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Abstract. We show that every strictly geometric stable ( GS) random variable can
be represented as a product of an exponentially distributed random variable and an
independent random variable with an explicit density and distribution function. An
immediate application of the representation is a straightforward simulation method of
GS random variables. Qur result generalizes previous representations for the special
cases of Mittag-Leffler and symmetric Linnik distributions.
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1. Introduction and statement of results

Strictly geometric stable (GS) distributions, introduced in Klebanov et al. {1984),
play an important role in heavy-tail modeling of economic data (see, e.g., Anderson
and Arnold (1993), Mittnik and Rachev (1991, 1993), Kozubowski and Rachev (1994),
Rachev and SenGupta (1993)) and appear as solutions to certain characterization prob-
lems in statistics (see, e.g., Pakes (1992), Baringhaus and Grubel (1997}). As their
densities and distribution functions do not admit explicit forms (with few exceptions)
strictly GS laws are usually described in terms of characteristic function (ch.f.),

(1.1} W(t) = [1 + AJt|* exp(—irarsign(t)/2)] 2,

where 0 < a < 2, A > 0, and |7]| < min(1,2/a — 1) (see, e.g., Klebanov et al (1996)).
We shall write GS, (A, 7) to denote the GS distribution given by (1.1). The special case
7 = ( leads to a symmetric distribution with ch.f.

(1.2) Wity = [1+ X7,

known as (symmetric) Linnik distribution since its introduction in Linnik (1963). The
theory of symmetric Linnik distributions was developed in parallel to that of GS laws
(see, e.g., Devroye (1990), Anderson (1992), Anderson and Arnold (1993), Kotz et al.
(1995)). As strictly GS laws are generalizations of (1.2), they are also referred to as
non-symmetric Linnik distributions (see, e.g., Erdogan (1995)}. Another special case of
(1.1) is the class of Mittag-Leffler distributions, introduced in Pillai (1990). These are
probability distributions concentrated on (0, 0o) with Laplace transform

(1.3) [(s) =[1+As*]", s>=0,
and correspond toa < 1 and 7 = 11in (1.1). For o = 1 we get an exponential distribution.
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Every strictly G5 r.v. ¥ admits the representation
(1.4) y & gllex,
where 7 is standard exponential, X is strictly stable with ch.f.
(1.5) () = exp{—A[t]" exp(—ime7sign(t)/2)}

and denoted S, (A, 7), and Z is independent of X (when writing equalities in distribution
we follow the convention that all random variables that appear on the same side of an
equation are independent). Relation (1.4), which was first proved for the symmetric case
in Devroye {1990) and extended to the general case in Pakes (1992), provides a major tool
in studying GS distributions through the theory of stable laws (see, e.g., Kozubowski
(1994a, 1994b) and Ramachandran (1997) for recent, results}). However, except for a few
special cases, neither densities nor distribution functions of stable laws admit explicit
forms, and representations alternative to (1.4) should be of interest.

The main result of this paper is a new representation of strictly GS laws, that
yields itself easily for practical applications. It generalizes and unifies recent results for
the special cases of Mittag-Leffier and symmetric Linnik distributions (see Kotz and
Ostrovskii (1996), Pakes (1998), Kozubowski (1998)). The representation involves a
positive random variable W, with the density function

_ sin(mp)
(1.6) 9p() = Tp|(z + cos(mp))? + sin®(rp)]’ =20,

where (0 < p < 1. By taking the weak limits, we also include the special cases p = 1
and p = 0, obtaining a unit mass at z = 1 for p = 1 and a distribution with a density
folx)=(1+z) 2 for p=0.

Let Yo ~ G84(1,7) be strictly G§ (since X is essentially a scaling factor, we set
A =1in (1.1)). Denote px = §(1 £ 7). Note that 0 < py <1, as |7| < min(1,2/a - 1}.
Let W, be a positive r.v. with the density g,, defined by (1.6). Further, define

(1.7) Wor=IW, +({I-1)W,_,
where [ is an independent of W, indicator r.v. with
(1.8) PI=1)=(1+4+7)/2 and PI=01=(1-1)/2

Finally, let z(® denote the signed power: z(® = |x|®sign(z). Then, the following
representation holds.

