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Abstract. For estimation of functions involving only parameters of interest, in the
presence of nuisance parameters, some optimality properties are established for par-
tially sufficient (i-e. p-sufficient) statistics in two classes of regular probability models.
The results are based on a characterization of regular unbiased estimating functions
for parameters of interest in probability models for which a statistic exists such that its
marginal distribution depends on unknown parameters only through the parameters
of interest.
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1. Introduction

If a statistic is sufficient with respect to the unknown parameter w in a given prob-
ability model, then the choice of a suitable estimator of a given parametric function is
usually confined to estimators based on the sufficient statistic alone. The Rao-Blackwell
Theorem provides the theoretical justification, for this sufficiency reduction, when using
the squared-error loss function or, more generally, using convex loss functions.

Suppose now that the unknown parameter w is expressed as (f; ¢) where # is the
parameter of interest and ¢ is the nuisance parameter. This paper establishes a gener-
alization of Rao-Blackwell Theorem for estimation of functions of parameter 8, in the
presence of nuisance parameter ¢, for two broad classes of probability models under the
Cramér-Rao type regularity assumptions. These two classes are specified as M and M,
in Section 2.

In particular, for the class Ay, Theorem 2.1 in Section 2 extends the results due
to Fraser (1956} to a larger class than the one considered by him, and it also provides
a sharper version of the thecrems than Fraser’s; however, Theorem 2.1 requires the
stronger assumptions of regularity. For the class My, Theorem 2.2 in Section 2 provides
a generalization of Rao-Blackwell Theorem which is even stronger compared to Theorem
2.1.

Theorems 2.1 and 2.2 may be interpreted as generalizations of Rao-Blackwell Theo-
rem in the context of notions of sufficiency with respect to 8, in the presence of unknown
&, i.e., partial sufficiency (or simply p-sufficiency) with respect to € in the terminology
of Basu (1977, 1978).
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There are several definitions of p-sufficiency in the statistical literature, viz. S-
sufficiency in Basu (1977) and Barndorff-Nielsen (1978), G-sufficiency by Barnard (1963)
as it has been termed by Barndorff-Nielsen (1978), M-sufficiency by Barndorff-Nielsen
(1978), L-sufficiency by Rémon (1984) and sufficiency (with respect to #), ignoring ¢, as
defined by Godambe (1980). The definition that is relevant to the classes My and M»
discussed in this paper is the one based on the generalized Fisher information measure,
I(#;w), defined by (4.2} in Section 4. This generalization for the scalar case is due to
Godambe (1984) and its matrix version has been used by Bhapkar (1989, 1990).

Section 2 gives the regularity assumptions and the statements of the two theorems.
Proofs of the theorems are given in Section 3; they depend on Lemma 3.1 which is estab-
lished in the Appendix. The p-sufficiency of § with respect to # under conditions M,
and/or My is discussed in Section 4 in the context of the generalized Fisher informa-
tion, Ig(#;w), with respect to #. Some examples are also illustrated in this section. The
concluding remarks in the last section point out the relationship between the conditions
M, and the definition of sufficiency with respect to @, ignoring ¢, given by Godambe
(1980), when there exists a statistic which is ancillary with respect to 8.

2. Main results

Let PX denocte the probability distribution of a random variable X with sample
space x with w as the unknown parameter in space Q. Assume that X has the probability
density function (pdf) p(z;w) with respect to a o-finite measure p.

We assume that the interest parameter 8 and the nuisance parameter ¢ are variation
independent, i.e. ) = @ x ®, and the parametric spaces © and ® are open subspaces of
Euclidean spaces of dimensions dy and dsz, respectively.

Suppose now that the statistic (.5,7') is sufficient with respect to the whole param-
eter w; i.e. (S, T) is sufficient for the family of distributions {P,‘SX) :w € §1}. Without
loss of generality we may confine our attention to estimators based on (8,T) alone, for
estimation of any given parametric function of w, in view of the Rao-Blackwell Theorem
(see, e.g. Theorem 4.2.1, Bickel and Doksum (1977)). For simplicity, assume then that
the joint distribution PT) of (5,T} has the pdf p(s,t;w) with respect to a o-finite
measure p.

The joint distribution is now assumed to be regular in the sense that the Crameér-
Rao regularity conditions are satisfied for both the marginal distribution PESS) of §, with
pdf f(s;w) with respect to a o-finite measure v, and the conditional distribution P,,ETls)
of T', given s, with pdf h(f | s;w) with respect to o-finite measure 7, for almost all s.

The other fundamental assumption in this paper is that the marginal distribution
of § depends on w only through #. Hence we write hereafter f(s;8) as the pdf of S.

The specific Cramér-Rao regularity conditions on (S,T) are then listed as R in the
Appendix.

Now the class M of distributions of (5,T) is the class which satisfies the following
conditions:

My: (i) The marginal distribution PG(S) of § depends on w only through &,
(ii) the joint distribution PS™T of (S,T) satisfies regularity conditions R, and

(iii) the conditional distribution of T, given s, depends on w only through § = &{w),
where § is differentiable and ¢ = (#,6) is a one-to-one transformation of w = (6, ¢).

We have then the following result:

THEOREM 2.1. Suppose the joint distribution PLSS’T) satisfies conditions My. If
there exists an unbiesed estimator U = U(S,T) of a real-valued parametric function
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w(#), where w(f) is differentiable, such that Var, U < oo, then there ezists V = V(5)
such that

(i) EgV =w(#)
and
(ii) VargV < Var, U, all wef.

COROLLARY 2.1. If conditions of Theorem 2.1 hold, then with any convex loss
function to estimate a real-valued function B(8), the risk function R(w, V) of V satisfies
the inequelity R(w,V) < R(w,U) for allw € Q.

