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Abstract. Ranked set sampling (RSS) is a cost efficient method of sampling that
provides a more precise estimator of population mean than simple random sampling.
The benefits due to ranked set sampling further increase when appropriate allocation
of sampling units is made. For highly skew distributions, allocation based on the
Neyman criterion achieves a substantial precision gain over equal allocation. But the
same is not true for symmetric distributions; in fact, the gains due to using the Ney-
man allocation are typically very marginal for symmetric distributions. This paper,
determines optimal RSS allocations for two classes of symmetric distributions. De-
pending upon the class, the optimal allocation assigns all measurements either to the
extreme ranks or to the middie rank(s). This allocation outperforms both equal and
Neyman allocations in terms of the precision of the estimator which remains unbiased.
The two classes of distributions are distinguished by different growth patterns in the
variance of their order statistics regarded as a function of the rank order. For one
class, the variance peaks for middie rank orders and tapers off in the tails; for the
other class, the variance peaks for the two extreme rank orders and tapers off toward
the middle. Kurtosis appears to effectively discriminate between the two classes of
symmetic distributions. The Neyman allocation is required to quantify all rank orders
at least once (to ensure general unbiasedness) but then quantifies most frequently the
more variable rank orders. Under symmetry, unbiasedness can be obtained without
quantifying all rank orders and the optimal allocation quantifies the least variable
rank order(s), resulting in a high precision estimator.

Key words and phrases: Equal allocation, kurtosis, Neyman allocation, order statis-
tics, relative precision, skewness, symmetry.

1. Introduction

It is well established that under equal allocation, ranked set sampling (RSS) is a
more precise method of sampling than simple random sampling (SRS) in estimating the
population mean. McIntyre (1952) first recognized the potential of RSS in estimation
of the herbage mass. Halls and Dell (1966) formalized this concept and coined the term
RSS. Takahasi and Wakimoto (1968) established a rigorous foundation for the theory
of RSS, and thereafter various facets of RSS have been discussed in the literature. Dell
and Clutter (1972) examined the effect of ranking error, Stokes (1980a,b) discussed
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RSS in estimating the population variance and estimation of correlation coefficient. The
estimation of distribution function using RSS was considered by Stokes and Sager (1988),
along with its application in estimating the tree volume. Cobby et al. (1985) provide
several applications of RSS in agriculture. See Patil et al. (1994) and Kaur et al. (1996)
for an overview of RSS literature.

The performance of RSS can be further improved by using an appropriate alloca-
tion. Mclntyre (1952) suggested allocation proportional to the standard deviations of
rank order statistics (Neyman allocation) to maximize precision in estimating popula-
tion mean. When the standard deviations of the order statistics are unknown, Kaur et
al. (1997) describe some allocation rules based on the knowledge of skewness, kurtosis,
or coefficient of variation of the underlying distribution. In general, RSS estimator of
mean can be expressed as a weighted average of rank order statistics, and under equal
allocation all weights are the same. Equal allocation is most appropriate under complete
lack of underlying distribution, but when there is some knowledge of the form of the
underlying distribution, appropriate weights can be chosen to obtain the best linear un-
biased estimator of the mean. Kvam and Samaneigo (1993} established inadmissibility
of the equally allocated RSS estimator of population mean when it is either the location
or scale parameter of the underlying distribution.

For symmetric distributions, the gains due to Neyman allocation instead of equal
allocation are usually modest. Yanagawa and Shirahata (1976) proposed a minimum
variance linear unbiased median-mean estimator of population mean for a family of
symmetric distributions, Shirahata (1982) further examined more general procedures
that are unbiased for symmetric distributions. In this paper, we consider allocation
models for symmetric distributions by exploiting the type of symmetry and provide the
minimum variance linear unbiased estimator of the population mean. Two classes of
symmetric distributions, characterized by the qualitative behavior of the variances of
their order statistics, are considered.

Section 2 reviews the RSS procedure under equal and unequal allocation. In Sec-
tion 3, the optimal allocation for symmetric distributions is discussed. Section 4 gives
examples of the two classes of symmetric distributions and compares the performance of
the optimal allocation with equal and Neyman allocation. Finally, the role of kurtosis in
determining the precision of the proposed estimator and also in characterizing the type
of symmetry is discussed in Section 5.

