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Abstract. There are a number of cases where the moments of a distribution are eas-
ily obtained, but theoretical distributions are not available in closed form. This paper
shows how to use moment methods to approximate a thearetical univariate distribu-
tion with mixtures of known distributions. The methods are illustrated with gamma.
mixtures. It is shown that for a certain class of mixture distributions, which include
the normal and gamma mixture families, one can solve for a p-point mixing distribu-
tion such that the corresponding mixture has exactly the same first 2p moments as the
targeted univariate distribution. The gamma mixture approximation to the distribu-
tion of a positive weighted sums of independent central x* variables is demonstrated
and compared with a number of existing approximations. The numerical results show
that the new approximation is generally superior to these altermatives.

Key words and phrases: Cumulants, cumulative distribution function, gamma mix-
tures, mixture distribution, moment matrix, p-point mixture, tail probability,
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1. Introduction

There are a variety of statistical situations in which one can readily calculate or
asymptotically approximate the higher order moments of a given target distribution,
call it H, but the density and tail probabilities cannot be simply derived. An example
is the distribution of weighted sums of independent central x? variables, each with one
degree of freedom, i.e.,

(1) Su(d) = > a2,
d=1

where d; are known positive weights and the W; are independent N (0,1) random vari-
ables. The higher order cumulants of S, (d) are easily derived and one can then use
recursion methods to calculate moments. (In Appendix A, we indicate how one can
recursively solve for moments from cumulants and vice versa.)

We investigate here a general strategy of approximating a target distribution H,
such as the distribution of (1.1), by a finite mixture of readily computed distributions,
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such as the gamma. The p-point mixture will be chosen so as to match the first 2p
moments of H. The component densities of the mixture will be chosen both for ease
of calculation and for theoretical considerations. For example, a mixture of normals is
natural for a problem in which a central limit theorem holds.

We believe this approach is attractive for several reasons:

» There is some initial reason to think that matching moments will give a good
approximation. For example, Lindsay and Roeder (1997) showed that if two distribution
functions H and F' have the same first & moments, then they must cross each other at
least k times. Moreover, the possible error can be bounded by methods found in Lindsay
and Basak (1995).

o Unlike some other approximation methods based on moments, such as Gram-
Charlier series {Stuart and Ord (1987}, p. 222), our approximation is a bona fide distri-
bution function, with nonnegative density. And unlike yet other methods, such as saddle
point approximations, it can be refined to arbitrary accuracy by taking enough terms,

o Some modern results on fitting by moments, derived in the context of method
of moments estimators (Lindsay (19894, 19895) provide us with a set of theoretical and
computational tocls that make such approximations feasible.

o In matching the first 2p moments, we also match the first 2p cumulants, so there
is a reason to expect good stochastic properties in certain central limit theorem-type
problems.

A random variable X or its distribution function G(z) is said to have a mixture dis-
tribution relative to a parametric family of distributions {Fp : § € Q} if the distribution
function has the form

2= [ B)iQ).

where ), the miring or latent distribution, is a distribution on the parameter space
(t. We consider here @ to be a finite discrete distribution; in which case G is called a
finite mixture. In this case if (), has p support points #,...,#, with probability masses
Ty, ..., Mp respectively, the p-point mirture distribution can be written as

Gplz) = Fg,(x) = Z?FJFQJ(QL'

In the families of mixtures we will be considering, there is an additional dispersion
parameter A in each distribution, yielding mixtures of the form

(1.2) Cola) = Fop(2) = 3 1350, A(2).
=1
Let my = myi(H),... ,map = myy(H) be the first 2p moments of a target distribution

H. Our methodology will give us a p-point distribution @, and a dispersion parameter
A such that we match the moments of H and G,:

(1.3) my =myp(H) =m,(Fg,») for r=1,...,2p
Note that there are 2p free parameters in Fyy_ y; namely A, &,..., 6, and 71,...,7p1,
so we have the same number of equations as unknowns. Call my,...,ma, the target

moments. Thus we find & p-point mixture distribution G,(z) that matches the first 2p
moments of the target distribution H () and then use Gp{z) to calculate the approximate
tail probabilities.
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Our strategy is based on a technique for fitting mixtures of normals that was de-
veloped by Lindsay (198956). That theory is generalized here. (Some corrections are
also made.) As an application, this paper focuses on fitting using mixtures of gamma
distributions.

