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Abstract. An approximate expansion of a sequence of ordered Dirichlet densities
is given under the set-up with varying dimensions of the relating basic probability
spaces. The problem is handied as the approximation to the joint distribution of
an increasing number of selected order statistics based on the random sample drawn
from the uniform distribution ©7{0, 1). Some inverse factorial series to the expansion of
logarithmic function enable us to give quantitative error evaluations to our problem.
With the help of them the relating modified K-L information number, which is defined
on an approximate main domain and different from the usual ones, is accurately
evaluated. Further, the proof of the approximate joint normality of the selected
order statistics is more systematically presented than those given in existing works.
Concerning the approximate normality the modified affinity and the half variation
distance are also evaluated.

Key words and phrases: Ordered Dirichlet distribution, approximate distribution,
sample quantiles, modified K-L information number, modified affinity, half variation
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1. Introduction

The purpose of this paper is to give an approximate expansion of ordered Dirichlet
distributions defined on the varying basic probability spaces when the underlying sample
sizes increase. Such subject is generally difficult comparing with the case where the
dimension of the basic spaces are fixed independent of the sample sizes. To overcome
the difficulty we chiefly make use of the analytic tools developed by the second author
of the present paper.

This research is motivated by the understanding of the concept of Kullback-Leibler
mean information number remarked by Matsunawa (1995). In this paper, however,
the quantity discussed mainly is an extended one which will be called a modified K-
L information number: I*(Pp,Qn; An) = | a, In(dP, /dQy,}dP,, where P, and @, are
probability distributions which are absolutely continuous with respect to some o-finite
measure over some measurable set A, for each n. When A, = R,, (=the whole space,
for each n), Matsunawa (1995) noticed from statistical and physical point of views that
it is reasonable to consider Q, as a basic (or an original) distribution and P, as the
approximate (or developed} distribution of @,. Thus, he interpreted the K-L informa-
tion I(Fyn,@n) as the mean number with respect to P, which should be understood as
a relative number of the density dP, of the approximate distribution to the density of
dQ., of the basic distribution. He stressed that it is required for us to recognize strict
distinction between approximate and basic distributions. Namely, I*(Pp,Qn; An)and
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I*(Qn, Py; An) have complete different meaning, although both of them are usefui to
estimate some uniform distance between P, and @,. If we also adopt his understanding
in this paper, it is quite natural to consider the approximation of joint sample quantiles
with a Dirichlet distribution @, by a certain approximation distribution P, based on
the information I*(FP,,Q,; A,). On the contrary, if we make use of T*(Q,, Pn; Ay), it
means that we reversely consider the Dirichlet approximation of @, to the distribution
P,,. The latter case was investigated by Tkeda and Matsunawa. (1972) provided that P, is
a certain multi-dimensional normal distribution, where the Kullback-Leibler information
was handled as a only tool to evaluate the uniform approximation based on a generalized
Kolmogorov-Smirnov distance. Such being the case, the present authors have been aware
that the use of the information in the previous joint work was not suitable and the direc-
tion characteristics of approximation associated with the above information should be
paid more attentions from statistical and physical point of views (cf. Matsunawa (1995},
Yamada and Matsunawa (1998)). So, we investigate the quantitative approximation to
the joint distribution of sample quantiles by making allowance for the understanding of
the related information numbers. In that case we will see that the evaluation of the
probability, min{ £}, (A,), Q.(A4,)}, also becomes essentially important problems, and it
will be treated as evaluation of probabilities on approximate main domains.

Let {Xnky}(n=1,2,...) and {Y (k) Hn=1.2,..) be two sequences of k-dimensional ran-
dom vectors defined on the sequence of measurable space (Rn(k), Brik))in=1,2,...}, Where
Ry is k-dimensional real space and By is Borel field of subsets of Ry, for each n.
The dimension of the space k may vary as n increases . Denote their corresponding
sequences of probability distributions by {Pr}m=1.2..) and {Qn}(n=1,2,...), Tespectively.
For each n, assume that these distributions are absolutely continuous with respect to
Lebesgue measure u on the measurable space and designate their respective densities by
pn and g,. Under these set-up the following quantities are considered as measures of
discrepancies between the two sequences of probability distributions:

(i) strong Kolmogorov-Smirnov uniform distance (=half variation distance)

{1.1) DX Y n(e); Bry) = sup  |Pr(E) - Qu(E)],
EcBg,

{ii) a modified Kullback-Leibler information number (=K-L information in short)

* PrlT
(1.2)  I"(Xnw), Yoy Cogry) =[ Pn(z{k))lnm

dx,l; y C k GBTL k)
Gt (1)) (k) nlk) (k)