2. Ranked set sampling

"The procedure to obtain a ranked set sample of size m with equal allocation involves
randomly drawing m? units from the population and then randomly partitioning them
into m equal sized subsets. The units are then ranked within each subset. Here ranking
could be based on judgment, visual perception, covariates, or any other method that
does not require actual measurement of the units. The unit receiving the smallest rank
is quantified from the first set, the unit receiving the second smallest rank is quantified
from the second set, and so forth until the unit with the largest rank is quantified from
the m-th set. Thus m units are quantified out of m? selected originally. This procedure
is repeated r times (cycles) in order to get n — mr quantifications.

Let Xiimyy, ¢ = L,2,...,m; § = 1,2,...,7, denote the quantification of the i-
th rank order in the j-th cycle. For fixed ¢, the X(;pm);, § = 1,2,...,r, are iid with
E(X(imys) = i) and var(Xumy;) = 0F0y-

Let 4 and ¢ be the mean and variance of the population. The ranked set sample
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mean given as
_ 1 m T
Kimeq = — D> Xamis
i=1 j=1

is an unbiased estimator of x, having variance

_ 1 =
var(X{m)eq) = m Z 0-[2'51171)'
i=1

The subscript “eq” signifies equal allocation.
Under SRS with n = mr quantifications the variance of the mean is 02/n, so the
relative precision of RSS with respect to SRS is given as

o%/n
Va'r(X(m}eq)
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where o2 = L3, of, . is the average within-rank variance.

Under the scenario of general allocation, n sets each containing m sampling units
are ranked and the i-th rank order is quantified from r; of the sets, i = 1,...,m. This
gives n = ry +- - -+7py quantifications denoted by Xy, 1 = 1,2,...,m; § = 1,2,..., 7.
When all r; are positive, an unbiased estimator of the population mean is

m

. 1 T
X(m]ueq = — Z _27

m T3
i=1 ¢

where
ry
T = ZX(-i:m)j~
J=1
The variance of this estimator is

2
c’,.(1'.:1'71.)
Ty '

(21) W(X(m)ueq) = # Z

i=1
Still assuming that r; > 0, the optimal Neyman allocation is

N (i:m)
(22) yym 0w
LY Oim)

Using (2.2) in (2.1) yields

- 1 = P
(2'3) Va'r(X(m)ney) = m (; J(i:m)) = ';l—a

where & = % )::'f__l O(i:m) 18 the average within-rank standard deviation.
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Note that equation (2.2) does not generally yield integral values for the r; so that
some adjustments are needed to obtain the optimal allocation. These adjustments have
the effect of increasing the variance above the value given by (2.3). Thus (2.3) is only
an approximate (lower bound) expression for the variance of the Neyman allocation;
however, it is asymptotically correct as n — oo. This point becomes important for the
comparisons of the next section where we obtain the exact (integral} optimal allocation
for symmetric distributions. Compared with SRS, the asymptotic relative precision of
the Neyman allocation is

2
RP ey = va.r(aX({,;r:ney) - (2)2'

3. Allocation models for symmetric distributions

Neyman'’s formula provides an optimal allocation; nonetheless, for symmetric dis-
tributions, there are allocations yielding even better performance than the Neyman al-
location. This can be explained by noting that optimality of the Neyman allocation is
established under the constraint that all r; be positive. The constraint is imposed be-
cause, in general, there does not exist a linear combination of the X (;.,,); that is unbiased
for p unless each rank order is quantified at least once, i.e., unless each r; is positive.

In the case of symmetric distributions, the symmetry can be exploited to allow
some (in fact, most) of the r; to vanish and thereby to broaden the class of linear
unbiased estimators of g. The resulting optimal allocation strategy is precisely the
opposite of the Neyman strategy which quantifies most heavily those rank orders having
the largest variances. For symmetric distributions, the strategy is to ignore the rank
orders with large variances and to quantify only the rank orders having the smallest
variances. Since the estimator is constructed from variates that already have a small
variance, the performance improvement over the Neyman allocation can be quite large.
Along these lines, David ({1981}, pp. 138-140) discuss the use of the trimmed mean and
the two point mean for estimating the location parameter of the normal distribution.
Another estimator of location is the midpoint or midrange (X (1.m) + X(m:m))/2, which
is optimal for uniform population. David and Groeneveld (1982) showed the asymptotic
variance of the middle rank order statistics to be either locally minimum or maximum
for a symmetric distribution.