The paper starts with some numerical comparisons. Section 2 compares the mix-
ture approximation to S,(d)}'s distribution with those given by Solomon and Stephens
(1977) and Wood (1989). In these examples the exact cumulative distribution function
(CDF) values are available and therefore one can compare the various approximations
for their level of error. Section 3 develops the theory and methods for general mixtures
while specializing the application to gamma mixtures. We note a key feature: at least in
theory, able to fit an arbitrarily large number of moments and therefore as the number
of moments increase, the sequence of approximations converges to the target distribu-
tion (assuming the distribution is determined by its moments). Section 4 discusses the
computational issues. Lastly, Section 5 presents the conclusions of the paper.

2. Evaluation of several approximations

In this section, the gamma mixture approximation to the CDF of S, (d)} is compared
with the following approximations: Jensen-Solomon and the three-moment y? fit given
by Solomon and Stephens (1977); three-parameter I, Satterthwaite-Welsh and Hall-
Buckley-Eagleson given by Wood (1989).

2.1 Approzimating the CDF of S,{d)

Several applications of y? tests lead to the problem of evaluation of probabilities
involving S,(d); for example, the Pearson X? statistic and other goodness-ol-fit statis-
tics, of Cramer-von Mises type, based on the empirical distribution function (EDF)
{see examples in Stephens (1986)). The exact probabilities are tabulated only for some
special cases; for other cases, due to the well-known problems of numerical integration
(Gabler and Wolff (1987)) it is complicated to compute them. Following are some of the
references that have dealt with the problem of approximating Sp(d). Imhof (1961} and
Davies (1980) considered the numerical inversion of the characteristic function of S,(d).
Imhof’s method may be regarded as essentially exact and gives excellent results in both
tails, as one would expect for such a tailor-made approximation. However, it is not easily
implementable and when high accuracy is sought, Solomon and Stephens (1977) found
it to be relatively expensive in computer time. Sheil and O’Muircheartaigh (1977} and
Farcbrother (1984) have exploited Ruben’s (1962) x? mixture representation for Sy (d)
and produced algorithms for evaluating the CDF of S,(d). Davis (1977} has given a
method for evaluating 5,,(d) based on a numerical solution of a differential equation and
Oman and Zacks (1981) presented a mixture approximation to the CDF of S,(d). A
recent article by Waller et al. (1995) reviews and discusses numerical inversion of the
characteristic function as a tool for finding the distribution function of S,,(d). As a data
analysis tool the method is only limited by the numerical precision of both the evaluation
of the characteristic function and the evaluation of the fast Fourier transform.

We conclude that the available methods in the literature seem to be computationally
intensive or are designed for special cases. We believe that the mixture approach we
present here has several strengths relative to these other methods: it is computationally
simple and fast, it is highly accurate and it is general rather than being tailor made for
any particular example.

We take G,(z) as a p-point gamma mixture and H as the CDF of S,(d). The
relevant theory for fitting H with G}, is presented in Section 3. We denote the mixture



218 BRUCE G. LINDSAY ET AL.

approximation by ép (z), where the fitted parameters f@, 7; and Xp satisfy the equation
(1.3).

2.2  Gamma miztures
A gamma random variable X with shape and scale parameters o and 3 respectively
can be written in terms of the parameters (e, u), where p = (a/(3), giving probability

density function
a\” fo%
G) e ()
H H 5

T(a) or a>0,p>0z>0

(2.1) flay o) =

If in equation (1.2), we take Fy, r(x) to be the gamma distribution with 8; = p;
and A = 1/a, then Fg, » is a mixture of p gamma distributions. We will denote this

model by X ~ Gam{(Q},, A) 2 G,, (the symbol 2 stands for definition). Note that to find
the tail area P[X > t| for such a mixture, we merely calculate Y m; P[Y; > t], where
Y.'T' ~ Ga‘m(a? ﬂj)‘

2.3 Numerical illustrations

In this section, we compare the mixture approximation ép with other methods of
approximating the CDF of 5, (d). In order to facilitate this, we calculated the moment
approximations at the same values of the weights and quantiles considered by Solomon
and Stephens (1977) and Wood (1989). The “exact” CDF values of 8,(d) that are
labeled H were reported in those papers as being calculated by numerical methods to
high accuracy. The moment approximations were done using a FORTRAN program
called Approximation Using Gamma Mixtures (AUGM ) (Pilla (1995)).

Our first comparisons are with a set of methods considered by Solomon and Stephens
(1977). Jensen and Solomon (1972) gave an approximation of the Wilson-Hilferty type,
here denoted J, which takes z = (S, (d)/61)", where 6; is the mean of S,(d) and approx-
imates z by a normal distribution, where the mean and variance of the approximating
distribution depend on the first three cumulants of S,(d). Solomon and Stephens (1977)
gave a three-moment x? fit, here denoted S, that fits S,(d) = Aw", where w has the
X7, distribution and A4,r and m are determined by the first three moments of Sy, (d).
Both the J and S approximations have the disadvantage that an iterative fit is necessary
(numerical details omitted).