(iii) a modified Matusita affinity

(1.3) 2" (Xatk), Yak); Cuiry) =/C \/Pn(z(k})qn(:c(k))dx(k), Cotk) € By
n(k)

Concerning above quantities it is known that the following three statements are
equivalent (cf. Matsunawa (1982)):

(1) D(Xnex), Y thy; Buy) — 0 as n — oo

(2) There exists a sequence of measurable sets {A, &) € Bng)}(n=1,2,...) such that
P({Ant)) — 1 asn — oo and that simultaneously I*(X k), Y (ks An(r)) — 0 as n — o0

(3) There exists a sequence of measurable sets {An) € Bogy }(n=1.2,... such that
p*(Xn(k)ryn(k}; An(k]) — 1l asn — oo.
As an interesting example of these equivalence we will ascertain that our uniform asymp-
totic result in this paper satisfies the fact. The above statements are also useful to analyze
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the uniform approximate equivalence of two sequences of probability distributions, even
if the parameter n is not so large and if the dimension k& varies according as n increases.
Now, we begin considering our approximation problem on the ordered Dirichlet
distribution based on the order statistics from a uniform distribution. Let U, < Upa <
- < Uy be the order statistics bagsed on the random sample of size n drawn from
the uniform distribution U/(0,1). Consider to select k¥ = k(n) {< n) order statistics
from the above whole order statistics and denote them as Uppn, < Upp, < +++ < Upa,
(ny < ny < --- < ng). In what follows we put conventions as ng = 0, ng+y = n + 1,
Up =0, Uks1 = 1. Then the joint pdf. of the random vector Upgy = (Unnyy -+ -2 Unni) I8
given by the ordered Dirichlet density

k+1 k+1
(1.4) zn )_ {n|/Hd|} '—Z:‘—l)dis

i=1
(0—zo<z1<---<zk<zk+1=l),

where Zn(k} = (21,. - ,Z]g) = R(k) and di = ni—1;_q —-1, (‘E = 1,. . .._,k-l—l). Corresponding

to Uuky let us consider the normal random vector Z,4) = (Zn1, .-, Znk) having the
joint pdf.

k/2
1 _ 1 -
(15} gnlzam) = (g) |Lngry) /% exp [—g(zn(k) — €))Ly (Znhy — buiiy)
(—oc < 2; <00,i=1,...,k),

where Zn(‘:} = (fnh R fnk)ta with £,; = ns’/(n + 1): i=1,...,k £ =0, enfﬂ-l =1;

1 . .
(1.6) Lo = m(fm'(l — L ilixk (1<i<j<k) and
ket
|Ln(k}| = (n + 2)_k H {fni - em'wl)'
i=1

In case of fixed k& Mosteller (1946) and Walker (1968) gave the limiting joint normal-
ity of Uy sy to Z,,x) in the sense of weak convergence. In case of varying k Weiss (1969),
Tkeda and Matsunawa (1972) and Reiss (1975) gave the asymptotic joint normality of
the corresponding problem in the sense of variation distance between the probability
distributions of the two random vectors. In this paper we also consider the approxi-
mation in the same sense. However, our approach mainly based on the modified K-L
information of gn(2n(k)) With respect to hn(2nyk)) is very different from the above works.
By making use of the information we can give an error evaluation on the approximate
joint normality of k& sample quantiles. In the process of the approximation a certain
approximate main domain is introduced and it plays an important role in our approach.

In next section necessary lemmas are prepared. The first lemma is an expression on
a logarithmic function. That is very useful and is expected to have wide applicabilities.
With the help of the lemma an approximate expansion of ordered Dirichlet density is
given in Section 3. In Section 4 an approximate joint normality of the selected sample
quantiles is investigated under the situation of varying basic probability spaces. To get
the result we make use of a modified information criterion with a certain approximate
main domain. In Section 5 the same approximation problem as in Section 4 is discussed
based on the modified affinity and the half variation distance.
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2. Necessary lemmas

In this section two lemmas are presented. The first one is an expression for logarith-
mic functions which are needed to get an approximate expansion of the ordered Dirichlet
density in Section 3. Another one is utilized to evaluate a certain measurable set whether
it becomes an approximate main domain of our problem discussed in Section 4.

LEMMA 2.1. Let L and M be certain given finite positive constants. Then, for any
u such that u > L or u < —1 — M we can represent

1 1 1 1 1
2.1 In{l+—-]==- "+ — _ g—
(1) n( * u) PR R R

where

(2.2) %{l—ﬁ}<a=a(L,M)<max{%,zli(1+jlz)}.

