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Abstract. Let X,,..., X, be independent observations on a random variable X.
This paper considers a class of omnibus procedures for testing the hypothesis that the
unknown distribution of X belongs to the family of Cauchy laws. The test statistics
are weighted integrals of the squared modulus of the difference between the empirical
characteristic function of the suitably standardized data and the characteristic func-
tion of the standard Cauchy distribution. A large-scale simulation study shows that
the new tests compare favorably with the classical goodness-of-fit tests for the Cauchy
distribution, based on the empirical distribution function. For small sample sizes and
short-tailed alternatives, the uniformly most powerful invariant test of Cauchy versus
normal beats all other tests under discussion.

Key words and phroses:  Gooduness-of-fit test, Cauchy distribution, empirical charac-
teristic function, kernel transformed empirical process, stable distribution, uniformly
most powerful invariant test.

1. Introduction

The Cauchy distribution has a long and rich history (see Stigler (1974)), and there
are numerous characterizations of this probability model and methods of inference for
its parameters (see Johnson et al. (1994)). However, there is still a paucity of genuine
goodness-of-fit tests for the Cauchy family. In the spirit of approaches for assessing
univariate and multivariate normality and exponentiality (see Epps and Pulley (1983),
Epps and Pulley (1986), Baringhaus and Henze (1991), Henze (1993), Henze and Zirkler
(1990}), this paper studies a new class of tests of fit for the Cauchy distribution, which are
based con the empirical characteristic function. To be specific, suppose X1,..., Xy, ... are
independent random variables with unknown distribution function (df) F. The problem
is to test the hypothesis

Hy:FeF:={F(9):9c6}

against general alternatives, on the basis of the observations X,...,X,. Here, := de-
notes definition, @ := {¥ = (a,8) : « € R, 8 > 0} is the two-dimensional parameter
space (the prime denoting transpose), and

F(z;¥) :=1/2 4+ n~ ! arctan((z — a)/8)

is the df of a Cauchy law C{o, 8) with median o and interquartile range 23. Put in
other words, the problem is whether data from an unknown distribution belong to the
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location-scale family F generated by the standard Cauchy df Fo(z) := F(z;(0,1)) =
1/2 + n~1arctan(z). Since F is closed with respect to affine transformations and the
alternatives to Iy are rarely known in practice, one is interested in affine invariant and
consistent tests. The proposed tests are based on the empirical characteristic function

1 n
== Z exp(itY;)
i=1

of the ‘standardized’ data Y; = (X; — &,)/8n, 1 < j < n. Here, Gy, = @n(X1,---, Xn)
and 8, = B.{X1,...,X,) are estimators for o and J, respectively, such that

(1.1) dn(eX1+0b,...,aX, + b} = ad, {Xy,.... X)) + b,
(}'2) Bn(G’Xl + b: et 7G‘Xﬂ + b) = a’én(Xla s 1X'ﬂ)

for each a > 0 and b € R. Since by (1.1) and (1.2), Y1,..., Y, and hence ¥, (t) do not
depend on the median or on the interquartile range of the underlying distribution, we
assume &« = 0 and 8 = 1 in what follows. The test statistic

o0
{1.3) Dy, 5= n/ | () — e tt|2e= Mgt

ad + ]
is the weighted L2-distance between ¥, (t) and the characteristic function exp{-|t|) of
€(0,1), A denoting a fixed positive weighting parameter. Rejection of Hy is for large
values of D, ). The rationale behind (1.3) is that, under Hy and for a suitable choice of
{{&n, Bn)In>1, ¥ (t) converges in probability to exp(—|¢|). Since

n

14+ A 2n
(1.4) Dup== Z—m——/\g T T 42(1+ +Yj2+2+/\,

an efficient and numerically stable computer routine implementing the test is easily
available. Straightforward algebra yields an alternative representation, which will be
needed for determining the limit distribution of D, :

m -
D =/ Zn(t)zﬁne_ﬁ"’\ltldt, where

-0

(1.5) Zp(t) = \/_ Z{cos tX;)+sin(tX;) —e 5“'*|(cos(tan) + sin(téy)) }.

The paper is organized as follows. Section 2 presents theoretical results concerning the
weak convergence of D, 5 under Hy, its limit distribution, and the consistency of the
corresponding test. The proofs, which utilize the theory of weak convergence in the
Fréchet space C'(R) of continuous functions on R and rely heavily on the work of Csorgd
(1983), are deferred to Section 3. Due to the non-existing first moment of the Cauchy
law, the derivations are more involved compared with the approach taken, for example,
in Henze and Wagner (1997). Section 4 presents the results of a large-scale simulation
study on the power of the new tests in comparison with several classical tests for the
Cauchy distribution as well as the uniformly most powerful invariant test of Cauchy
versus normal. An important message is that, for the goodness-of-fit problem under
discussion, the tests of Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling, and
Watson, each based on the empirical df, should not be used as described in D’Agostino
and Stephens (1986).



GOODNESS-OF-FIT TESTS FOR CAUCHY DISTRIBUTION 269
2. Theoretical results

Throughout the rest of the paper, B denotes weak convergence of random variables
or stochastic processes, £is convergence in probability, op(1) stands for convergence in
probability to 0, 1{A} is the indicator function of a set A, and i.i.d. means ‘independent
and identically distributed’. An unspecified integral is over the real line. X

To estimate ¢ = (o, 8), we choose particular location and scale estimators A, Fn
satisfying (1.1) and (1.2), respectively. For this purpose, denote ¢, (0 < p < 1) the
p-quantile of the underlying distribution F' and épn the sample p-quantile of X1, ..., X,,.
Writing X(1), ..., X(n) for the order statistics of the observations and {z| for the largest
integer not greater than z, let

1 \ .
(2.1) G e —2-(X(n/2) + Xns2+1y), i niseven

X([n/2)41) otherwise

be the unbiased empirical median and

(2'2) én = %(éﬂ./d-n - él/4n)

the half-interquartile range of the sample. Under mild regularity conditions, these are
consistent estimators for the median a(= 0) and half-interquartile range 3(= 1) of F.