Let M = (m+1)/2 so that M is the unique middle rank order when m is odd. If m
is even, then A/ is not an integer and the two middle rank orders are M — § and M + 3.

For a symmetric distribution, we have that

1 .
B = E(M(zm) + nu{m—i+1:m})1 1 S 1< M:

and
p=fim) f misoddand i=M.
Accordingly,
. 1/T, T )
(3.1) filri, Pm_iy1) = = (-—1 + —ﬂ) ., 1<i<M,
2\r Theinl

is an unbiased estimator of p provided r; and 7,,_;..1 are both positive. In what follows,
it will be convenient to write

T:=T’m._i+1, 1S%SM
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If m is odd and i = M, we also have the unhiased estimator

. . Ty
ﬂM(TM) = ,UM(TM,TM) =
M

as long as rar is positive. The estimator defined by equation (3.1) has its variance given
by

Sy (1 1
va.r(ﬁ,;(r,;,r;-")): (14?}1) (T—+F), 1‘;:?:<M.,
T T

since or(zi:m) = cr(zm_i im)- Similarly,
2
T(0dim)

M

(3.2) var(fia (7)) =

When n; = r;+r} is fixed, the variance of ji;(r;, ;) is minimized by making the allocation
as nearly balanced as possible, e.g.,

r; = floor(n;/2) and  »] = ceil(n;/2).

We write fi;(n;), 1 < i < M, for the corresponding estimator. One finds that

;m) if n; is even
(33) @) =4

2—tﬂ if ;i is Odd,

ny—1 ny

where 1 <i< M,

Let the number n of possible measurements be fixed. Then, an allocation (ry,7a,. ..,
) With 7 = vy 4+ ry + - - + v, is said to be G-allowable if each r; is positive. The
letter “G” refers to general distribution, since G-allowability is a necessary and sufficient
condition for the existence of a linear unbiased estimator of yx for arbitrary distributions
(with finite first moments). The allocation (rq,ra,...,7m) is S-allowable if, for each ¢ with
1 <4 < M, either r; and r} are both positive or both vanish. Note that every G-allowable
allocation is S-allowable. For symmetric distributions and S-allowable allocations, the
linear unbiased estimators fi; defined above are available and we can incorporate all the
chservations by considering estimators of the form

/ 1
(34) Y. Wil(ri,r}) with > Wi=1,

1< M 1<i<M

where the prime on the summation signifies that the summation extends over those ¢ for
which r; > 0.

Note that S-allowability is not necessary for the existence of a linear estimator of p
that is unbiased for all symmetric distributions. For example, such an estimator exists
whenever there is at least one ¢ for which 7; and r} are both positive. However, S-
allowability does appear to be necessary if all observations are to appear in the linear
combination. A closely related guestion asks, for symmetric distributions and S-allowable
allocations, if every linear unbiased estimator of u has variance greater than or equal
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to the variance of an estimator of the form (3.4), i.e., does the class (3.4) include all
admissible linear unbiased estimators.

Here, we restrict attention to the estimators of form (3.4) and determine the S-
allowable allocation that minimizes the variance within this class of estimators. There
are several cases, depending upon the parity of m and n:

Case 1. If n or m or both are even, then let j be the rank order ¢ that minimizes
Oy for 1< < M.

{a) If j < M, then the optimal allocation has r; = floor(n/2), rj = ceil{n/2),
and all other r; vanish. The optimal estimator is fi;(n) whose variance is given by
equation (3.3).

(b) If j = M, then the optimal allocation has 73 = n and all other r; vanish. The
optimal estimator is fipr(n) whose variance is given by equation (3.2).