THEOREM 1.1.  Let Y, ~ GSu(1,7), where 0 < a <2 and |7| < min(1,2/a—1).
Then.,

(1.9) Vair & Z- WL/
where Z is standard exponential and W, , is given by (1.7) and is independent of Z.

Stable distributions with ch.f. (1.5) admit a representation analogous to (1.9}, where
the role of exponential distribution is played by a stable subordinator.
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THEOREM 1.2. Suppose that Xor ~ Sql,7), where 1 < a £ 2 and 7| < 2/ —
1. Let Xy/4,1 be the stable subordinator S1/a(1,1), and let Wo,r, given by (1.7}, be
independent of X,,,.1. Then,

(1.10) Xor 2 X;/IQ/’? L WE/)

We conclude this section with several remarks and then prove Theorems 1.1 and 1.2
in Section 2.

Remark 1.1. The random variable W, , given by (1.7) is related to cutoffs of two
Cauchy distributions. Recall that a cutoff of a continuous r.v. X, denoted (X)), is
defined as a non-negative r.v. with density f.(z) = f(z)/p, where f is the density of X
and p = P(X > 0) (see Definition 2.1 in Section 2). Since for any 0 < p < 1, the density
of the Cauchy r.v. X, ~ §1{1,7) with 7 = 2p — 1,

B sin(wp)
(111} folz) = n[(z + cos(rp))? + sin®(wp)]’ e

integrates to p on (0,00), we see that W, given by (1.6} is a cutoff of the Cauchy r.v.
Xl,rl

(1.12) (X1,1)+ £ W,, where 7=2p—1.

Therefore, W, . is a mixture of (X2, —1)+ and —(X12, 1)+ In the special case
@ = 1 (and only in this case), the r.v. W, , given by (1.7} is a mixture of {X1-)+ and
—(X1,—+)+, and thus has a Cauchy distribution S1(1,7) itself. Then, the representation
(1.9) reduces to the basic relation (1.4). Note also that in case p = 1, we have W) =1,
and the Cauchy cutoff construction has the following interpretation: as p — 1, the
Cauchy distribution given by (1.11) converges to a unit mass at 1, and so does its cutoff,
as can be verified by considering the d.f. corresponding to the density (1.6).

Remark 1.2. Inthe symmetric case, we have 7 = Qsothat py = a(1 £7)/2 = /2.
Consequently, W;l: 5»1/0‘) has the same distribution as §- Wé;;, where W, /2 has the density

(1.6), & is the Rademacher {11 with probabilities 1/2), and § and W, are independent.

Since Z - 6 has a Laplace distribution, formula {1.9) reduces to Y, 0 L3 Ya- W:/lzf “. For
« > 1, the latter representation was discussed in Devroye (1996), who pointed out its
relation to the representation of Linnik density derived in Kawata ((1972), pp. 396-397).
In the general symmetric case, the representation is due to Kotz and Ostrovskii (1996).

Remark 1.3. Inthe case a < 1 and 7 = 1, we obtain W, ; £ W;/ % Consequently,
(1.9) reduces to the exponential mixture representation of Mittag-Leffler distributions,

(1.13) Yoo & ZWL=
derived first in Pakes (1998), and then, independently, in Kozubowski (1998).

Remark 1.4. In the stable case, consider a = 2. Here, we must have 7 = ¢ and
the stable distribution S, (1, 7) reduces to Ny (the normal distribution with mean zero
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and variance equal to two). Further, X;,,; has the Lévy distribution with density
h(z) = (2/7) 1232 exp(—0.25/x) (see Samorodnitsky and Tagqu (1994), p. 10). In
addition, we have py = 1 so that W,, = 1 and the representation (1.10} produces the

-1/2

121 where § is Rademacher 1.v. independent of Xy /3.

well-known relation Ny o Lsx

Remark 1.5. Writing (1.9) in terms of densities leads to the following representa-
tion of a strictly GS density,

z >0

. oo N B
(1.14) p(xz) = SIn 7Py / v® exp{—vz)dv
0

T 1+ v2@ 4 2u* cos TP

Formula (1.14) was derived by purely analytic methods in Erdogan (1995) and, in a
slightly more general setting and o > 1, in Klebanov et al. (1996). Our result provides
an alternative proof of (1.14) and its interpretation in terms of random variables.