The process Z,, defined in (1.5) can be considered as a random element in the Fréchet
space C(R) of continuous functions on R, endowed with the metric

OO
-pj(:cy
ple,y) = 27— 7
@)= 2 T Gy

where p;{z,y} = max<; |2(t) - y(t)|. The first result is about weak convergence of Z,,
the second about weak convergence of the corresponding integral statistic Dy x-

THEOREM 2.1. Let X1,..., X, be i.i.d. C(0,1)-random variables, Z, as defined in
(1.5), and put

(2.3) Ji(s) = /ﬂ Tenlsn) e e /: cos(sz) ,

1+ 22 1+ 2

There exists a zero mean Gaussian process Z in C'(R) having covariance kernel

(2.4) efs,t) = e~lomtl _glsl=el ¢ T 5 o lsi—1tl [25t+ S lstl + s + |t|]
— e e (s) + 20¢| Ta(s)] — e 7PN s 1 (E) + 2]s]J2(2)]

(s, € B), such that 2, 5 Z in C(R).

THEOREM 2.2. Under the conditions of Theorem 2.1, we have for every positive X

Dy = /Zn(t)zéne‘ﬁn*'“dt L Dy = [Z(t)%‘””dt.
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Remark 2.1. Theorem 2.2 is not a trivial consequence of Theorem 2.1, since the
functional

fro 1B = [ f(ereae

is not continuous on C{R). It is not even defined on C{R), but only on the subset
of functions that are square integrable with respect to e~ Mtdt. Things are even more

complicated, since D, ) = ﬂn}[ﬁnﬂz ,» where

A U

i.e. D,  depends on the non-deterministic weight function exp(—ﬁn)\ltl).

Remark 2.2. By Mercer’s theorem (see e.g. Jorgens {1970), p. 152), the distribution
of Dy is that of 3", 7;(A\)N?, where N1, Ny, ... are independent unit normal random

variables and (7;(A)};»1 are the nonzero eigenvalues of the integral operator A defined
by

Ag(s) = f ofs, t)g(t)e= Mgt

Although not being able to solve the equation Ag(s) = ng(s) and determining n;(A)
explicitly, we obtained the expectation of the limiting distribution via the relation

EDj = fc(t,t)e—”“dt

by straightforward, but tedious manipulations of integrals:

4(A+1) 1
EDA :m [4arctan(A—+l) —2111(A+ 1)—7T
+ 272 . 4 N 8
(A2 " A+ AM+H2) (A2 +2A+2)

Likewise, the variance of D) can be obtained via the formula
Var Dy = 2// (s, t)2e*sle= 2t gadt,

but deriving an explicit expression Tequires immense calculations that seem to be dis-
proportionate in view of the availability of eflicient routines for numerical integration.

Besides affine invariance, the proposed test has the appealing feature of consistency
against a large class of alternatives.

THEOREM 2.3. For a given v € (0,1) let d,, A(7y} be the (I — v)-quantile of Dy »
under the hypothesis. The test that rejects Hy if Dy > dp A () is consistent against each
alternative distribution having a unique median and unique upper and lower gquartiles.

Remark 2.3. Interestingly, the class of tests based on the family {D, A : 0 < A <
oo} is ‘closed at the boundaries’ A — 0 and A — oco. For a related class of statistics
proposed in the context of testing for multivariate normality, this has been observed in
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Henze (1997). Asin Baringhaus et al. (2000}, an Abelian theorem for Laplace transforms
(see Widder (1959), p. 182) vields

lim XD, 5 = 4n (1 + ?i) =Dy o
A—oo

for fixed n and pointwise on the underlying probability space, with Y, :=n"13"7_, Y.
As for the behavior of D, 5 for A — 0, note that n of the summands of the double sum
figuring in (1.4) are equal to 1/A. It is then obvious that

2 ~ 1
Durx—5—-n—4Y ——x=Dhg as A— 0.
A j=11+}/j

3. Proofs
For short, put 9, := (6in, Br)’, ¥ := (a, 8)’, and g := (a0, Bo) = (0,1)".

ProOOF OF THEOREM 2.1. Weak convergence of the process Z,, is shown by fitting
the present situation into the framework of Cstrgs (1983). In the tradition of Durbin
(1973), Komlés et al. (1975), Burke et al (1978), Csorgd (1981) and many others, that
paper summarizes results and gives handy conditions under which kernel transformations
of the empirical parameter-estimated process converge in distribution. Thus, we first
work in the space C(S) of continuous functions on a compact subset S of R, endowed
with the supremum norm || f{|e = sup,cg |f{£)]. Putting k(z,t) := cos(tz) + sin(tx), we
have the following representation of Zn:

(3.1}  Z,(t)= % i{cos(th) +sin{tX;) — e A1 (cos(td) + sin(tim))}
=1

(32) - f Kz, )d{(VA(Fa(z) - Flz,9.))}.

Hence, Z, can be regarded as a random element of C(S), more precisely as the ker-
nel transform corresponding to k(x,%) of the parameter-estimated empirical process
Vr{Fu(z) — F(z,9,)). Section 3 of Csérgd (1983) deals with the weak convergence
of Z,, to a centered Gaussian process in the space (C(9), | - ||oo) under certain conditions
(i)*, (ii)*, (iv), (v) and (vi), which will be checked in what follows.

Condition (i)* of Csérgd (1983) holds trivially, since for arbitrary § > 0,

1
sup (k(z, D2 dFy(z =/su cos(tz) + sin(tz)|*™* ———dx < co.
[ g vt DRy (@) = [ supoosfta) + sinea) P

To verify condition (ii)*, we have to find a number ¢ € (0, 1] and functions v : § x § — §
and M : R x § — R with [sup,.q M%(z,t)dFy(z) < oo, such that for all 5,¢ € § and
for every real z: |k(z,s) — k(z,t)} < |s — t{*M(z;v(s,¢)}). This is true with £ := 1/4,
M(z,u) = 4|z|"/* and arbitrary v: § x § — S, since
|k(x, s) — k(x, )] < |cos(sz) — cos(tx)| + | sin{sx) — sin{tz)|

= 2[sin((s — t)z/2)| - [| sin({s + t)z/2)] + [cos((s + t)z/2)]]

< 4-|sin{{s — t)z/2)|

<d4-js |\ 2|V
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Conditions (i)* and (ii)* suffice to show weak convergence of the kernel transformed
empirical process without estimated parameters. To account for regularity conditions
concerning the parameter estimates, the following notations are needed. Put

(ﬁ*vw - D:"‘)f
T(82 + (z — ou)?)