Remark 2.1. The usefulness of the above expression for us is to use it without
knowing the sign of the variable u.

PROOF. (a) In case of > 0 we make use of the following inequalities

(2.3) 1 1 — <In{1+ 1 < 1 L - 1
) u 2u{w+1)  6u(u+1) ~ " u) " u 2u(u+1l) 6ulu+1)?
(u>0),

which can be derived as follows: Let us put

A(u) :=In (1 + %) - {% - 2u(u1+ )~ 6u‘2(i+ 1)} and

Au) :=ln (1 * %) - {% B 2u(u1+ N ﬁu(ul+ 1)2} ’

then
1
? — A — - — O - - 0
K () TP (u +1)2 <0, lim w{u) =oc and Jim (e} w{u)
N{w) = _dut2 >0 lim A{u}) = —o0 and lim A(u)=0 ..A(u) <0,
3u2(u + 1)3 ’ u—0 U0

from which we get the inequality (2.3). Modifying the upper bound of (2,3)

SN NN OF SRS WA U0 45 U U SIS T
v 2u? 2u? 2u(u+1) 3u? 3t 6u(u + 1)?
S O D LR S

w  2u?  3ud 6ut  6ut(u+1)2

1 1 1 1 1 1

AN S VI B § (LI SLE R}

w 2u2+3u3 6{ (L+1)2}u4 Cru>0)
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Modification of the lower bound of (2.3) yields

L1 [ LS U O S T
v 2u? 2u? 2u(u+1) Jud  3u? 6u2(u+ 1)
111
uw  2u? 0 3wt 3ui(u+1)
1 1 1 1
2.5 > f————  (u>0)
(2:5) u  2u? + 3ud 3wt (ru>0)

Thus, from (2.4) and (2.5)

1 1 8 1 1 1
&) 1 Sl e iy ) QEEp——— . e
(2.6) n(1+u) a 2u2+3u3 i (u>L>U,6{ (L+1)2} 3)

(b) If u < O in expression of In(1 4 1/u), it is only meaningful when u < —1. Since
0 < —-1/u < 1, by applying Maclaurin’s formula

()= (- (2))

(2.7) <D — 4 ———,  (ru< -l

H
|
|
IS
S
|
D | -
|
2=
S’
[~}
|
| b=
|
2=
N
w
|

On the other hand, for u < —1 — M, we have

N 1 1 1 1 { u 1111 1
28) In{1+ — e T = 44— i1+ —=.
(28) n( +u)>u 22 3@ T (u+1)>u TR 4u4( M)

Thus, form (2.7) and (2.8)

1 1 1 1 9 1 1 1
2.9) 1 S O T S oMt ed<=[{1+—=)].
( )n(1+u) u 2u2+3u3 qud’ (u( ! M’4< 4(+M))

Consequently, combining (2.6) and (2.9), we have desired result (2.1) with {(2.2).

Remark 2.2. The above lemma can be improved by sharpening the bounds of (2.3}
with the help of more accurate inequalities developed in Matsunawa (1976).

The following lemma is utilized to evaluate the magnitude of the approximate main
domain in our approximation problem discussed in Section 4.

LemMmMA 2.2. (The probability of the half normal integral } For z > 0 it holds that

1 1 2 1 2\ /2
_ 21 = 272 _ - (2-V2e
(2.10) 2( e 5
/2
1 12 1 _goyge)
<N(:r)<2(l 5¢ 5¢ ,
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Fig. 1. Graphical evaluations of the half normal integral.

where

L | 2
211 Nz = | ——e ¥4y,
(2.11) () [ e

ProoF. The inequalities (2.10) can be obtained by a simple geometrical argument
based on the joint distribution of two independent normal random variables according
to D'Ortenzio's idea introduced in the book by Johnson et al. (1994).

Consider to evaluate the following integral graphically

Hz) = fmfz e~ 2 gudy = /” e v 2y /’5 eV 2.
o Jo 0 0

With the help of Fig. 1 we can observe that 9() is larger than the integral over the small
circle C; with radius z and smaller than the integral over the large circle Cy, with radius
v2z, in the first quadrant of the u-» rectangular coordinate system. Putting u = rcos @,
v =rsind with r > 0 and 0 < 8 < n/2. Then, u? + v? = r? and the Jacobian of this
transformation J is

D(u,v) [cosf) ~rsinf

sin @ rcost'a'] and  |Jj=r,

hence we have

T 2 w/2 2z 2 m/2
/ e™" /grdr/ do < 9(x) <f e’ /zrdrf de.
0 0 0 ]

A 2 T 2
/ e " 2rdpr =/ d(—e™" /2) =1~ e‘“”2f2,
0 0

Since
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then it holds that

(2.12) Sa- e %) < ¥(z) < 3(1 _e ).