2. Proofs

Our proofs of Theorems 1.1 and 1.2 heavily use cutoffs of distributions, defined in
Zolotarev (1986). We now recall the definition of a cutoff and collect its basic properties.

DEFINITION 2.1. Let X have a continuous distribution not entirely concentrated
on the negative semi-axis. Let f and F denote the density and distribution function
(d.£) of X, respectively. A cutoff of X, denoted {X),, is defined as a non-negative r.v.
with density f.(z) = f(z)/e and df. Fy(z) = P(X <z | X > 0) = (F(z) — F(0))/p,
where p = P(X > 0).

The following properties of cutoffs are elementary and we present them without
proofs. We follow the standard convention for equalities in distribution, that the variables
that appear on the same side are assumed to be independent.

1. Xfa >0, then

(2.1) (@X)+ £ a(X)4.
2. HP(X >20)=1, then
(2.2) (X); £ X.
3. If X and Y are independent with P(X > 0) = 1 and P(Y > 0) > 0, then

(2.3) (XY)s £ X(¥)4.

4. The following relations are equivalent:
G X2v.
(i) (X)+ £ (N)y, (-X)4 £(=Y)4, P(X 2 0) = P(Y > 0).
5. If a r.v. X has a continuous distribution and there exists a constant ¢ > 0 such
that P(X < —z) = ¢P(X > z) for all z > 0, then (X)4 £ |X].
6. Suppose, that X; and X, are two independent, non-negative random variables,
and

(2.4) X 21X+ (I-1)X;,
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where [ is an indicator r.v. independent of X; and X». Then,

(2.5) (X); £X,, and (-X); 2 X,

7. If a > 0, then
(26) (X1}, £ (£X)3.

We also collect some results related to cutoffs of stable distributions. With slight
change in notation, the Lemmas presented below follow from Zolotarev's (1986} results.
We denote a generic stable S,(L,7) r.v. (see (1.5)) by X, ..

LEMMA 2.1. Letl <o <2 Then,

(2.7) (X1/a)3 " 2 (Xopja-1)+-

For the proof of Lemma 2.1 see Theorem 3.2.5 of Zolotarev (1986).

LEMMa 2.2, Letl<a<2and|r| <2/a—1. Then,

d
(2.8) (Xa,r)+ = (Xaz/a-1)+(X1a(r41)-1) +-

For the proof of Lemma 2.2 see the Corollary to Theorem 3.3.2 of Zolotarev (1986).

LEMMA 2.3. Let 1l < o £ 2 and let Z have o standard exponential distribution.
Then,

d ayv—l/ox
(2.9) z=zlex e

PrRoOOF. Denote Zo = (X4 2/0-1)+. By relation (3.4.9) of Zolotarev (1986), we
have

(2.10) ZoZYagla® 4 g
Raising both sides of equation (2.10) to the 1/ power results in

(2.11) ZYazl/e* & glfe

Combining relations (2.10)-(2.11) produces Z,Z1/= 4 Z, and the result follows by
Lemma 2.1. O

LEMMA 24, Let0<a <l and|r| < 1. Then,

(2.12) (X120-1)+(X12)5 £ (X1 aq1or)-1)+-
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PROOF. Apply relation (3.3.7) of Theorem 3.3.2 of Zolotarev (1986), taking & = 1,
p=a,and p’ = (1+7)/2.0

LEMMA 2.5, LetO0<a<1andl|r| <1 Then,

(2-13) Xoe,'r g Xu,lxl.r-

For the proof of Lemma 2.5 see the Corollary to Theorem 3.3.2 of Zolotarev (1986).
We now prove our main theorems., We start with the result for stable laws.