VoF(z,8.) = (%F(m,ﬁ),;—ﬁf’(w,ﬁ))

0.=(5)

and

H(t,9) = (Hi(t,9), Ha(t,9)) = /k(m, )dV s F(x,9).
In the present case, this leads to

Hy (£, 9) = % / [cos(t(ar + By)) +sin(t(e + YN}z
2

H(t,8) = -W—lﬁ / [cos(t(a + By)) + sin(t(a + 6y))](~11+—)2dy

Since the function H is continuous and bounded on S x @y, where Qg is the closure of
some neighbourhood of ¥y = (0, 1), condition (vi) of Csérgé (1983) holds. Note that
H(t,99) = (te M, —|tle~ 1Y,

Theorem 2.5.1 of Serfling {1980) gives the so-called Bahadur representotions for the
sample median &, and half-interquartile range 3,:

N ; 1§
(3.3) ﬁaﬂ:ﬁ;h(xmm \/ﬁ(ﬁn—lJ:W;b(&)w

where 7, = O(n~4(log n)*/*) almost surely as n — oo, and Iy, I3 are defined by
hiz) =7n(1/2 -1z <0}), lfz):=n1/2-1{-1<x<1})

(E € R) In view of El]_(Xl) = EIQ(XI) = E[ll(Xl)ZQ(Xl)] = 0, E[ll(Xl)zl =
Ell2(X1)%] = #%/4 and the fact that, with I{z) := ({1(z),{2(x))’, the matrix

ENX)UX)] = (ﬂ20/4 7r20/4)

is finite and positive definite, condition (iv) of Csérgt (1983) holds. Finally, also condi-
tion (v) of that paper is valid, since the functions {, and I5 are bounded on R and since
their derivatives exist on R\{—1, 0,1}, i.e. alinost surely on R, and equal zero.
Conditions (i)*, (ii)*, (iv), (v) and (vi) imply the weak convergence of Z, in the
space (C(S),| - o) to a zero mean Gaussian process Z. We reproduce the idea of
the proof, since the decomposition of Z, will be needed for the proof of Theorem 2.2.
Let {-,-) be the standard inner product and | - {| the maximum norm on R’. Inserting
—-Fy (m)+F(m Vo) into \/_ n(Fa(z)— F(x,'@n)) of (3.2), using a bivariate Taylor expansion
F(z,8,) — F(z,95) = (9o — 0o, Vo F(z,9%)) with 9% — 9] < |[§n — o]} — 0 as., and
finally replacing ﬁ(ﬁn — 9y) by its Bahadur representation (3.3), it follows that

Z(t) = / K, O{y/A(Fa(z) — Fo(x))} ~ (vAlPn — B0, H (£, 83))
(3.4) =71 + AR + A,(f’) (£).



GOODNESS-OF-FIT TESTS FOR CAUCHY DISTRIBUTION 273

Here, the process
35) Z3(0) = [ ke 0dVA(F(a) - Fola)} - <% > 1%, H(m%))
\/_Z feos(tX;) + sin(tX;) — e~ — te 1L (X;) + |2l 1a(X;))

is a sum of centered i.i.d. random variables, which also converges to Z. The remainder
terms A,(zg) and A(s) are

(3.6) ADP(t) == (v/r(D, — o), H(t, %) — H(t,02)),
(3'7) Agzs)(t) = *(EH,H(t,ﬁn)), Ep = (T'mrn)’s

and satisfy sup,.g Fﬁg) | £ 0 and SUPyc g |A5,3)| 2o by conditions (vi) and (iv). The
limit process Z can be written as a stochastic integral

(3.8) Z{t) = / (z,)dBr, (x < / H()dBr, (z), H(t, 190)>,

where Bp, is the Brownian bridge associated with the df Fp, i.e. a centered Gaussian
process having covariance kernel EBr(s)Bp(t) = Fo(sAat)—Fy (s)Fo (t) The first integral
in (3.8) is the limit of the ‘unestimated’ part [ k(z,#)d{n(Fy(z)— Fp(z))} of 2}, and
its ‘estimated’ part (n~1/2 > oim1 HX), Ht,8p)) converges to the second term in (3 8).
Both Z} and Z have the covanance kernel

(3.9) c(s,t) =Ko(s,t) — Ko(s)Ko(t) + H(s,do) EL( X)X, )| H(t, 06)
_ <H(t,190}, / k(:r,s)l(x)ng(:c)> _ <H(s,1?0), f k(w,t)t(a:)dFo(w)>,

where Ko(t) == [ k(z,t)dFo(z) = exp(—|t]) and Ka(s,t) := [ k(z,s)k(z,t}dFo(z) =
exp(—|s — t|). It should be remarked that the mixed terms figuring in the second line of
{3.9) are missing in Csirgd (1983), p. 526. Since

ke sm@are = [T e = n),

1
/ k(z, 8)la(2)dFy(z) = ge"|‘5| _2 /0 °1°f:1”‘;) dzx = i‘;e*lsf — 2J,(5)

(cf. (2.3}), the covariance kernel is as stated in Theorem 2.1. The compact set S being
arbitrary, Z, converges weakly to Z in the Fréchet space C'(R), endowed with the metric
p (adapt e.g. the reasoning in Karatzas and Shreve (1988), p. 62 £.). O

Remark 3.1. The process Z2 emerges from Z, naturally by expanding the terms
in definition (3.1) that contain the estimators ¢, and Bn More precisely, a Taylor
expansion of the exponential function at |f| and of the sine and cosine functions at 0 and
an approximation of &, and ﬁn by their Bahadur representations (3.3) yield Z;;.

Remark 3.2. On principle, &, and 3, of (2.1) and {2.2) may be substituted by
other estimators for o and 3. Provided that these admit a representation of the form
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(3.3) with suitable functions I3, I; and a remainder term r, = op(1), Theorem 2.1
remains valid with ¢(s, ) replaced by the more general covariance kernel given in (3.9).

PROOF OF THEOREM 2.2. By Tonelli's theorem, EDy = E[f Z{t)? exp(—Ajt|)
dt] = [c(t,t) exp(=Alt)dt with ¢ defined in (2.4). The last integral being finite, Dy
is defined almost surely. In what follows, we assume the conditions of Theorem 2.2 and
make use of the definitions and notations in the proof of Theorem 2.1. The rest of the
reasoning is divided into several lemmas. Since the proof of the first of these is the same
as for (2.17) of Henze and Wagner (1997), pp. 10-12, it will not be repeated.