In Table 1, the exact CDF values of S, (d)(H) are compared with Jensen-Solomon
(J) and three-moment x? fit (§) approximations considered by Solomon and Stephens
(1977) as well as the p-point gamma mixture approximation (@p) developed in this paper,
with values of p = 1,2,3,4. No method did well at the very smallest quantile, but the
four point fit G4 was accurate to three digits for every other quantile and is by far the
most accurate method.

Our next comparisons are with methods considered by Wood (1989). In the “F-
method”, a three-parameter F' distribution approximation to S,(d) is obtained by
matching moments. The F density has the form

ﬁazmar-l (,B + I)—al ~arg
3(051,02)

for = >0,

flz) =

where B{a1, a2) = (o )T(c) /T{a; + a2) is the beta function and the parameters o,
ag and 3 are positive. Using standard formulae which relate moments to cumulants,
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Table 1.

219

Cotmparison of the Jensen-Solomon {J), Three-Moment x? Fit (5} and p—pomt mix-

ture (Gp) approximations at selected quantiles of Sp(d) = 2.5 W2 +0.7WZ + 0.4 W3+ 04Ws
with the exact CDF values ().

Quantiles 0.500 1.000 3.060 3.600 8.500 11.00 14.00
H (True) 0.0048 0.1385 0.5197 0.6005 0.8980 0.9452 0.9731
Ga 0.0453 ©.1385 0.5197 0.6007 0.8979 0.9452 0.9732
J-H 0.0597 0.0357 0.0218 0.0148 -0.0036 —0.0045 —0.0045
5-H 0.0486 0.0120 -0.0044 —-0.0070 -0.0005 0.0013 0.0014
G -H 0.0905 0.0558 —0.0074 —0.0177 -0.0104 -0.0020 0.0020
Gy — H 0.0499 0.0085 -0.6078¢ -—0.0072 0.0025 0.0013 0.0001
Gs— H 0.0422 0.0010 -0.0015 —0.0005 0.0002 —0.0002 -0.0001
Gy—H 0.0405  0.0000 0.0000 0.0002 -0.0001 0.0000 0.0001

Table 2. Comparison of the F(F), Satterthwaite-Welsh (SW}, Hall—Buckley-Eagleson (HBE)
and p-point mixture () approximations at selected quantiles of Sn(d) = 0.5W3 +Z _, 0.1
with the exact CDOF values (H}.

Quantiles 0.113 0.165 0.221 Q.30 0.485 1.271 1.946 2.500 3.086 3.883
H (True) Q.010 0.025 1.050 0.100 0.250 0.750 0.900 0.950 0.973 0.950
Gy 0.010 0.025 0.051 Q.100 0.250 0.750 0.900 0.950 0.975 0.990
F-H Q.006 0.011 0.015 0.017 0010 -0011 -0.001 ¢.002 0.002 0.001
HBE - W 0010 -0025 —0030 0100 D.o27 G002 —0.006 -0.003 -0.001 0.000
SW - H 0.027 0.040 0.050 0.055 D.037 —0.032 0013 -0.001 Q.003 0.003
G- H 0.027 0.040 0.050 0.055 0.037 -0.032 -0.013 -0.001 0.003 0.003
Gy —H 0.004 0.007 0.009 0.008 0.001  —0.002 0.003 0.002 Q.000 —0.001
@y —H 0.000 0.001 0.002 0.001 —-0.001 0.001 0.000 0.000 0.000 0.000
G4 -H 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 ¢.000 0.000

Wood expresses a, o and 3 in terms of the first three cumulants. The idea is to find
the r-th (r = 1,2,3) cumulant of S,{(d), x,(d) and substitute them in the re-expressed
formulae of o, @ and #. Finally, use the F distribution with these parameter values
to approximate S,{d).

Based on the earlier work of Hall (1983), an approximation was suggested by Buckley
and Eagleson (1988) and is here denoted HBE. Finally, the Satterthwaite-Welsh (SW)
approximation is the same as our one point gamma approximation.

In Table 2, the exact CDF values of S,,{d) {H) are compared with three-parameter
F (F), Satterthwaite-Welsh (SW) and Hall- Buckley-Eagleson (HBE} approximations
given by Wood (1989) and the approx1mat10n G’ Table 2 clearly shows the superiority
of approximation G, over the others, with G4 havmg three digit accuracy at all but one
quantile. Also note the shrinking of the error, namely H — Gp, as the number of support
points (p) increases.