Case 2. If n and m are both odd, then let j be the rank order i that minimizes
a(zi:m) for 1 < i < M. Note that 1 = M is excluded from this minimization.
{(a) If 2. < %=lg2  then the optimal allocation and estimator are as in
c 1( ) {(F:m) n " {M:m)
ase 1{a).
b) If o2,,. < g2 _ ., then the optimal allocation and estimator are as in
ase .
(¢) If 220dy 0y < 0f,m) < Tiar.m), then the optimal allocation has 7; = 17 =
(rn—1)/2, rar = 1, and all other r; vanish. The optimal estimator is

Wiij{n — 1) + (1 —~ W)ia(1)

with )
(n —1)/0;m)

(n = 1)/ + 1/ arm)

W =

whose variance is I

(n — 1)/0(2j:m) + l/aE"M:m)'

The proof of this result appears in the Appendix. The Case 2(c) is a bit anomalous,
but the prescription for the other cases is simple and intuitive: determine the rank order
7 whose order statistic has the smallest variance,

ol = min{oﬁ-:m) 1<i< M},

and allocate all the measurements to this rank order and to the symmetric rank order
m — j + 1, in as balanced a manner as possible. The optimal variance is then

o e i
‘;’“ if j=M or niseven
2
a =
i n® ohim i .
e i j< M and nis odd.
né—1 n
Note that
2 3 2
o 3 n® oo
©5) Tt < g < g T
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It is easy to see that these inequalities hold for Case 2(c) also. This gives the asymptotic
expression

2
2 Tini
(3.6) Caym = sz as 1 — 00,

analogous to equation (2.3) for the Neyman allocation. The asymptotic expression (3.6)
is exact for finite n if either (i) n is even or (ii) m is odd and the middle rank order M
minimizes a‘%__m) for 1 <4 < M. Otherwise, the asymptotic expression provides a slight
underestimate for afym, but still an excellent approximation since the upper bound in
(3.5) approaches o2, /n very rapidly as n gets large. For example, the upper bound is
1.0162; /n for n as small as 10.

If the above prescription were applied to the situation of Case 2(c), then all n
observations would be allocated to rank orders j and m — 7 + 1. But this would yield an
unbalanced allocation since n is odd. If O'E,‘M:m) is only slightly larger than G(zj:m) then it
is better to balance the allocation and assign the extra remaining measurement to rank
order M. Observe that Case 2(c) disappears in the limit of large n.

Recall that every G-allowable allocation is S-allowable. Since the Neyman allocation
is the optimal G-allowable allocation, it follows that the precision of the optimal S-
allowable allocation must be at least as good as that of the Neyman allocation for
symmetric distributions. Numerical comparison is easiest using the asymptotic variances,
for which the precision of the S-optimal allocation relative to the Neyman allocation is

=2
7 >1

2 —
T min

RP =

At a practical level, determination of the S-optimal allocation requires knowledge
of the order statistic variances. In reality, these variances are not known., However, we
have found for many distributions that the plot of 0(2:': ) Versus i is either mound-shaped
or U-shaped. In the first case, the minimal variance occurs in the tails (j = 1) and,
in the second case, it occurs in the middle (j = floor(M)). Thus, only a qualitative
judgment regarding the two shapes is needed to arrive at the optimal S-allocation. The
next section studies a number of examples to develop an intuitive feel for helping to
make this judgment.

More complicated multimodal shapes are possible. But even here, we often find
that the appropriate choice of either j =1 or j = floor(M) yields a good approximation
to o2,

4. Examples

A symmetric distribution will be said to belong to the family Fs, = Fg,(m) if the
plot of U(zi:m) versus ¢ is mound shaped, i.e.,

aa:m) is increasingini for 1 <i< M.

For simplicity, we consider only the asymptotic case of large n. The smallest order
statistic variance occurs for j = 1 and, according to the previous section, the optimal
allocation assigns floor(n/2) measurements to rank order 1 and ceil{n/2) measurements
to rank order m. We call this the “extreme” rank orders allocation and indicate it by a
subscript “ext” For large n, the asymptotic variance of the estimator is

2 . U(zlzm)

(4.1) et = = —
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Fig. 1. Variances of order statistics of Normal, Uniform, Symmetric Beta and Unfolded Weibull
distributions. The line types 1,2,3,4 correspond to the set sizes m = 2,3, 4, 5 respectively.

