(i)-(ii} and the finiteness
of 7., and 7.

It remains to show the proper convergence for nV,F. By Lemma 7.1(iii} we can carry
out the same steps as in the proof of Theorem 3.3 to obtain

(7.21) Pp,, [PV < 2] =P1/2Z27 (7, Bs))Z < z | P ) +0p(1), z€R,
B(7e, Pry) = Fle, 8920 (c, )" F(c, §)1/2,
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with F(-,.) as in (7.17) and J(.,) as in (7.18), but with Py, 4,) instead of Pz, 6, here
(8w = Ps,(zw)/Ps, (w), w € 7. By Lemma 7. 1(i)—(ii} we then get

F(e,8%) = Flc,3) + 0p(1),
J(c,8%) = J(c,8) + op(1),

and thus T(r, Ps) = E(r, Fs) + op(1). Together with (7.21), this completes the
proof. O

PROOF OF FORMULA (4.4). Write
(7.22) KLI*(r,) = C/2 — /R 0g(P,, 4oy U )dPr 4y
C= Zjl;n IOS(P(EO,(;}(y?))dp(éo,ﬁ)(y?)
By definition of V7,

(123) - fR 108(Pyg o) (V7)) P, )07 = — fR log(P, 5, (¥1)dP(g, 4 (47) + V3

where P is given by the transition probabilities me = P 0.6) (zw)/ Pl 8)( w) forw €

e.8)
Te- On the other hand, expanding log(P, : ((X*)})) a,round §*, using that 2 S log(Feo

(c 9)
((X*)1))lg=s~ = 0 and taking expectations with respect to P, s, we obtain
(7.24) L. log(P( (XD, 4 (X))
[log e dy (XN - Pe nVyl.

where the approximate sign ‘~’ is justified by convergence in distribution of —nV,’ and
the second-order remainder in the expansion of log(P % ((X *¥1)} to the same limit
(compare also with formula (7.16)} and assuming a unlform integrability argument that
the difference of the corresponding expected values goes to zero. Thus, by (7.22)-(7.24)
we get X

2EKLI"(7.) = C' — 2E15a0 [log{(Fr{((X"*)T)] + 4|Ef’éo V7],

which completes the proof of (4.4). O
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