Computation of G4 in Table 2 required a total of 0.36 seconds of CPU time on SUN
SPARC 10. Compared to the other methods, it seems clear that our method is relatively
inexpensive to compute.

Table 3 gives a summary of how the different methods performed over all the quan-
tiles for the four distributions given by Solomon and Stephens (1977) and the 14 distri-
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Table 3. Comparisons of the Summary statistics for all the 18 distributions over all the quantiles.

Data Source Method % of times accurate to 3 digits Average Absolute Error

J 17.86 0.00957

Sclomon g 32.14 0.00349
Gy 89.29 0.00240

F 17.81 0.00703

‘Wood HBF 15.99 0.01534
3% 4.84 0.02035

G, 79.43 0.00042

butions given by Wood (1989). The Gy approximation shows an excellent performance
when compared with other methods. Column 3 in the table gives the percentage of times
each method was accurate to three digits to the true (H) value. The last column gives
the average absolute error incurred by using the given approximation. (For more details,
see Lindsay et al. (1995).)

3. Fitting mixtures of distributions

In this section we will present the general mathematical developments that enable
one to construct G, when using a family of mixtures. We start by showing how the
highly nonlinear equations in (1.3) can be solved with straightforward procedures for
selected families of distributions.

3.1 Deriving unbiased moment estimnators

Lindsay (19894) proposed methods that use method of moments to estimate the
normal mixture parameters; that is, the p-point mixing distribution, @y, and the disper-
sion parameter, e:rg. That paper dealt only with mixtures of normals and concentrated
on the problem of estimating the parameters of a mixture distribution from the sample
moments. We show here how one can extend those methods by replacing the normal
model with another family Fy , that satisfies certain properties described below.

In the families Fp y we will consider here, we assume that for each r there exists a

polynomial &.(z, A) of degree r in z, written E;:u afr-r) (A)z?, such that

(3.1) Esal6.(X, )] = &

Ezample 1. If we use the gamma. density in equation (2.1), set # = g and A = 1/q,
then

X
(32) 6T($=A) = (1 + /\)(1 + 2,\) . (] + (’l" - 1))\)

satisfies By 5[0, (X, A)] = 1™ as desired.

From equation (3.1) it follows that if @, is a mixing distribution on the parameter &
of a such a family and X has the corresponding mixture distribution Fg, », then &.(X, A)
is an unbiased estimator of the r-th moment of #, m, (). That is, the expectation of
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5.(X, ) under the mixture model, Fg,, is given by

(33) Baalb (6N = [ drte ViR @1420)
= [ Eoabs.(x. \1a0(0)
= [#raae) =m: (@

One can also write m,(Q) = Eg[6-(X,A)] as

Egn |3_a700x7| =3 ol () EgaX7]
J i
=Y "6l (\m;(Fg)-
J
We thus have .
3 0l (Nm, (Fg,p) = me(Q).
F=0

This implies that if we wish to find a p-point distribution ¢, and dispersion param-
eter A to match the target moments, that is, satisfying m.(Fg, ) = m,(H) = m, forr =
1,...,2p, we need to solve for A and @, in the system of equations

.
Y a(Nmy =me(@p),  r=1,...,2
>

In this equation my,. .., map, are the target moments and the coefficients agr) are deter-

mined by the family Fp . For an arbitrary A, let 3. agf)()\)mj be denoted by 6%{A), so
that the equations we need to solve for A and Q, are:

(3.4) 6r(A) =m(Qp), r=1,...,2p~- L

Erample 1. (continued) In the gamma model, we have for f = u and é, as in (3.2),
Eg »[6:(X,A)] = " and so in the mixture model, where § ~ @Q,,, we have

%memhfmww=w@ﬂ

After inserting the target moments m,. into the left side, we find the goal is to solve for
Aand @, in 83 (A) = m, (@), where

1
TN T+20 - (1+(r= DA

(3.5) 60 = 1 My

T.he equations (3.4) are solved in two steps. First, we know that one can solve these
equations for a distribution @, only if A is chosen such that the numbers 6} (A}, . ., 83,()
are exactly the sequence of moments to some distribution @, with exactly p-points of
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support. However, we can use moment theory to solve for a unique Xp that makes this
true, without ever determining .

Then, in the second step, we find the p-point distribution ép by solving

6r(dp) =me(Qp), r=1,...,2p—1
using standard techniques from moment theary.