LEMMA 3.1, [ Z:(8)2etdt 5 [ Z(£)2e Mt

LEMMA 3.2, [(Za(t) — Z2(t))%e~Mtdt 5 0,

ProoF. Using decomposition (3.4) together with definitions (3.6) and (3.7), and
Writing 7,1 1= \/Mébm, Taz = /n{8, — 1), it follows that

/ (Zn(t) — Z2(2)) e~ dt
- [(a®) + AP @R

2
= 3 g [ (Hult,90) — Hule, 93)) ({8, 50) — (e, 05 e

i,5=1

2
+2) ) Tairn /(Hf(t,ﬁo) — Hi(t,95)) H;(t, do)eMdt

i,3=1

2
+ "'121/H:'(t,??o)Hj(t,ﬁo)e‘/\ltldt'

i,j=1
Since for 7 € {l1,2} the sequences 7; are tight, the functions H; are bounded and
continuous on S x O, H;(t, %) — H;(£,9}) — 0 as. and v, — 0 a.s., we are done. O

LeMMA 3.3, [(Z.(f) — ZX(t)2[eP=2 — e=tl)gt £ .
The proof being the same as that of Lemma 3.2, it will be omitted.
LEMMA 34. [ Z5(t)2%e~F=Meilds — [ Zz (1)2e~tldr 5 0.
ProoF. Use the Taylor expansion
e~ Br Ml _ o= Al _ Mtle=AMiBdn(3 1)

with A, € (min{fin, 1},max{;§’n, 1}), uniformly in ¢, as well as Hélder’s inequality to
obtain

‘/Z;(t)ge_‘é""mdt— fZ,";(t)ze')‘”'dt‘

< M — 1 / 22 (8) e~ 115n gy

. 1/2
< MNBn — 1 ( f Z;(t)“e_’\'*'dt) ( f tze“‘““m"‘”dt)

1/2
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Since 3, — 1 a.s. and since the last integral converges to 4/ a.s., it remains to prove
the tightness of the sequence (V,,},51, where

1/2
V, = (/Z t)ie “’\“'dt) )

Now note that by (3.5), 2 = n~1/2 E?:I h{X;,t) with centered terms h(X;,t) that are
bounded by some constant M for each w and ¢, whence E[Z:(1)] < 4M*. By Jensen’s
inequality and Tonelli’s theorem,

1/2 AN 1/2
EV, < (f E[Z,‘;(t)“]e""t'dt) < (%) :

which, together with Markov's inequality concludes the proof of Lemma 3.4. O

PrOOF OF THEOREM 2.2. Lemma 3.2 and Lemma 3.3 imply
v * " * -3 P
(20 = 220, = [[2alt) - Zatepe-az 2o,

hence |[Zn - Z;]i5 £ 0. The triangle inequality ||[z,,_]| s —Zalla A €12 —Z3ll4.
yields |[Zn]is, 5 = |[Z2]l5,, + 0p(1) and thus |[Z = |[Z3]I%_, + op(1). Then, by
Lemma 3.1, Lemma 3.4 and Sluzky’s lemma,

122, = (1215, ~ 22015 + (122015, — 220 + 1Z2IR 2 11218

and thus D, , = 3n|[2n.]!f3 1 2 11Z]3-a

Proor oF THEOREM 2.3. Let X;,...,X, be ii.d. random variables with df F
having a unique median and unique upper and lower quartiles. Hence the empirical
median &, and interquartile range 28, converge almost surely to the median and in-
terquartile range o := £;,5, 25 1= £3/4 — &174 of F, respectively. Since Dy » is affine
invariant, assume « = 0 and 8 = 1. The aim is to investigate the asymptotic behavior
of n=1D,, », the first step in this direction being Lemma 3.5.

LEMMA 3.5, ForallA>0: [ le=B= At _ =21t gt —, 0 as. as n — 0.

PROOF. Note that [°°_|e™fnMi — e=Aitl|gs = 2 [ |e~Px M — ¢=2|dt and

. i 1 gk 1 ik
(3.10} / e — e Mde < / le™PM _ o7 Mgt + e FrAK 4 “em
0 0 ﬁ A A

n

for each K > 0. Pick ¢ > 0 and K = K{\,¢) satisfying e *¥ /X < ¢. Use dominated
convergence in the integral on the right-hand side of (3.10) and 8, — 1 a.s. to conclude
that, almost surely, fom | exp{—BnAt) — exp(—At)|dt < 4¢ for sufficiently large n. O

Write n71Dpx = Bn f|Aa(t)Pexp(~BaAlt)dt, where A,(t) = n 137
exp(itX;) — exp(—Bnt| + iGnt), and note that

(3.11) |An ()| < 2
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uniformly in n, ¢ and on the underlying probability space. By the strong law of large
numbers, A,(t) — E[exp(itX1)] — exp(|t|} =: A(t) a.s. as n — oc, and by Lemma 3.5,

(3.12) ‘f|An(t)|2(e"é"Mt| - e"“')dtl < 4/ e~ _ oM@t 0 as.

By (3.11), Fubini’s theorem and dominated convergence, we get E| [ |An(t)|Ze A dt] =
[ E|A, ()2~ Mtdt — [ |A(t)|2eMHdt. Likewise, Var(f |An(t)[2e~*fldt) — 0, so that

/ | An(t)2e—Hat B / IA@D2etdt  as n— oo,
Combining this result with (3.12} yields

1 P itX —1th2,— Al

EDn,,\-—J» |Ele"*] —e %™ dt  as m o0,

Since this stochastic limit is zero if the underlying distribution is Cauchy and strictly
positive for the alternatives considered in Theorem 2.3, an upper rejection region asymp-
totic test at some given level of significance is consistent against each such alternative
distribution. O

4. Simulations

This section presents the results of a large-scale simulation study conducted to
assess the power of the new tests in comparison with other tests of fit for the Cauchy
distribution. The following procedures are compared:

1. The tests based on Dy 5 for X € {0.025,0.1,0.5,1.0,2.5,5.0,10.0}. Their imple-

mentation is based on the computational form (1.4) with ¥; = (X; — &)/ 8. and &, By,
defined in (2.1), (2.2), respectively. Since the limit statistics Dy p and Dy o fail to be
consistent and exhibit extremely poor power {cf. Fig. 1), they have been excluded from
the study.