Next, we try to improve the inequalities (2.12). The double integral of
over the area P@TS in Fig. 1 is given by

4242 tan™ ! (V2+1) — -1
AT = e~ 2y df = [—e_TQ/z]E -2vie M:Z;fﬁﬂ}
T tan—1(v/2-1) ( )
= (e7® /2 = g~ (2- v2*y . ftan~ (V2 + 1) — tan "} (V2 + 1)}

T -zt —(2—v2)z*

because tan~1(y/2 + 1) = 3x/8 and tan~!(v/2 — 1) = = /8. Therefore, the lower bound
of (2.12) can be graphically improved as

e_(u2+y2)/2

1 1
(2.13) Hx) > E(1 — e L AT = T{1-ze=/22 —e_(z*‘/i)“#) .
2 2 2 2
Similarly, the double integral of e~ +")/2 oyer the area DFSK in Fig. 1 is given by
Am V2z e J /8 i ~r2/2 J3s 7 o
Y AL S N -=~ AT
— T
i —(2—\/5)::2 —x?
= g(e —€ )1
and the double integral of e~ +°)/? oyer the area EGTL in Fig. 1 is given by
VE.T. 17/2 3
Ay = e-T2/2rdr/ i = (e~ @-VD' _ =%y, {3 —~ g}
V422 tan—1(v/2+1)
= Sl o),
Therefore, the upper bound of (2.12) can be graphically improved as
s 2 1 2 1 2
2.14 Zfl=—e"TY - AT — P R et ¢ BV ) P )
(2.14) ﬂ($)<2( T ) - AT - A, 2(1 5¢ 5¢

Noticing the fact N(z) = /9(z)/(27), we get the desired inequalities (2.10).

Remark 2.3. The above lemma implies the following inequalities. For z > 0, the
cdf. of the standard normal distribution ®(z) is evaluated as

1 1 1 N\ 12
2.15 - _ =2 L —(2—v2)
(2.15) 5 {1 + (1 5€ Se
1 1 2 1 2 1/2
<® = L L a2V )
(a:)<2{1+(1 2& 2e

These bounds are improved ones to those given by D’Ortenzio of the form

S (=AY <o) < S+ (- e ), (@>0),

which can be derived from (2.12). It is possible to get more accurate bounds than those of
(2.10) and (2.15) along the similar lines adopted above, although such approach becomes
complicated.
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3. An approximate expansion of ordered Dirichlet density

In this section we try to expand the ordered Dirichlet density hn(z(x))} defined by
(1.4). This was roughly carried out by Mosteller (1946}. Different from his derivation we
apply more accurate expansion to a logarithmic function given in Lemma 2.1. We also
make use of a useful expression of Stirling’s formula with accurate error bounds. Let

Qupy = {2y = (21, &) 0= 0 <21 <o+ <2 <z = 1}

and for certain given finite positive constants L and M let us define

L.M_ _ . Z1 — -1 1
Qn(k) B {z(k) = (21,..,z)i 1 < E;_—é,:_—l <14 LOI‘

M 25— 2
M+1 E — i1

<1,z‘:0,1,...,k+1},

where as in Section 1 &y, = ni/(n+1),i=1,.. Kk bpg =0, £y =l and 0 =ng <
ny <ny <--- < ng <Ay =n+ 1. Under the same notations as those in Section 1 we
have the following result:

THEOREM 3.1. For zy, € Qn(k) M Qn(k} Af:( k) the ordered Dirichlet distribu-
tion density can be expressed by

/2
(3.1)  halzw) = gnlzwy) - (1 + L)

F1
k+1
- 1
xexp[ 12( 1) ( anzﬂ ) R(n+1)
k+1
+ZR(d D+ 507 )(zm k) Ly (20) — i)
k+1

Z - Zz 1~ m>1)

-m - Ent—l

k+1
(z?. I_Eﬂ.t—l)}3
"“)Z{ " }

Af (Zz_ m) (zz 1~ ni- 1) 2
2 mAgm—l

B lkﬂ (zi — 8ni) — (21 — em’l))a
3 Em' - Enz'fl

=1

k+1 N e g 4
) P e

i=1

k+1 4
(Z’I - Tu (z-i—l - ‘eni—l)
* 92 ( Tu - Elm‘—l ’
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where for z(y) € Qn(k) N Qn(k

H _
(32)  gnlew) = @m) 752 Ly |52 - exp [—5(2(@ — Loii)) Ly (20y — En(k)):} .