3.2 Solving for A N

We start by showing how A, can be determined. The techniques we use are heavily
dependent on the use of certain moment matrices. For a given sequence of numbers,
mi,. .., Map, let

1 m my - My
my ma msg st Mgyt
M, = mz 3 my v Mpy2
Mp Mpt1 Mpy2 - My

be the p-th moement matriz. The following theorem (see, for example, Lindsay (19896))
establishes the relevant properties of moment sequences to determine whether a moment
solution exists. ‘

THEOREM 3.1. (a) A sequence of numbers 1, mq, ma,...,my, are the moments
of a distribution with eractly p points of support if and only if det M; > 0 for all j =
L...,{p — 1) and det M, = 0. (b) If the sequence of numbers 1, my, ma,...,Map_2
satisfies det M; > 0 for all j = 1,...,(p — 1) and mo,_1 is any scalar, then 3 a unigue
p-point distribution with exactly those initial (2p — 1) moments.

To proceed further, we will need two assumptions on the function & (A).
AssuMpPTION Al. 67(A) is continuous in A for A € [0, 00).
AssuMpTION A2. 8X(0) =m,(H).

Ezample 1. (continued) In equation (1.2), if we take Fy, a(x) as gamma distri-
bution with mean &; = u; and variance A = 1/a, then the preceding assumptions are
satisfied for the gamma family.

We next define the pseudo-moment matrix

=0,....p

Note that at A = 0, from Assumption A2 we get A,(0) = M,(H), the moment matrix
for H. Also, if H is a true mixture, F(@Q, Ao), then, & (Ap) = m,-(Q) by equation (3.4},
so A,{Ao) = M,(Q), the moment matrix for Q.

Ezxample 1. (continued) For the gamma distribution the unbiased estimators of
me(Q) = [u"dQ(u) for r = 1,...,2p are obtained using equation (3.5). Thus, for
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example, if I is a Gam(@, A) mixture, then

mi(Q) = E(X) = mu(H),

ma(@) = 1 BX?) = ()
1 1
ma(Q) = mE(XS) = mma(ﬂ),
and
(37 mi@) = : B(X4) = : ma(H).
R E TN + 20+ 3N (1+ N1+ 201 + 3A)

For any given distribution H, the pseudo-moment &%()) is the corresponding right hand
side of the above equations and so the second pseudo-moment matriz As{A), using equa-
tion (3.6), is then given by

1 &(A) 85(A)
A(X) = | 61(A) 83(A} 83(N)
(A &N 81N

Our objective is to find 12 such that this is the moment matrix for a p = 2 point
distribution @a.

The first step of our strategy is to let Xp (where the subscript denotes dependence
on p) be the smallest nounegative root, if it exists, of det[A,(A)] = 0. Our claim is that
&F (X), s 05, (X) is then the moment sequence for some p-point distribution Q.

We start by studying the properties of roots defined in this way. The following
lemma shows that we can generally assume that the root A, is strictly positive.

LEmMMA 3.1. The root Xp = 0 if and only if H has p or fewer points of support.

Proor. Note that Xp = 0 if and only if det A,(0) = 0. However, det A,{(0) =0 =
det M,(H) and the latter is zero if and only if H has p or fewer points of support. O

Given the positivity of -)Ip, we can make the following strong statement about the
psendo-moment matrix.

LEMMA 3.2. If A, > 0, then Ay(}) is positive definite for A € [0, Ap).

ProoOF. The smallest eigenvalue of a symmetric matrix is a continuous function
of the matrix entries, so by Assumption Al the smallest eigenvalue of A,(A), say er{A),
is a continuous function of A. Note that by the hypothesis A,(0) = M,(H}), which is
positive definite, so e;(0) > 0. We have det A(A) = ]_[;-;U e;(A), the product of its

eigenvalues, so the determinant can not be zero in [0, Xp) unless an eigenvalue is zero.
But if no eigenvalue crosses or touches zero, all remain positive. Thus Ap(A) is positive
definite on the given range. O

The next proposition indicates the nested structure of the A-roots. It is very useful
in computations as it enables a simple root search strategy.
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ProrosiTION 3.1. If X erists finitely, then every Xp exrists and we have
Xz A2 "'pr—l 2Xp2

ProoF. The proof is inductive on p. Suppose Xp 1 exists finitely. Then A, 1(3\;,_1)
has a zero determinant and so is singular. Hence there exists a nonzero vector & such
that Ap_;(3p—1)& = 0. It follows that

(z' O)Ap(xp—l) (:[.):) = ";’apfl(xpfl)“’ =0

Since (&’ () is a nonzero vector, it follows that A,,(Xp,l) cannot be positive definite.
Lemma 3.2 then implies that A, exists and A,_1 € {0,A,). O

Finally, we establish our claim.