Remark 4.1. Instead of &, and 3., we also considered the asymptotically efficient
estimators proposed in Chernoff et al. (1967), i.e.,

n n
(4.1) ﬁ!n = Z CjX(j) and ﬁn = Zde(j),
j=1 J=1

where

o e sin[dm(j/(n+ 1) — 1/2)] 4 e 8tan[n(j/(n + 1) — 1/2)]
5 (T ) =172 P nsetm/in+ 1)~ 1/2)]

as well as their affine-invariant counterparts, obtained by replacing the coefficients ¢;
by ne;/{n + 1). However, since using these estimators resulted in a substantial loss of
power of the test based on D,  for all the values of A considered and for most of the
alternatives chosen, the empirical power results regarding the new class of tests only
refer to the standardization of the data using &, and 3,.
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2. The tests proposed in D’Agostino and Stephens (1986), pp. 160-164. Each of
these classical procedures is based on a measure of discrepancy between the empirical
df of Z;;) := 1/2+ n~! arctan]( X — an)/ﬂn] j=1,...,n, where &, and 3, are given
in (4.1}, and the df of the uniform distribution on the unit interval. In particular, we
considered the Kolmogorov-Smirnov statistic KS, the Cramér-von Mises statistic CM,
the Anderson-Darling statistic AD and the Watson statistic W, given by

K§ = max {lrél;gn(j/n —Zi)) max (2 — (F - 1)/%)}

CM = [Z — (25 — 1)/(20)]2 + 1/(12n),

i=1
AD=-n-n! Z{(Zj —1)log Z;y + (2n + 1 — 24) log(1 — Z; )},
i=1
. 2
W=CM-n n'lzZ(j) - 1/2
=1

Alternatively, we implemented KS, CM, AD aI}d W using the estimators &, and ﬁ'n, Le.,
putting Z;;y := 1/2+ 7~ arctan[(X(;) — &n)/5x] in the definitions above. It will be seen
that this choice has a striking influence on the power of the tests.

3. The uniformly most powerful invariant test against normality. Franck (1981)
developed the uniformly most powerful scale and location invariant test of normality
versus the family of Cauchy distributions. We use his results to derive the corresponding
invariant test of ‘Cauchy versus normal’. To this end, let A{z) be the density of Xj,
let fo(z) = 1/(n(l + z?)), p(z) = exp(—22/2)/V2r, z € R, and let ‘~' mean ‘is
proportional to’. According to Hajek and Siddk (1967), p. 49, the most powerful scale
and location invariant test of

hi{z) = Afo(Az +u) forsome A >0 and <€ R against
Hy :hiz) = Ag(Az+u) forsome A>0and ueR

rejects Hy for large values of UMP := I /T, where (cf. Franck (1981))

—(n—1}/2

[, n
L= %Z(Xj X, 7 = A = e,
(X Xk )* log | X, — Xy ) .
( 1)(" N2 , if nisodd
;ﬂzk Hl#J — X )Hl#k(xi Xi)

122=‘<

X X lnﬁl ) '
1 e E | k ) if 7 iseven
k= 132: H#J(X‘ Xi) Hipen (X1 = Xi)

/ / fo(Azy — v, — u) A" 2dud).
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Table 1. Percentage points for 2, 5, A € {0.025,0.1,0.5,1.0,2.5,5.0,10.0}, v = 0.05.

n 0025 0.1 0.5 1.0 2.5 5.0 100
10 934 248 399 1.37 0635 0.14 0.053
20 935 248 414 152 040 .15 0.0562
30 928 246 4.03 151 041 015 0052
40 92,8 245 4.04 154 042 0.16 0053
50 92.8 245 4.03 1.53 042 016 0.054

100 925 245 401 1.54 043 0.6 0035
200 925 245 4.00 154 043 0.16 0055

Table 2. Percentage points for Dy, », A € {0.025,0.1,0.5,1.0,2.5,5.0,10.0}, v = 0.1.

n 0025 0.1 0.5 1.0 2.5 5.0 10.0
10 882 225 343 1.20 030 0.11 0.036
20 887 226 355 131 034 012 0.040
30 886 226 351 1.32 035 D0.13 0.042
40 88.7 226 3.53 133 035 0.13 0042
50 886 226 352 133 036 013 D0.043

100 886 226 352 1.34 036 013 0044
200 88.7 226 352 1.34 037 013 0045

Remark 4.2. Meintanis (1997) suggested two goodness-of-fit tests for the Cauchy
family which are based on the empirical characteristic function of X3, ..., X,, evaluated
at two points, and he presented simulation results on the power of these tests for samples
of size 200, 500, and 1000. While his statistics are free of standardization and have simple
asymptotic null distributions, the tests are consistent only against certain subclasses of
alternatives. In view of the results in Table 1 of Meintanis (1997) and the empirical
power given in Table 9 below, we conclude that only the second test of Meintanis can
nearly compete with the procedures based on D, » for each of the values A = 1, A = 2.5,
and A = 5.

All calculations were done on an IBM RS/6000 SP parallel computer at the Rechen-
zentrum of the University of Karlsruhe, using at least double precision arithmetic in
FORTRAN 90 and routines from the NAG and the IMSL libraries, whenever available.

The empirical critical values for the statistics Dy, », A € {0.025,0.1,0.5,1.0,2.5,5.0,
10.0}, based on 100000 Monte Carlo replications, are given in Table 1 and Table 2 for
the significance levels v = 0.05 and ~ = 0.1, respectively. Likewise, Table 3 and Table 4
exhibit critical values for KS, CM, AD and W. In these tables, an entry a | b means
that a and b refer to two different implementations of the test statistics, a using the
estimators given in (4.1), and b the estimators &, and .. The entries for a are in
complete accordance with the values given in D’Agostino and Stephens (1986}, p. 163,
and in Stephens (1991},

Although the statistic UMP of the most powerful invariant test of ‘Cauchy versus
normal’ may be calculated on a computer fairly easily, round-off errors cause severe
problems even for moderate values of n. Double precision arithmetic suffices to give
accurate results if n < 20. For larger values of n, extended precision arithmetic is
needed, but even then the results are wrong if n > 50. We strongly recommend to adapt
the numerically stable algorithm given in Franck (1981) to the present situation. The
critical values for UMP were calculated with extended precision arithmetic and represent
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Table 3. Percentage points for K5, CM, AD, W, v = 0.05; location and scale estimators are
dn, Bp of (4.1) (left) and d&qn, On (right).

n KS CM AD W

10 1.76/0.28% 0.81j0.14 3.72(0.94 0.321)0.093
20 1.75(0.209 0.820.15 3.89{1.04 0.288/0.006
30 1.530.168 0.60/0.15 3.03[1.03 0.198]0.089
40 1.380.147 0.460.15 2.46/1.06 0.148/0.089
50 1.27|0.130 0.38/0.15 2.11{1.05 0.119]0.087
100 1.07(0.082 0.26/0.15 1.57|1.06 0.080[0.086
200 0.98/0.065 0.2010.15 1.36/1.06 0.069]0.085