=}

ait1 :
E th
(33)  Riz)= Sz@+1)- (i) b

arm-::/Dlt(l—t)@—t)---(r—l—t) (%—t)dt,

and where for given finite positive constants L and M and for any positive integer n

(3.4) —é—{l—ﬁ)—a}<6—9(nLM)<max{;i(l%—%)}.

Remark 3.1. It should be noted that g;,(z()) in the theorem has the same func-
tional form as that of ¢,(2(;) in (1.5), but their domain is different. The function R(x)
can be evaluated by the inequalities in (3.7) given later.

PrRoOOF. Let us put
(35) t; = vn-}-l(zi—fm), (i:O,l,...,k+1),

then dz; = (n +1)~1/2dt; and

77 2 P

i=1
k+1
(n+1) 2
= Ty — Tti—
{n+ Dnal{ng — 1)l (ng ~ ne—1) (M1 — ng)! ]-;[1( i-1)
k41
: (TL + l)lﬂ H(em' - gm‘—l)”2 . df1 e dtk,
where we have used the relations ; = n; — ) — 1, (£ = 1,...,k + 1) with ng = 0,
nk+1 = n+ 1. Since for any positive z the following representation holds
Vo 1
(3.6) F(SL‘ +1) = 2my /2 exXp { r+ 'i"z“— — R(m)}
where
(3.7) < R(z) <

3605(z + 1)(z + 2) 360z(z + (z 12) | 22+ D@ +2)

(cf. Matsunawa (1976)). Thus, after some manipulations we have

k+1
(3.8) {n!/ﬁd,-!}dzl._.dzk

= Hf:ll(gni_ i _y)~ (Rimnim1-1/2)
(2 )s/2

k+1 k+1
1 1 1
exp(lz (n+1 ‘Zd +1) -R(n+1)+ZR(di+1)) Cdby - dty

i=]
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Next, we try to evaluate the following term

k+1

H(Zz' — 2%
i=1
k41 k+1 £t (n4+1){fni—£ni_1)—1
N (RN § (I EUS. .
;I:-[l " ™ 1I_-___Il Vvn + (Em_ ni— 1)
Put

(3.9) w; = w,-(n) =vn+ l(fm' - fm'_l)/(t,,' — tifl), (Z =1,....k+ l)

then by Lemma 2.1 for given finite positive constants L and M and for any positive w;
such that w; > Lorw; < =1 - M (i=1,...,k+ 1} we can represent

t; i1 (m+1)(fri—Eni—1)
In {1 + L }
V4 1(£ru' - gnivl)

1 (b —t-1)?

1t~ ting) — = - 71

nt (1 ' 1) 2 ‘enz’—gnifl
(t =t B (ti — ti-1)*

+ ;
3vn + 1(6-,’“' - En‘i—l)2 (n + 1)(3111 - ‘en.‘ni—l):3
Thus,

k+1 £ — 1, (m+1){lni—tni—1)—1
i—1
H { v+ (Em - m'—l)}
k+1 (n41)(€ni—€ni—1)
t - ta 1
= exp- |In {1 + }
.1_‘[ I: vn+ (gm - m'ﬁl)

ki1 bty
. ; _1 1+ 1 11—
Eexp [ “{ ~/n+1(em—fm-_)}J

=ex —lg:l(ti_t"‘l) jf{ —tio1 (ti—tiod)? }
B lni —lnic1 W+ 1 fri —bni1 3(fmi — bnic1 )2

| 1 k+1 1 ( tz _ timl )2 a (t 3_1)4
n+1 = PRV AT A (bni — ni1)?
1 ’il( i = f«.—l) ’il(t—tll)4
3(“’ + 1)3/2 m. — fni—1 (ﬂ. + 1 2 bni — gns 1
k+1 X 'y . k+1 1
10)  =exp|-Z bnit1 = bni 22y —— it
(3.10) expl {Z(E R ZE . e

ni+l1 = m)(gnt_ m-—l) j=1 i
k+1
LA
k+1

Z (Em+1 nz 1)( ni+l — 2£m + Em'wl)t[.).
m+1 - 'm) ( ni En’iﬁl)g
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k+1

t?ti_l k+1 t t2
#Z(ﬂ 3 1 Z(‘em—em— )

i=1 m_’eml
+ 1 fil 1t =t 2_9(i ti1)*
n+1i=1 2 fm'_gni—l (Em_‘gnz 1)3
k+1 ] k+1 ‘—t . 4
n+13/22( m_‘em 1) (n+122( - m—l) j‘