The family Fg, inciudes the Uniform and Sine distributions as well as certain mem-
bers of the Unfolded Weibull and of the Symmetric Beta families as shown in Fig. 1(a—c).
A random variable X follows Unfolded Weibull Distribution (e, 0, 1), if symmetric about
r = 0 and |X| follows the Weibull Distribution (e, 1); having pdf alz|@Ve~l=l" | for
—oo < z < 00. A special peculiarity of this distribution is that when | X| follows J-shaped
Weibull, then its unfolded version X may have a distribution with very high kurtosis. In
Symmetric Beta distribution with parameter o, bounded range and the shape parameter
control the type of symmetry, i.e., bell of U-shaped.

The asymptotic relative precision of the extreme rank orders allocation compared
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Table 1. Relative precisions RPeq, RPney and RPgyy of some selected distributions for the set
sizes 2 through 5. :

Distribution set site  RPeq RPney RPext
Uniform (0,1} m=2 150 1.50 1.50
Kurtosis= 1.8 3 200 2.00 2,22

4 250 2.53 3.12
5 3.00 3.0 4.20
Sine (0, ) m=2 149 149  1.49
Kurtosis=2.19 3 1.98 1.98 2,02
4 246 2.46 2.55
5 2.85 2.95 3.09
Unfoided Weibull (2,0,1) m=2 149 1.49 1.49
Kurtosis=2 3 197 1.98 2.13
4 244 2.46 2.86
5 2m 2.93 3.59
Symmetric Beta (2) m=2 149 1.49 1.49
Kurtosis=2.14 3 198 1.98 2.04
4 247 2.47 2.61
5 296 2.96 3.19

with SRS is obtained from equation (4.1) as

2
a
RP..: = .
ext (a(l:m))

The relative precisions RPeq, RPpey and RPy; are computed for the Uniform (0,1} distri-
bution, the Sine {0, ) distribution, an Unfolded Weibull distribution, and a Symmetric
Beta distribution in Table 1. It is seen that the performance of equal and Neyman alloca-
tion is very close but the extreme allocation model performs better than both. Further,
we note that the relative precision in all the three cases increases with m. A symmetric
distribution will be said to belong to the family Fg, = Fg,{m) if the plot of aﬁ.:m) versus
i is U-shaped, i.e.,

cr?,-:m} is decreasing for 1 <i< M.

The optimal allocation depends upon whether m is even or odd. For even m, the smallest
order statistic variance occurs for the two middle rank orders, M — % and M + % The
asymptotic optimal allocation assigns floor(rn/2) measurements to the first of these rank
orders and ceil(n/2) measurements to the second. For odd m, the unique middle rank
order is M and the asymptotic optimal allocation assigns all n measurements to this
rank order. We call this the middle rank order(s) allocation. The asymptotic variance
of the estimator is given by
2 J?L:m)

it
mid n

where L is the floor of M. The relative precision compared with SRS is RPmia =
{U/U(L:m) }2‘

The Fg, family includes the Normal, Logistic, Laplace, and Triangular distributions,
as well as certain members of the Unfolded Weibull family and of the Symmetric Beta
family as shown in Fig. 1{d-f).
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Table 2. Relative precisions RPeq, RPpey and RP ;4 of some selected distributions for the set
sizes 2 through 5.

Distribution set size  RPeq RPhey RPpuig
Normal (0,1) m=2 147 147 1.47
Kurtosis=3 3 1.91 1.92 2.23

4 2.35 2.36 277
5 277 2.80 3.49
Logistic (0,1) m=2 144 144 144
Kurtosis—=4.2 3 134 1.86 2.55
4 222 2.27 3.16
5 258 2.67 4.17
Triangular {~1,1) m=2 1.4% 1.49 1.49
Kurtosis=2.4 3 196 1.96 2.03
4 2.43 2.43 2.53
5 2.90 2.90 3.13
Laplace (0,1) m=2 139 1.39 1.39
Kurtosis—=6 3 173 1.78 3.13
4 2.04 2.16 3.84
5 2.33 2.54 5.70
Unfolded Weibull(.5,0,1) m=2 115 115 1.15
Kurtosis=70 3 1.24 1.49 11.42
4 1.31 1.82 12.72
5 1.38 2.15 41.43
Symumetric Beta(5) m=2 148 1.48 1.48
Kurtosis=2.53 3 1.95 1.95 2.07
4 241 241 2.57
5 2.87 2.87 3.15

The relative precisions RPeq, RPpey and RP g are computed for the Normal (0,1),
Logistic (0,1), Triangular (—1,1), Laplace (0,1}, Unfolded Weibull (.5,0,1) and Symmet-
ric Beta (5) distributions for m = 2,3,4,5 in Table 2. It is seen that the performance of
equal and Neyman allocation is almost the same but the middle rank order allocation
outperforms both. In case of unfolded weibull (.5,0,1) distribution, high relative preci-
sion of 41.43 is due to very sharp form of density function at the origin which results
in a large kurtosis value of 70. Consequently, the variability in the middle is very small
thus yielding high precision for middle allocation.