Table 4. Percentage points for K3, CM, AD, W, v = 0.10; location and scale estimators are
Gny On of (4.1) {left) and é&n, On (right).

n KS CM AD W

10 1.410.255 047)0.11 2.24[0.77 0.201]0.075
20 1.33(0.187 0.41j0.12 2.11/0.84 0.156/0.078
30 1.20/0.152 0.32(0.12 1.75/0.84 0.116/0.074
40 111j0.132 0.27)0.12 1.54/0.86 0.096/0.074
50 1.06{0.118 0.23j0.12 1.39|0.86 0.084/0.073
100 0.93(0.084 0.17/0.12 1.14]0.87 0.065/0.073
200 0.86/0.060 0.15{0.12 1.03/0.87 0.057/0.072

Table 5. Empirical percentage points for UMP (v = 0.05 and v = 0.1).

¥ 1) 20 25 30 35 40 45 50
0.05 3.ITT 0.0680 0.09259 0.03163 0.05267 Q.0y845 0.09725 0.010133
0.10  2.067 0.0155 0.03319 0.04102 0.07896 0.05138 0.011623 0.013516

the 20%-trimmed mean of 10 Monte Carlo estimates, each based on 100000 replications.
They are given in Table 5 for sample sizes n € {10,20,25, 30, 35, 40,45, 50}, where an
entry like 0.03319 means 0.000319.

As alternatives to the Cauchy distribution, we considered several transitions from
C(0,1) to the standard normal distribution A7(0,1):

o Mixtures pA (0, 1)+ (1 —p)C(0,1) of N'(0,1) and C(0,1), denoted by NC(p,1— p),
for mixing probabilities p € {0.1,0.3,0.5,0.7,0.9}.

e Student’s distribution with & degrees of freedom, dencted by Student(k), for k €
{2,3,4,5,7,10}. Remember that Student(l) is the Cauchy law and that for k — oo,
Student(k) approaches the normal distribution.

e Stable distributions, denoted by Stable {a,b), with characteristic function

[ exp{—[t}®[l — ibsgn(t) tanfan/2)]), i a#£1
i) = {exP(*ﬁHl+ib(2/r)sgn(t)log|ti]), if a=1.

We considered various combinations of the characteristic index a, which determines the
basic properties of the law, and the parameter b, which describes the skewness. For
b = 0, the so-called symmetric stable distributions perform a transition from the Cauchy
law (Stable (1,0)) to the normal law (Stable (2, 0)).
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Table 6. Percentage of 10000 Mante Carlo samples declared significant by various tests for the
Cauchy distribution (v = 0.1, n = 20}.

alternative 0025 01 05 10 25 50 100 KS OM AD W  UMP
C(0,1) 10 10 10 10 10 10 10 910 910 910 9[10 10
N(0,1) 12 14 19 24 37 43 17 013 015 017 1|30 97
NC(0.1,0.9) 9 1 9 9 1 8 9 9o 91w 99 910 12
NC(0.3,0.7) o 1w ¢ 9 9 & 7 78 79 T8 T8 15
NC(0.5,0.5) w10 10 10 11 1 5 59 68 68 6|11 2
NC(0.7,0.3) 0 12 12 13 16 18 6 a9  3j10 39 315 41
NC(0.9,0.1) 11 13 16 20 28 30 11 112 113 113 224 T2
Student(2) 0 1 9 9 11 11 4 o8 o9 ofF o1z 44
Student(3) 11 10 10 11 16 18 6 o9 010 ol O35 84
Student(4) 11 11 13 14 20 23 8 010 010 010 08 75
Student(5) it 11 13 15 23 27 9  ofl0 011 010 O[20 82
Student(7) 11 12 14 17T 2 31 11  0{10 0j12 0{12 022 88
Student{10) 11 12 16 20 30 35 13 011 013 014 125 92
Stable(0.5,0) 36 46 50 55 58 65 T4 70|38 67|43 66[72 7750 O
Stable(1.2,0) o 9 9 & 9 7T 4 3)8 38 37 3 23
Stable(1.5,0) 11 10 11 12 14 15 5 ol 19 18 115 50

Stable(1.7,0) 12 12 14 16 22 25 & 00 o{ll o0]l0 020 69
Stable(1.9,0) i1 13 17 21 32 37 14 0j12 014 Q)15 127 89

Stable(0.5,-1) 88 95 98 99 95 76 68 98|96 9598 95|99 97|98 0

Stable(1,-1) 27 30 59 66 56 35 26 34|71 26(62 2964 31|65 14
Stable(1.5-1) 13 16 22 28 32 30 15  1)27 124 124 233 53
Stable(2,-1) 12 13 18 24 37 44 17 013 015 Q7 130 97
Stable(0.5,1) 77T 9 97 98 84 68 79  08(98 U596 96(98 07|95 O
Stable(1,1) 21 31 48 54 34 24 24 3358 26[50 28|56 31|48 14
Stable(1.5,1) 12 15 20 23 22 22 11 119 1718 118 2[23 52
Stable(2,1) 12 13 19 25 38 43 17  0[13 0|15 017 1]20 97
Tukey(1.0) 11 12 12 13 12 15 13)11 1312 13]13 1311 7
Tukey(0.2) 11 11 12 8 18 6 ofp o0 09 0|16 67
Tukey(0.1) 1M 12 14 17 25 29 10  0]10 oMl 011 Q21 86
Tukey(0.05) 12 13 17 20 31 3 13 011 013 014 Q25 92
U(0,1) 25 38 61 73 81 83 56 044 044 033 9|70 *
Logistic 11 12 14 17 2 31 12 011 o0]12 012 023 89
Laplace 10 10 10 10 14 16 6 o8 Cog 08 013 69
Gumbel 13 16 24 29 34 37 18 019 019 020 130 83

o Tukey distributions, denoted by Tukey(k), for h € {0.05,0.1,0.2,1.0}. Tukey(h)
is the distribution of Zexp(hZ?/2) with Z ~ N(0,1). Hence, Tukey(0) is the normal
law, while the tails of Tukey (1.0) are Cauchy-like.