Therefore, from (3.9) and (3.10), and reverting ¢; to z; (i = 0,1,...,& + 1), we have an
expression

4 1\ k+1
ha(zgy) = (2m) 72 (n + 2) (2072 ]| (8 = £ai-2) ™7
=1
X ox _(n+ 1) n+l'§{ Lnit1 — £ni-1 (2 — £i)?
HT\nt2) T S\l - )i = )
2
i = €ni){zi-1 — Eni-
fniffm.«l(z‘l bz 1}}
1 k+1 1 ktl
NN SN o N B R(d; +1
+12(n+1) (1 ;é’mi—em) R(n+1)+§ (d; + 1)
_]S -—fm —(21 1~ £ni1})

ni—1

k+1 . 3
1 n+1 Z {(za em. (Z,._ m.—l)}

m - gnz 1)2
k+1 2
(zz - Em - (Zi—l - Em'—l)
t3 Z { ( Em. - gnz’—l
1 k“ ((Zz —pi) — (211 — fm‘—1))3

3 &= £ni — €niz1

E+1
—8(n+1) i {{zi = fni) — (zic1 — b)) }*

i=1 (Eni - Enifl)a

m - JE’m 1

from which and noticing the facts (1.6) we have the desired expression (3.1). O
4. An approximate joint normality of the selected k(n) sample quantiles

In this section we proceed with considering the joint approximate normality of & =
%(n) selected sample quantiles of n arder statistics based on random sample drawn from
the uniform distribution U/(0,1).

First, we consider eva,luation of the modified Kullback-Leibler information number
when we take the set AL k) = n{k) N Qn(g as the approximate main domain of our
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problem. Namely, we need to evaluate

a1
(4.1) I (onbos A58 = [ gnle)in £ 2 s,
Aw

n{k)

where, as in Section 2, g,(2(x)) is the pdf. of the joint normal random vector Z, ) given
by (1.5), and where k., (z)) is the joint pdf. of the selected k(n) sample quantiles Uy
given by (1.4). In what follows we denote the probability distributions of U, ) and
Zoiey by PYni) and Peniv) respectively. It should be noted that Ikeda and Matsunawa
(1972) evaluated the related K-L information I{hy,, gn; Qg( k)). This information is more
feasible than I*{gn, hn; An(k: ) in calculation. However, it seems not to be adequate to
handle our approximation problem from the aspects of directionality of approximation
and related physical point of view (cf. Matsunawa (1995)). On the contrary, adopting
I*(gny Pn; Ai(g) needs our careful treatment of Aﬁ(‘;g , which is treated as the approxi-
mation main domain.

We have a theorem on the approximate normality of ordered Dirichlet random vector
Un(k}:

THEOREM 4.1. If the following condition is satisfied

k(n)
min1gigk+1(ni —Ty1)

{4.2) Ep 1= —0 a n—oo

then PUn is asymptotically normally distributed to PZ~ in the sense of

LM gn(Z(k))
(4.3) I* (g, b An(k)) /AL‘M gn(Z(r)) In h:_(z(k})dz(k) —0 as n— o0,
n (k)
and simultaneously
(4.4) Pzn(k)(ATI;('g) —1 as n— oo,

where for given finite positive constants L and M,

D=zn<n < <z <z =1,

1<_—z,;—z1-_1 <1+10r

L.M T

(4.5) A0 =9 zm = (=, %) ni — fni1 L
M 2 — Zi—1

< <1,i=0,1,... k+1
M+1 £ —lnia

ProoF. Making use of Theorem 3.1, for 2, € Ai(g we have

17 i A < [ ) 18 sy ) ot

n (k)

= By | 10(gn(Zngx) }/ B Zniiy)) ]

E[ 1 1 1 3 1 }
< §{n+1 C6kin+1) 2n+1){n+2) 6n+1}(n+2)?