Proor oF THEOREM 1.2. First, note that by (1.7) and (1.12}, W, ; is a mixture
of two cutoffs of Cauchy distributions:

(2.14) Weor 2 I(X1a(4n-1)+ + (I = (X1 a(1-7)-1)+

where the variables on the RHS of (2.14) are independent and P(I = 1) = (1 + 7)/2,
P(I=0)=(1-7)/2. Also, since Cauchy r.v. (and its cutoff) has the same distribution

as its reciprocal, we have W, , = Wa 1, so we restrict our attention to the case of positive

power of W, , that appears on the RHS of (1.10). We shall utilize the Property 4 of
cutoffs. We start by showing that the cutoffs of both sides of (1.10) have the same
distributions. Indeed,

(RHS of (1.10))y = (X, SWH), & X VS,

d -1/ a 4 1
X War)Y 3(Xa2/a_1) (Wa,r) Y

2, (Xa,Z/cx—-l)+(Xl,a(l+-r)—1)+ L (Kar)s
— (LHS of (1.10)),

When showing equality 1, we used Property 3 of cutoffs, for equality 2, we used Property
7 of cutoffs, for 3, we applied Lemma 2.1, for 4, we used Property 6 of cutoffs and relation
(2.14), and for 5, we applied Lemma 2.2.

Next, we show that if the two sides of (1.10) are multiplied by —1, then their cutoffs
have the same distributions:

(~RHS of (1.10)}4 = (—X'/L/‘;W<1/ﬂ>)+ -1/a( w/e),
4, Xf/ff‘f(”n YL (X, 2/at)+(~War

g4 (Xcv,2/a-1)+(Xl,cw(1—-r)—~1)+ :5 (-Xar—'r)-!-
— (—LHS of (L10)),,

1/0:

where equalities 1 through 5 are obtained the same way as before.

Finally, we note that P(LHS of (1.10) > 0) = P(X,, = 0) = (1+ 7)/2, and so is
P(RHS of (1.10) > 0) = P(Wa/®> > 0) = P(I = 1) = (1 +7)/2. The result follows by
Property 4 of cutoffs. O

We now prove the result for GS distributions.
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ProOOF OF THEOREM 1.1. We shall consider several cases.
Case 1. 1 < a < 2. In view of the basic relation (1.4) between stable and GS
distributions, Theorem 1.2, and Lemma 2.3, we have the following chain of equalities in

distribution
Y, Z2VeXx,, Lzl XDZTW?,?”“) 2 gwEi/),

that proves the result in this case.

Case 2. o = 1. Here the basic relation {1.4) produces Y; , 4 ZX,r, where X, ;
has a Cauchy distribution §)(1,7). The result follows since the r.v. W; . given by (1.7)
has the Cauchy 5;(1, 7} distribution.

Case 3. 0 < a < 1. First, note the following chain of equalities in distribution

a d ®
YQ,T gl zZY XQ,T =2 Zl/aXa,IXI,T g3 Ya.le,‘T i‘i ch:ztl/ le""

where W, has density (1.6) (with p = «). In steps 1 and 3 we used the basic relation
(1.4) of stable and GS distributions, in step 2 we used Lemma 2.5, and in step 4 we used
the representation (1.13).

Thus, the theorem will be proved if we can show the following relation:

d
(2.15) Wliex, . £ wilie
To show (2.15), we utilize cutoffs:

(LHS of (2.15)), <3 WY(X; )¢ 25 (X1,20-1)Y * (X10) s
= [(X1,20-1)+(X17)2]V 24 (Xl,a(1+'r)—1}~1|~/a
Lo (W,
= (RHS of (2.15)),.

We used Property 3 of cutoffs in step 1, relation (1.12) in step 2, Lemma 2.4 in step 3,
and relation (2.14) together with Properties 6 and 7 of cutoffs in step 4. Similarly, we
show the equality in distribution of cutoffs of two sides of (2.15), after each is multiplied
by —1:

d a «

(—LHS of (2.15)), £1 WYXy o)y L3 (X1 2a-1)Y (X1, —0)+

= [(X1,2a-1)+ (X1 )3V £5 (X1,a(1-7)—1)5,/&

L0 (W),

= (—LHS of (2.15)),.

The explanations for steps 1 through 4 are the same as before. We also utilized the well
known property of stable laws: —X,, , 4 Xe,~r. To finigh the proof, note that

P(LHS of (2.15) > 0) = P(X1, > 0) = (1L +7)/2 = P(I = 1)
= P(RHS of (2.15) > 0).

Thus, relation (2.15) follows from Property 4 of cutoffs. The theorem holds. O
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