When the assumption of symmetry is violated, then the bias is introduced in the
estimator of mean. If the allocation is made incorrectly at the middle rank instead of
correct exterme rank order statistics, or vice-versa, then the magnitude of loss is directly
proportional to the difference in variability at extreme and middle order statistics. Kur-
tosis can be a relevant measure of this difference, as its increasing values indicate smaller
variability in the middle as compared to extremes. Further, ranking errors undermine
somewhat the benefits of RSS.

5. Role of kurtosis

The general RSS procedure is distribution-free, requiring only finiteness of the low
order moments of the parent distribution. Nonetheless, even going back to McIntyre
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{a} Symmetric Beta (m=3) (b) Symmetric Bata (m=5)
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Fig. 2. Relative precision RPext, RPmiq. RPeq versus kurtosis for Symmetric Beta and Un-
folded Weibull distributions for m = 3, 5.

(1952), one tries to reference the behavior of RSS procedures by summary distributional
characteristics like skewness and kurtosis. Since the procedures studied in this paper are
limited to symmetric distributions where skewness is noninformative, we have studied
kurtosis as a referencing characteristic.

Figure 2 plots the relative precision of middle, extreme, and equal allocations against
kurtosis for two distributional families (symmetric beta and unfolded Weibull) and two
set sizes (m = 3 and m = 5). For all four combinations, relative precision of the extreme
allocation is a steadily declining function of kurtosis. This can be explained by the hign
variability of the extreme order statistics when kurtosis is large. Conversely, relative
precision of the middie allocation increases with increasing kurtosis. Large kurtosis is
associated with a bunching up of observaiions in the center of the distribution and this
limits the variability of the middle order statistic and results in improved performance
of the middle allocation. The intersection of the RP curves for middle and extreme
allocations occurs when kurtosis is about 2.3 for symmetric beta family and about 2.5
for unfolded Weibull family. The nearness of these values suggests that kurtosis may be
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an effective discriminator between the two classes of symmetric distributions considered
in this paper. We have not examined this question for other families of distributions,
however.

Compared with middle and extreme allocations, the RP curve for equal allocation
is comparatively flat (Fig. 2). Interestingly, the figure also indicates that the intersec-
tion points for the three curves are nearly concident. Apparently, when the optimality
changeover from extreme to middle allocation occurs, all of the order statistics have
about the same variance and, consequently, all allocations perform about the same.

Appendix

Here, we derive the optimal S-allocation described in Section 3. Some preliminary re-
sults are needed. Result 1 is well-known, but we make repeated use of the equation (A.1)
for the optimal variances.

Result 1. Let Z;,...,2, be independent random variables with a common mean

w and with variances ¢f,...,02. The linear combination

WiZ) + Wy + -+ W,Z,

with W, + Wy + .- + W, = 1 that has the smallest variance is obtained by taking W;
inversely proportional to o2. The resulting minimum variance is

1
(A1) I S
o? a2 o2

Result 2. If X and Y are positive random variables, then

1 1
E1+1 <3 L1
X 'Y E[X] E[Y]
Result 3. Ifz;, y;,1=1,...,p, are positive numbers, then

p
1 1
2 TT| S T
i W D& DY

Since Result 3 is a special case of Result 2, we prove Result 2. Define

1

f(:E:y): 1 1: zzy>0
‘.._+‘..,
Tz ¥

The Hessian matrix of second partials of f is

2 -y* zy
He=— :
(z+y)® [ zy f:cz]
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The quadratic form associated with H is negative semidefinite, implying that f(z,y) is
concave downward. Result 2 is then a consequence of Jensen’s inequality.
Consider an S-allowable allocation (71, 72,..., 7, )} and a linear combination

L= Y Wip(ri,r?)