209

ORDERED DIRICHLET DISTRIBUTION
k+1
1
n+1 ZE — ,“ 1 (ﬂ‘l" )
1 *
+ Wn+2) By[(Zntky = bniw)) Ly (Znry — Eng))]
k+1
+ Z ™ F5[|(Zns = i) = (Znim1 — fni-1)l]
ni—1
k+1 1
+5 Z 3 Bl (Zni — i) — (Znict = Ens-1)I7]
k+1 1
+ +
Z ( ni nz 1) (Em' _Eni—l)s)
: E;“(Zm' - ni) - ( ni—-1— em'—l)lg}
k+1
n+1 1
~ o +
L I ; { (Eml - fni—l)g (Em - Em’—l)4}
By [{(Zni — Eni) — (Zni-1 — i) -
Making use of the following inequalities
Es[(Znge) = €oe)) Ly (Zngry — Eni)]
< Bgl(Zngry ~ £u) Ly (Zury — uiry)] = K,
E; H(Zni - emﬁ) - (Zm'—l - Em'fl)”
V2
< W[(gni Lt M1 — (Bni — L)},
1
E}{(Zni — €ni) ~ (Znic1 — €ni—1) Pl < — = {lni — €ni-1){1 — (bni — Lai-1)}],
n+2
E; [ Zni — £ns) — (Ziv1 — £ni1)I’]
2v/2
< rtn 1 237 (ni ~ dni-t {1 = {bni = i) Y2,
* 3 2
Ej {(Zni = £ni) = (Zniz1 — £ni=1)}] < m[(em' —lric1 {1 — (bni — €ni-1)3]°,
we have

11 (9ns Bni Ari) )

k[, 1 _
n+1 12k

1

<

3 1 1
An+2) 12(n+ 2)2} T 380m F D+ 2)(n+3)

T BT 0Mm T 2

/2 (n+1)1/2
+ —_—
TAn+2

+2‘F n+1\%? ”
IV \nt+2 k

e () R ()

2/n+1 1/2
{1+3 (n+2)}8"

3/2 2 P
En_ L gpfntl 1+l)fﬂ
N n+2 k) k
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(4.6) —0(n —o0), if &5 — 0(n — o0)
(Since%{l_ﬁ}<9<mu{; i(l-{—%)})

Next, we prove (4.4), If the following statement holds, we call the set Az(g an
approximate main domain of our problem. “For certain given finite positive constants
L and M, and for any sequence of positive numbers {&,, }(n=12, ) such that e, — 0 as
n — oo, there exist (1) a sequence of positive valued functions {n,(en; L, M}}(n=12,.)
such that 0 < 1, < 1 and 1, — 0 as n — o0, (2} a sequence of measurable subsets
{Aikoj € Bpk) Hn=1,2...) and {3) a positive integer ng = no(en; L, M), such that for any
> g

(4.7) PZe (AL M) >1—n(en).”

Thus, if (4.7) is obtained, we can show the condition (4.4) as n — o0.
Let us decompose the domain AL ntk) k as Ai’(g = A:(i) WA~ (k), where for any given
positive integers L and M the sub-domains are given by

(48)  AZ%) = Quw
M {Z(k) = (z1,...,2k);1 <

M
(4'9) An(k) Qg(k)
M 2 — Zi-1

ﬂ{zm =(z1,...,zk);M+1 < P — < 1,i:0,1,...,k+1},

here Qg( k) is the set defined in Section 3. In order to estimate the probability we make
use of the following transformation. For each n, let Z, ) = (Zn1, - -- , Zny) be a normal
random vector which is distributed according to N(€,x), Lnx))- Consider the following
transformed random vector Vi,(x) = (Var, ..., Var) of Z5,(xy through

Z; — Zi—1 1 .
STl 1+ =01,k 1),
Cni — €ni1 A T }

V4 2{{Zni — lns) — (Znic1 — bni—1)}
v Em - Enz—

(4.10) Vi 1= (i=1,...,k).

Then,
(4.11) i — ns =Z(fnj - nj_l)l/zvn,-/vn+2 (i-—— 1,...,k),

=1

and thus the pdf. of Vi, is given by for v = (v1,.. ., )

k
4.12 oV 2m) %2 exp 1 ), (—oo<y <oo,i=1,...,k),
(k) 3 f

since the Jacobian of the transformation is J(z)y — vu)) = Hfil(l?m — b 1)V?/
vn+2. It is noted that each components of V,(, is independently and identically
distributed according to the standard normal distribution, Under the transformation
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{4.11) let us consider the sets corresponding to A:{ and A (k) Biven by (4.8) and (4.9),
respectively:

(4.13) B:(i)={v(k)=(V1,-~,Vk)t;0SVz'< nt 2y - iy (i=1,. k)}

n+1 L
-M _ _ t. n+ 2/ — i _ _
(4.14) Bn{k)—{U(k)—(Vl,...,Vk),—— nt 1l 1+ M <V,SU,(’L—1,...,k)}.