PROPOSITION 3.2. (a) If )\p 1> ,\p, then 3 a unique p-point mixture Qp satisfying

5;(3(,,) = mr((:jp) forr=1,...,2p. (b) If Ap_1 = /\p, then there does not erist a p-point
solution.

PROOF. Since Ap_1 > Ap, A,,_I(X,,) is positive definite by Lemma 3.2. Hence, by
Theorem 3.1 there exists a unique p-point mixture Q,, satisfying 8 (Xp) =m(Q,) forr =
1,...,2p — 1. Moreover, we claim 5},(&,) = mgp{@,). This follows because the 2p-th
mament of a p-point distribution is uniquely determined by the preceding 2p—1 moments,
as follows from the relationship det M, = 0. If Xp_l = Xp, then Ap_l(xp) is not positive
definite and hence does not represent the moment matrix for a distribution ¢ with p
points of support. O

Remark 1. In Lindsay ((1989b), Theorem 5C), the analogue of this result was
stated incorrectly. Instead of the correct condition “if Ay.1 > Ap”, it was stated — * if
det &,(\) has a root of order 1 at A = A",

3.3 Solving for @p 5 N

We now describe how to reconstruct ép from its moments, 1, §5(Ap), ..., 83,(Ap)-
We start by finding the support points. These can be determined using the [ollowing
Theorem (Lindsay (19895)). Define the polynomial:

L &) 65 (hp) 1]

o 500 60 - 50, ¢

(3.8) 8,0 t) = det | 500) 80y - ,,+1( ) P
6100 6 Cp) o agp,;dp) |

THEOREM 3.2, If there erists a solution ép to the moment equations, then it has
as its support points fi1,. .., [y the roots of Sp(Ap,t) = 0.

See Section 4 for an algebraic simplification that we used in computing the roots of
the polynomial S, (Ap, £}.
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For the second step in reconstructing ép, once we have found the roots fig, ..., fp to

the polynomial §p(1p, t), we solve for the masses 7; at each support point fi; by solving
the linear system of equations

1 1 1 71 1

i fla T2 61 (Mp)

(3.9) A B e I B
G EE E :

#T ity b u,’i ! Tp ;—1(/\13)

The matrix on the left is nonsingular, being a Vandermonde matrix, so that there is a
unique solution to these linear equations.

In the following example we illustrate the above methodology using the two point
gamma mixture fit.

_ Ezample 1. {continued). Given a solution A2 to det Ag(X) = 0, we can solve for
Q. as follows. The two support points are calculated by solving the quadratic equation

1 my 1
(3.10) det| my; o £ | =0,
iy g 17

where 772, ’s are the 6%(A2)’s given in equation (3.7). The solutions to equation (3.10) are
given by

_ (iitg — i fiig) & /(s — nig)? — 4(ap — 1) (Poa g — 113)

t
2(thg — 3)

Call the two solations £; = fi; and t; = iz respectively. We then solve for the masses
and 7, using the full rank equations

(m 2)(2)= ()

giving us
=
2 —
and
T =1—7.

3.4 Uniqueness and root finding issues

Here we will discuss the uniqueness of the fitted mixture distribution Gp. That
is, given a sequence my, ..., My, of moments that can be fit by some p-point (ép,xp)
mixture, is it possible that there exists another mixture (~;, X;) that generates exactly
the same moment sequence? The following assumption gives us a natural sufficient
condition that will ensure the uniqueness of (@, A,) as generated from my, . .., Mop.

AssumpTION A3. For every § € © and for every 0 < A < Ap there exists a mixing
distribution (Jy with infinite support 3 Fp 5, = Fg,.a.
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This assumption is verified for the gamma example in Appendix B. Note that As-
sumption A3 implies that if Q is any mixing distribution on 8, then for any A < X, we
can find * with infinite support satisfying Fg x, = Fo- . This is done by setting

(3.11) Q(4) = /A dQ*(¢) = /A dQs(6)dQ(6).

PROPOSITION 3.3.  Suppose the pseudo moments §5(A) ezist as above and that As-

sumption A3 holds. Then for every p-point distribution @p and Ay, the values (@p, Ao)
are uniguely determined by the first 2p target moments, my, ..., map.

Proor. For any 0 < A < Ay, let @* be the mixing distribution such that F{Q*, A)
is distributionally equivalent to F(ép, Ao). Then &F(A),. 83,(A) are the moments of
@ and so the pseudo-moment matrix A,{)\) is the moment matrlx for a distribution
with infinite support. It therefore is positive definite with positive determinant. It
follows that Ag = A, must be the first nonnegative root of det [A,(A)] and so is uniquely
determined.