Moareover, several classical short-tailed alternatives were taken into account, namely the
uniform distribution on the unit interval, denoted by 4(0,1), the logistic distribution
having density function f(z) = e*/(1 + €%}?, the Laplace distribution with density
function f(z) = exp(—|z|)/2, and the Gumbel extreme value distribution with df F'(z) =
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Table 7. Percentage of 10000 Monte Carlo samples declared significant by various tests for the
Cauchy distribution {v = 0.1, = 50}.

alternative 0025 0.1 05 10 25 50 100 K§ CM AD W  UMP
c(o,1) g 9 10 10 10 10 10 911 80 910 910 10
N(0,1) 19 28 57 78 94 97 98 545 1|51 14|77 64/80 99
NC{0.1,0.9) 10 10 1 1 10 10 9 9110 9|10 90 1011 11
NC(0.3,0.7) 11 11 12 13 13 12 9 6111 610 6/10 913 14
NC{0.5,0.5) 12 14 18 22 26 25 17 515 414 5|15 13{24 23
NC(0.7,0.3) 14 18 30 39 50 52 41 422 223 429 2642 39
NC(0.9,0.1) 17 24 47 65 82 87 83 4|36 1)40 8|58 4968 72
Student(2} 11 13 16 19 28 35 36 114 015 118 11|26 70
Student(3) 13 15 24 34 51 63 67  2)19 021 2§32 2342 92
Student(4) 14 18 31 43 64 76 &1  2j24 028 344 3152 98
Student(5) 16 19 35 50 72 82 88 2127 0|32 4)50 3858 99
Student(7) 16 21 41 59 80 90 93 332 D37 6|58 45[65  «
Student{10 16 23 46 65 8 93 96 335 141 8/64 5171 «

Stable(0.5,0) 58 73 86 89 91 93 97  92(69 91|79 9296 9991 O
Stable(1.2,0) 11 11 12 13 14 15 12 311 211 3jie 615 30
Stable(1.5,0) 13 16 24 32 45 51 49 2(19 1j21 2|28 21|38 66
Stable{1.7,0) 15 20 36 51 69 78 77T 229 1j32 448 3758 85
Stable(1.9,0} 17 26 50 70 87 93 95 4|39 145 10{68 56|74 96

Stable(0.5,-1) * * * * * * * *|* wle *|* < | 0
Stable(1,-1) 46 73 9 93 98 8y 8L 08|99 90l96 9699 0697 13
Stable(1.5,-1) 19 29 59 75 85 83 80 33|73 13|50 20/75 57|76 68
Stable(2,-1) 19 28 57 78 94 98 99 5145 1|52 13|77 64/81 99
Stable(0.5,1) * * * * * * * *[% [ *|* e 0
Stable(1,1) 45 72 96 a8 08 89 81 98/99 89(97 96|99 96(97 13
Stable(1.51) 18 30 59 76 8 83 80 3472 1358 20|74 57|T5 68
Stable(2,1) 19 28 57 78 94 98 99 5144 151 1476 64|79 99
Tukey{1.0) 11 11 12 13 14 15 17 15]11 1511 14[14 1512 6
Tukey(0.2) 12 15 24 3¢ 53 66 71 119 023 234 2443 96
Tukey(0.1) 15 20 37 54 76 8 91 228 133 554 4161 =
Tukey(0.05 17 23 46 66 86 94 96 3036 142 965 5271«
U(o,1) 58 86 99 s« x o« %  73/99 29|96 83« 99« 90
Logistic 15 21 40 58 80 90 94 2|30 0|36 658 46|64 *
Laplace 11 12 16 24 41 56 64 1j14 0|17 125 12131 *
Gumbel 21 34 67 85 95 97 97 31|76 B|65 30|84 72|85 99

exp(— exp(-z)).

Standard routines of the IMSL and the NAG library were used to generate random
numbers from the distributions C(0,1), A(0,1), 4(0,1), Student(k), Stable(e,b), and
from the logistic distribution, whereas the inversion method was adopted to generate
random numbers from the Laplace or the Gumbel distribution.

For the nominal level 10%, power estimates of the tests under discussion are shown in
Tables 6-9, the entries being the percentages of 10000 Monte Carlo samples that resulted
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Table 8. Percentage of 10000 Monte Carlo samples declared significant by various tests for the
Cauchy distribution (v = 0.1, n = 100).

alternative 0025 01 05 10 25 50 100 K3 CM AD W
c(0,1) 10 1w 10 10 1¢ 1w 10 10/10 10{10 10|10 10/10
N{0,1) 30 53 94 09 = * * TI|91 45[92 96)= 99{99
NC(0.1,0.9) 10 10 10 10 10 10 9 9111  sjlo 9j10 1011
NC(0.3,0.7) n 13 17 18 20 19 13  8{15 6[13 8|14 1820
NC(0.5,0.5) 14 19 33 42 49 48 38 11)25 5[23  11)31 41|42
NTC(0.7,0.3) 20 20 58 75 84 86 79 23]48 9|48 3166 75|75
NC(0.9,0.1) 25 44 B85 97  « * * 51|80 27|81 7996 97|96
Student{2) 14 16 28 38 57 70 76 823 325 13]43 45|46
Student(3) 17 23 48 68 B8 05 98 1641 746 39|77 76|76
Student(4) 19 29 62 82 96 93 & 25)54 11)60 58|89 87|87
Student(3) 21 33 68 88 08 « * 32163 16|69 69|04 92}92
Student(7) 22 37 T8 94 * * 42|72 23|77 81|97 96[95
Student(10) 24 42 83 97« * * 51|79 29|82 87|99 9897

Stable(0.5,0) 83 94 99 = 09 x * 99|95 99(99 | i+ *[*
Stable(1.2,0) 11 12 16 18 24 28 27 615 3|14 6[16 19|22
Stable(1.5,0) 17 24 48 65 8 87 88 16/40 6/43 29|66 71|70
Stable(1.7,0) 21 35 T2 89 9T 99 Q9g 34/64 1669 65/91 9261
Stable(1.9,0) 27 4 89 98 s« s+ 58|85 3487 90|99 99(98