Therefore,

PP (ALY = PV (B ) + PV (B )

= (27)~F/2 /B+L - exp [—A Zu j' dvk

(k) nik) z=1
k
B H{ V2T

V(nt2)/ (n+ I{(ri=mi1/ L) ( ,,_2)
] exp - dy;
J=1

2
+-—] exp (——‘)-dv-}
V2T it et D i /(LA M)) 2 ’
_ﬁ{N( n+2\/ni—ni_1)+N( n+2\/ni—ni_1)}
B n+1 K

1 n+1 L 1+ M

where

(4.153) N(x):= /: %e‘”zﬁaﬁz, (z > 0),

and

1/2
1 Lo 1 _ooymae)” 1 1-=_1 —(2-ﬁ’w2)
{4.16) —2-(1 5¢ 3¢ < N{z) < 5 1 5¢ 5e :

Consequently, making use of Lemma 2.2 and the condition {4.2), we have

[ 1 1 {n+2 flj — Mg
-z {-3 (5 )

koK —lexp{—(Z—\/ﬁ) (n+2.”f_”f")}]1/2
PZu(k)(AL(k)) ~ (1) 2 n+1 L2
2

1 =
| je{eo (i )"

(4.17) -1 a n—-o

which completes the proof of the thearem. O
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5. Approximations based on the modified affinity and the half variation distance
In this section we also assume the condition (4.2) in Theorem 4.1. As is pointed

out in Section 1 the asymptotic character described in the theorem can be seen by the
madified affinity on Ai’('g and by the half variation distance as follows.

{1 2)9*(9n,hn;AEE£§)*/AL‘M 9n 20y hal2 (k) )2k

nik)
> PZnik (Af{(’f‘)f)exp{ m /A b n(Z(k))
i
(- Jensen’s Inequality)
= P2 (AL exp {—ml*(gn, T At ) }
(5.1) > PErn (AL - exp {—mw (gns Fon Aﬁgi’{)l}

In view of (4.6) and (4.17) ,
(52) p*(gn hns A) = 1 as n— o,

which shows the statement (3) in Section 1.
Next, we evaluate the half-variation distance between the two distributions:

D(Unk)s Zriryi Bugry) = sup |PUn®)(E) — PZri(E))|
EcB(,

1
= = [ [halZ(y} — gnlzp0 ) ld2 (k)
2

(5.3) < \]1 - ( fR \/gn(z(k))hn(z(k))dz(k))

< \/1 — (0*(gns Bn; Ay )2 = 0, s n — 00,

which coincides with the statement (1) in Section 1.
Next, it can be shown (cf. Matsunawa (1986)) that

D(Un{k)uzn(k};Bn(k}):Esup [PV~ (B — PE~ts(E)]

€B k)
(5.4) > 6a7)I" (g, hni Agiy 0 Figy)
+ (PUn(k)(Ai(tg) _ PZa (Af;&g))_
(5.5) = 40} (11" (gn, bon; Ay )

LM g LM~y —
+ (PUH(H(AH(R:)) — P&nay (An(k:])) >0,
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where ()™ = max(—z,0) and (x)* = max(z,0), and where

Fly ={zmion(zm) 2 halzg)}  and
= inf {hn (2} 90 (203 ) 2001 € Aliy 0 Frliy }

and where for t > 0

(5.6) 6t) = 2108731 + 13T (1 4 £1/3 4 £273)
35 + 1832¢1/3 + 7796¢2/3 4 18968¢ + 23378¢1/3
1+18968t3/3 + T796t2 + 1832t7/3 + 35¢8/3

(cf. Matsunawa (1986)) which is easily seen a monotone increasing function in {. For
each n, since 0 < a} < 1, then 0 < #{a}} < ¢(1) = 1, from (5.5) we have the result:
If the following statement (o) D{U. k), Zn(k); Bury) — 0 as n — oo holds, then from
the inequality (5.5) we have (3)|] *(gn,hn;AiigH — 0 as n — oo and simultaneously
(y}PYnim (AL ) — PZni (AL ) —+ 0 as n — oc. Finally, under (o) we show that the
condition (4.2) holds Pz"(ki(AL y) = 1 asn — co. From (c) the uniform asymptotic

equivalence Z, ) ~ Upry, (0 — oo) holds for all Borel sets in B,x). So, corresponding
t0 Vaery = (Vn1,- .., V) with (4.10), the random vector Sp(x) = (Snt, . - -, Snk) With
the components

VI + 2{(Uni — £ni) — (Uni—1 — €ni1)} (i=1,...,k),

57) bni — Lni1

is asymptotically normally distributed according to {4.12) as n — oc. Thus,

Pt (ALT) = PSw (BEM) + P (B4

m PYr (BE) + PVro(BI M) — 1 as m— oo

n{k)

Therefore, from (v) we have the desired result. Consequently, in case of our approx-
imation problem, we have proved the equivalent relations among three statements in
Section 1.
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