However, knowing Ag then uniquely determines &, (Ao}, ... ,82,(A0), the first 2p mo-
ments of Qp, which in turn uniquely determines Qp, since it has p-points of support. O

The following proposition gives us important practical information for the design of
algorithms for finding A,.

PROPOSITION 3.4. Suppgse that X,,_l > :‘:p and that Assumption A3 holds. We
fave (i} det Ap(A} > 0 for (0,A;) and (i) det Ay (A} < 0 for A € (Ap, Ap—1). Therefore
Ap is the unique oot of det Ap(A) in [0, A, 1).

PrOOF. (i) Follows from the Lemma 3.2. (ii) Suppose for contradiction of (11) that
there exists a root A* of det Ap(A) that is in (A, Ap—1). For any A € ()\p, ,\p 1) Bp1(N)
is positive definite by Lemma 3.2 and so A,{A*) satisfies the conditions needed to be
the moment matrix of a p-point d1str1but1011 Q. Hence (Q;, A*) and (Qp, A) represent
two formal solutions to the moment equations, which is a contra,dlction to the preceding
proposition and so root A* cannot exist.

Since there are no roots in (Ap, Ap_1), det A,(A} > 0 is strictly positive or negative
on that range. Suppose for contradiction it is positive. Then on this range AL(A) is
positive definite and hence represents the moment matrix for a distribution ¢ with
more than p-points of support. It follows using (3.11) that there exists (@3, Ap) with
infinite support generating the same G distribution as (Qx, A). However, the moments of
@, must then be §;(},),..., 53, (Xp), which satisfy det AP(XP) = 0, contradicting that
Q% has infinite support. We conclude that det A,()) must be negative on (Ap, Ap_1). O

Remark 2. One technical difficulty standing in the way of a simple general theory
is as follows: Suppose that we find X, such that A, ()\p) is a moment matrix for p-point

distribution Qp Then there is no general guarantee that Qp has all its support points
within the §-parameter space. If it does, we will say it is a proper solution. This is not
a problem in the mixtures of normals case, as the parameter space is (—o0,00), so all
the solutions are necessarily proper, but it could be an issue in other cases. We will
not tackle the technical problems involving the existence of proper solutions here. The
reader can refer to Lindsay {(1983b) Section 2.3) for some of the issues.



APPROXIMATIONS OF DISTRIBUTIONS USING MIXTURES 227

4, Computational issues

This section describes some of the computational issues involved in finding the A,
and the roots fi1,...,Hp. It is most efficient to proceed sequentially. Thus first we find

A1. In the gamma case, A; is the unique root of the equation:

1 ml(H) .
det(ml(H) (Tb{'}'m2(H)) = {.

In order to find Ag, the unique root of det Az (A) in [0, Xl), we used a bisection algorithm.
Bisection simply divides the interval repeatedly in half, selecting at each stage the half-
interval in which the sign change occurs. Given the sign-change behavior, it is simple,
effective, easy to program and guaranteed to converge. We note there is some danger of

facing the situation Ap—; = A, because of numerical inaccuracy. To avoid this difficulty
it is recommended to carry out the computations in double precision.

Next, to find the roots iy, . . ., [ip to the polynomial equation Sp(A,,t) = 0, one needs
to find the right hand side of equation (3.8). For the sake of programming simplification,
the following trick was used. We replaced the last column of the matrix on the right
hand side of equation (3.8) with &r(A} for r = p,...,2p. Notice that the resulting
matrix is identical to the M, matrix with estimated moments as element’s; Denote
this matrix by .ﬁp. Next, we found the eigenvalues and eigenvectors of M. E‘Jhus

M, = ADAT | where D is a diagonal matrix of eigenvalues. One can easily obtain Mp‘1
by taking the reciprocal of the corresponding elements of the D matrix. Hence finding
M;1 = AD'AT ig a computationally straightforward task. Notice that the elements

of the last row of Mp_1 are the coefficients of the support point equation Sp(Ay,¢) = 0,
up to proportionality. However, the constant of proportionality can be ignored for it can
be cancelled out of the equation. At this stage, solving the equation for the roots can
be easily accomplished with a simple root finding subroutine. We used zrh¢r subroutine
(see Press et al. (1992)) since the polynomial has real roots.

Lastly, solving the equation {3.9) for the masses 7; at each support point is accom-
plished with a simple subroutine that takes advantage of the special structure of the
Vandermonde matrix. We used vander subroutine that solves the Vandermonde linear
system (see Press et al. (1992)).