Stable(D.5,-1) * * * * * * * *| »% *|* *|*
Stable(1,-1) 78 97 * * * * * *|* * % | * |
Stable(1.5-1) 30 55 93 99 s « % 9899 74|95 OT|+ 99/98
Stable(2,-1) 29 52 94 99« * * 71|91 45|91 96|+  #|99
Stable(D.5,1) * * * * * * * *i% % e *|#
Stable(1,1) T 97 = * * * * * | *|* *|* # |
Stable(1.51) 31 55 93 99 s &«  «  98/99 75/94 OT}+ 99|98
Stable(2,1) 20 52 93 99 s+ s« TO9L 4492 96+ |99
Tukey(1.0) 11 12 14 14 15 18 18 16/12 1613 16/16 18/13
Tukey(0.2) 17 24 50 71 90 96 98 16|42 7|47 43|79 79|77
Tukey(0.1) 21 34 73 92 99 x 3667 1973 7596 94/93
Tukey(0.05) 25 41 84 97 * * * 51/80 2983 8899 98|97
(0,1} 93 * * x * * * | * *|* | =%
Logistic 23 37 77 94 * * * 40|71 21|76 80|97 96{94
Laplace 13 15 29 49 81 93 98 8|26 3|31 22|64 54|57
Gumbel 37 65 98 * * * Q9% TT[9T 99|« x|*

in rejection of Hyp, rounded to the nearest integer. An asterisk denotes power 100%. For
the statistics KS, CM, AD and W, and entry like u | v means that the estimated power
is v if the test is implemented as recommended in D'Agostino and Stephens (1986), i.e.,
using the estimators of (4.1), and the estimated power is v if the estimators & and
are used instead. Figure 1 displays the empirical power of the tests based on D, as
a function of the parameter A, for some selected alternative distributions. The main
conclusions that can be drawn from the simulation results are the following:
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Table 9. Percentage of 10000 Monte Carlo samples declared significant by various tests for the
Cauchy distribution {y = 0.1,n = 200).

alternative 0025 0.1 05 10 25 5.0 10.0 KS CM AD w

(0,1} 10 10 10 10 10 10 10 10J]10 10[10 10)10 10|10
N(G,1) 55 90 * * * * * *|# Q9= *lx * )k
NC(0.1,0.9) 10 11 12 11 11 11 10 911 810 91 12012
NC(0.3,0.7) 14 17 27 32 83 32 24 1421 818 1222 3532
NC(0.5,0.5) 20 31 61 T4 80 79 69  34/48 1646 38|61 7772
NTC(0.7,0.3) 31 55 92 98 99 90 98 76|86 53|36 87|96 9997
NC(0.9,0.1) 46 80 * * * * * 900« O4x x|+ *|*
Student(2) 17 25 54 73 91 96 99 3348 1753 65|85 86|80
Student(3) 25 42 B85 97 * * * 72|83 52/87 97|99 99|98
Student(4) 30 55 95 99 = * * 89|95 T75{96 x|* %
Student(5) 35 62 98  « * * * 96|98 85|98  *|* *|x
Student(7) 40 W 99 * * * * 99|99 93|99  «|= |

" Student(19) 43 T8 = * * * * *x OB [« P
Stable(0.5,0) a8 * * * * * * ] *|% *[* *|x

Stable(1.2,0) 13 16 26 33 43 51 52 12122 7[21 16{32 42[39
Stable(15,0) 26 44 84 95 99 s  x  B5[T8 46[82 90/97 98|96
Stable(1.7,0} 36 66 98 = * * * 94|97 84[98 |+ *|x
Stable(1.9,0) 49 83 * * * * * «|* OB« ¥|x *|%

Stable(0.5,-1) * * * * * * * *|* *|* *|% *|*
Stable(1,-1) 99 * * * * * * *|* *|% *|* * |
Stable({1.5,-1) 59 91 * * * * * *|* = *|* *®|*
Stable(2,-1) 55 39 * * * * * * [ 99| *|* |
Stable(0.5,1) * * * * * * * *|x *|* *|* *|*
Stable(1,1) 99 * * * * * * | P *|* *|*
Stable(1.5,1) 59 91 * * ® * * *|* *| % x| *|*
Stable(2,1) 56 89 *® * * * * * [ g9x  =|* *{*
Tukey(1.0) 11 13 16 18 20 23 25 1713 17/13 1718 21j37
Tukey(0.2) 25 43 86 98 « x s 7486 5588 08s 99|99
Tukey(0.1) 37 66 98 * * * * 97|99 88{99  *ix * |
Tukey(0.05) 45 78 * * * * * *|* 96|  #* *|*
u(0,1) * * * * * * * “in *|x *|* *|*
Logistic 39 70 99 * * * * 990+  92[99  *|= *|*
Laplace 17 24 62 90 * * * 4766 21|65 91198 95|91
Gumbel £9 [*)rd * ES * * * 1:!* *|1: $|* *l*

1. For short-tailed alternatives and for small sample sizes like n = 20, the test based
on UMP outperforms all other tests under discussion. However, it has no power against
the three (long-tailed) stable alternatives with characteristic exponent 0.5. A disadvan-
tage of this procedure is that round-off errors preclude its applicability for sample sizes
larger than 50. We presume that the peculiar behavior of UMP under 4(0,1} (a power
of 100% for » = 20 and of only 90% for n = 50) may already be due to this effect.

2. Except for the stable alternatives with characteristic exponent 0.5, there is a
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Fig. 1. Empirical power of the tests based on Dy, ) as a function of the parameter A for some
selected alternatives (v = 0.10).

striking increase in power of the empirical distribution function (EDF) tests based on
KS, CM, AD and W if, instead of the estimators {4.1) recommended by D’Agostino
and Stephens (1986), the estimators &, and [in are used. In some respect, the power
of the EDF tests is ‘complementary’ to that of UMP. Although being a little inferior
with respect to some of the tests based on Dy, », the Watson test outperforms the other
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EDF tests for the sample sizes 50, 100, and 200 and thus, when implemented with the
estimators &, and (3,, is a reasonable procedure for the testing problem under discussion.
However the EDF tests, at least as described in D’Agostino and Stephens (1986), should
not be used when testing for the Cauchy distribution.

3. For short-tailed alternatives in combination with very small sample sizes (n <
20), the new tests based on Dy, », as well as the EDF tests, are distinctly inferior to the
test based on UMP. But especially for values of A between 2.5 and 10.0, for long-tailed
alternatives in combination with any sample size and for each alternative when n > 50,
this class of tests is very competitive. Note that the W test with &, and Bn, which is
the best procedure among the EDF tests, is dominated by Dy, ; for n = 20 and by Dy 35
if n > 50 over the whole range of alternatives considered.

As for the new class of tests based on D, x, 0 < A < 00, there is a natural idea that
suggests itself when looking at Fig. 1, namely letting A depend on the data Xq,..., X,
in order to maximize power. This problem is an interesting topic of future research.
A further basic problem is to give a theoretical explanation for the striking effect that
different estimators for a and  may have on the power of the tests under discussion.
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