1<i< M

with 3] ;2 Wi = 1. Recall that the prime indicates that the summation is over all
for which r; > 0. The case of a unique middle rank order requires special treatment, so
we assume for now that such a rank order does not occur in L, i.e., the summation is
over 1 <i < M. Let j be the index ¢ that minimizes o?i:m) for 1 <i < M. We are going
to show that

(A.2) var(L) > var (ﬂj (Z'(r,- + r.’{))) .

)

In fact, we show that

(A.3) var(L) > var (ﬁj (Z’ri,zrr:)) .

Equation (A.2) then follows since the right hand side of equation (A.3) is greater than
or equal to the right hand side of equation {A.2). By Result 1, var(L) is greater than or
equal to

1
1
il
2. o
where
ai = var(f(ri, 73))
a?‘i:m) ( 1 1 )
4 ryooT
2
> Zm) (l N i) _
4 Ti T
Thus,
1 _ fim) 1

var(L) > =

- 2 4 1, 1\
r|%Gm (11 ! (_ + _)
i [ i \n'm 2 rioorf

)

On the other hand, the right hand side of equation (A.3) equals

2

"(j=m)[ 1 1 ]
/ + ! "

4 2T iTi
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Thus, (A.3} will be true provided

1 1 1
> + .
=3 2 =7 -
1 +l} 22T iTi

L

=

But this is a consequence of Result 3. Thus, we are finished when m is even.

Now, we consider the case where m is odd so the unique middle rank order M may
occur in L. As before, let j be the rank order ¢ that minimizes a?i:m) for 1 <i< M.
Write L as ,

L= z W-,‘ﬁ,‘(‘]”i,‘l‘:) + WMﬁ]M(TM)
1<i<M

Applying the preceding result to the first term on the right, we can conclude that
var(L) > var(L;),

where L, is given by

! !
Li=(Q-Waas | Y. riy 3. 71| +Wadtar(rar)-
1<i<M  1<iaM

Thus, we are reduced to minimizing the variance for estimators of the form L;. For
notational simplicity, we drop the subscript M on Wj,. Balancing the allocation assigned
to fi; reduces the variance and we can restrict to estimators of the form

L = (1= W)iy(t) + Wiae(n — 1),

for t = 0,1,...,n. But note that £ = 1 must be excluded since {i;(t} is not defined for
t = 1. We can assume that W is the optimal weight as given by Result 1, so that

1
var(L,) = I T

var(ii; (2)) © var{iin(n - 1))

Taking reciprocals, we need to find the value of ¢ that mazimizes

1 1
0= i) T -0

t -t

where K(t) = 1 if £ is even and K(t) = (t2 — 1)/¢? for odd t. To simplify the notation,

write

0-2 - 0-(2_111'1) and T2 = J(zM:m}‘

We need to maximize
1 . .
t—z+(n—t)-— if tisodd

H(t)=c’C(t) = ”
t+{n— t‘)a—2 if tis even,
T



SYMMETRIC DISTRIBUTIONS IN RANKED SET SAMPLING 253

fort=0,1,2,...,n, but £ # 1.

If 72 < ¢®, then one checks directly that H(t) < H(0) = no?/72 for all £. Thus the
optimal allocation assigns all n measurements to the unique middle rank M.

Next, suppose that o2 < 72, If ¢ is odd, then

1 o2

H(t+1)—H(t)=1+;—-T—2>O,
so that H(t + 1) > H(t). Thus, the maximum does not occur for odd ¢, except possibly
at the upper end ¢ = n. When restricted to even t, it is obvious that H(t) is monotone
increasing. Thus the maximum occurs either at the largest even value of t or at n. If n is
even, then the maximum is at n and the optimal allocation assigns all n measurements
to ﬂj-

Now suppose that n is odd. The maximum occurs at either t = n—1 or £ = n. But,
since n is odd,

1
0.2
H(n—l)zn—l-i-ﬁ
1 g2

Thus, the maximum occurs at n exactly when 1 — % — %; >Qorag?< "—7}1—1'2. For this
case, the optimal allocation assigns all n measurements to fi;.

In the final case,
n—1
< o? <72,

and the maximum occurs at £ = n—1. The optimal allocation assigns n—1 measurements
to fi; and one measurement to fias.
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