5. Conclusions

We have shown that by using the method of moments, one can create families of
distributional approximations that are highly flexible and straightforward to fit. We
have shown that if one uses mixtures of gammas, one can in this fashion reasonably
approximate the distribution of a linear combination of chi-squared variables. Although
the theory looks rather complicated, the method is relatively straightforward to program
(the FORTRAN program AUGM is available from author Pilla). In theory one can use
this methodology to fit an arbitrary number of moments. However, increasing the number
of mixture components can lead to computational accuracy problems due to the use of
ill-conditioned moment matrices. Our experience with the examples considered in this
article was that after p reached 6 or 7, the moment method would fail to generate a p-
point approximation due to A,_; = A, (see Proposition 3.2(b)). Indeed, up to this value
of p, the estimates tended to improve but when we tried to push the method beyond

this point by fitting with a larger p, there was no change in X. This indicates that one
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cannot fit a higher order mixture to improve the approximation. In light of this, we offer
a practical recommendation that one use the largest value of p possible; that is proceed
sequentially and stop when Ap,_1 = A,
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Appendix A. Relation between moments and cumulants

The r-th moment about the origin of a random variable X, or equivalently of its
distribution H{z) denoted by m,. is defined as m, (H) = [ z"dH(z) and the correspond-
ing r-th moment about the mean (r-th central moment) denoted by 4, is defined as
#r(H) = [(z = m1)"dH(z). The moment generating function (mgf) of X is given by

M) = /00 exp{tx)dH(zx).

—oo

The cumulant generating function (cgf) K(t) of X is defined by natural logarithm
of the mgf, i.e,,
K(t) = log M(1).

Both these generating functions can be expanded as a Taylor series.
Given a list of curnulants (or moments) one can obtain the other list by the recursion

me= et (0 ) keoamy (T bt (07 )
r = Kr 1 r—111 o Kr_2TN2 r—1 17r—1,

which can be obtained from the following mathematical relation
K'(t)yM(t) = M'(¢).

For example, k) = my, Ky = fig, &3 = H3, K4 = Ha — #3. Such a recursion,
simplifies the calculation of the moments of a convolution, as the cumulants are easily
calculated because they add over independent observations. For example, the cumulants
of a weighted sums of independent central x? variates,

Su(d) = AWE + doW2 + - + d W

are k£, = )i dir (x3) = Yo 527 r — ! for r = 1,2,.... Also, it can be easily
shown that g, (dX + b) = " (X) and £,.(dX + b) = d".,(X) for r > 2, where d and b
are any real constants.

When we match moments to order 2p we also fit cumulants to the same order. For
example, in the normal mixture model, }_ m; N(y;, 02},

£r(H) = £,(Q) + &:(N),

the second term on the right hand side being zero for r > 2. Hence, when we match
cumulants, x.(Q)) equals &, ({H) for r > 2.



APPROXIMATIONS OF DISTRIBUTIONS USING MIXTURES 229
Appendix B. Nested mixing structure of gamma distributions

In order to apply the Proposition 3.3, “identifiability”, we need to verify the As.
sumption A3. We want to know if for any given o, pg and any § > 0, with ag = a—4& > 0,
there exists a continuous mixing distribution @ such that

(B.1) / Fz; o, 1)dQ(p) = f(z; @0, po)-
The following propesition clarifies the assumption.

ProprosiTION B.1.  f(x; a0, po) can be writien as a mean mixture of gammas, i.e.,
as in equation (B.1).

Proor. Let 5 =a/u and ng = ap/pe. We need to show that the mixing distribu-
tion @ o (7 — mo)?~1n~*I{n > mo}dn. That is, dQ = k(n — no)*~'n~*I{n > no}dn with
k as the constant of proportionality. Thus we will show that dQ satisfies equation

(B.2) /0 N 7™ exp(—nz)dQ (%) = cexp(~noz)z°,

where ¢ = ['(a}(ng)*® /T'(aq) is a constant. The left hand side of equation (B.2) becomes

oC

(B.3) /000 kexp(—nz}(n — no)° " {n > no}dn = k/ exp(—nz}(n — 10)°dn,

= kexp(~102) / exp(—Ex)e~de,
exp(—noz)z _6F(5)-
(B.
—&

Simplification follows by takmg n— o = £ Equation (B.3) is valid since 6 > —1 and
z > 0. If we let k = 5, then (B.3) becomes cz exp( npz). Thus the mixing

distribution is given by dQ = fy(n —70)° " I{n > no}dn. O
The following corollary shows the nested mixing structure of gamma distributions.
CoroLLARY B.l. {Gamma(a+6,Q)} € {Gamma (a,@)}} for any 6 3a> 6> 0.

Assumption A3 and Proposition B.1 give the identifiability of (ép, Xp) in the gamma
mixtures.
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