The proof is deferred to the following section.
The above theorem is a sharper version of the results due to Fraser (1956) in a
number of ways, When é = ¢ in M; Fraser’s Theorem 3 (p. 841 (1956)) requires fur-

ther assumption of completeness of the family {Pg(s) : # € ©}. Also the result at-
tributed to Fraser, as interpreted by Basu (p. 360 (1977)), states in our notation that
Vary V < Var, U for estimators U = U(S,T) which have variance depending on 8 alone;
Theorem 2.1 above requires no such restriction on U. Finally, Theorem 2.1 holds even
when & # ¢, especially when § and § are not necessarily variation independent. However
we note that the theorem does need stronger assumptions of regularity of distributions
and differentiability of parametric function to be estimated.

The other class M of distributions is the class which satisfies the following condi-
tions:
Mo (i) and (ii) as in M,,

(iii} the family of conditional probability distributions { piTe) . ¢ € P} of T, given
s, is complete for every fixed # € © for almost all s,

(iv) S and T are stochastically independent.

We have then the following:

THEOREM 2.2. Suppoese the joint distribution PL,(,S‘T) satisfies conditions Ma. If
there erists an unbiased estimator U = U(S,T) of a real-valued parametric function
w(f), where w(8) is differentiable such that Var, U < oo, then U = V(8) with probability
one for some function V.

The proof is deferred to the following section.
It may be noted here that the condition {iv) in M, is essential; some remarks are
made in Section 5 regarding the role condition (iv) plays.

3. Proofs of Theorems

The proofs of the theorems in Section 2 are based on Lemma 3.1 helow which
provides a convenient representation of any reguler unbiased estimating function (RUEF)
for the parameter of interest &.

Let C be the Hilbert space of real-valued functions ¢ = ¢(s, ;) which satisfy

E oS, T;w)=0

3.1
(3-1) E (8, T;w) < o

for all w € Q. Suppose G = G(S,T) is the subspace of C spanned by real-valued functions
g = g(s,t;8) which depend of w only through the parameter of interest 8. If g is
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differentiable with respect to elements of 8, and if the relation J gpdy = 0 can be
differentiated with respect to elements of w, then we refer to g as a RUEF(even in the
vector case d; > 1).

Let G(85) be the subspace of G of functions g depending on (s,t) only through s,
and suppose Go{S) is the subspace (in G(S}) of functions g = go(s; #) uncorrelated with
the score function ly(s;6) = dlog f(s;0)/56, assuming regularity conditions R.

LEMMA 3.1 Assume that the marginal distribution of § depends on w only through
8 and the joint distribution of (S,T') satisfies the reqularity conditions R. Then for any
g € G(S,T) we have the representation

(3.2) 9(5,t;0) = b'(s, t;0)ls(5;6) + go(s; 6),
where go € Go(S) and E,[b(s,T;8) | 5] = a(w) for almost all s.

This lemma has been established by Bhapkar (1997); for the sake of completeness
this proof is included in the Appendix. Lemmas A.2 and A.3 essentially prove Lemma,
3.1 above.

PROOF OF THEOREM 2.1. Suppose now that U = U(s,t) is to be used as an
estimator of some parametric function of ¢ alone, and assume that E,U(S,T) = w(#),
and Var,, U < o0. Then g(s,t;8) = U(s,t) — w(#) is an UEF for 6.

In view of the characterization (3.2) we have

Uls,t}) —w(f) = g = b'(5,t;6)lg(s;6) + go(s; §)

for some go € Go(S), where E,[b(s,T;6) | 5] = a(w). Taking expectation with respect
to the distribution of T', given s, we have

(3.3) V(siw) —w(8) = a'(w)l(s;8) + gols; 0),

where V(s;w) = E,[U(s,T) | s]. Multiplying by §(S;8) and taking expectation with
respect to S, we get

(3-4) E,[V(S;w)(5:6)] = a'(w) I (8),
since lp(5;8) elements are uncorrelated with Go(S).
Let A*(t | 5;8) = h(t | s;w) be the conditional pdf of T in view of condition (iii) M.

In terms of the new parameter ¢ = (6, 6), we have p(s, t;w) = p*(s,t;9) = f(s;0)h*(t |
8;6}. Assuming that the UEF g(s,t;8) = U(s,t) — w(8) is regular, the relation

/g(s,t;a)p*(s,t;zb)du(s, ty=0

can be differentiated under the integral sign with respect to §. Equivalently,

[ Uls, (p* (s, t; 9)du(s, 1) = w(0),

(3.5) ie. /V*(s;é)f(s;ﬂ)dv(s) = w(#),
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can be differentiated with respect to 8, where V*(s;8) = V{(s;w) = E,[U(s,T) | 8}, in
view of M;. Thus, we have from (3.5)

BulV(5:0)(5:0)] = | 2507 |

and, hence,

S e — |20

1)) - | 250
in view of (3.4), where a*(¢)) = a(w). Thus, a*{¢)) = [I{S)(G)]_l[%)—]', and from (3.3)
we have V*(s;6) = w(8) + [a*{¢)]"l(s:9) + go(s;8). But the right hand side term is
now depending on 4 only through #, while the left hand side depends of ¥ only through
6. Thus, it follows that E,[U(s,T) | s] = Ey[U(s,T) | 8] = V(s} independent of ¢,
or equivalently of w. Thus if U(S,T} is unbiased for w(8), so is V(.5); furthermore we

immediately have
Var,V (8} < Var, , U(S,T), all wef. |

PrOOF OF THEOREM 2.2. Since E,U(S,T) = w(8), g = g9(s,t;8) = U(s,t}) —w(f)
is a RUEF for 6 under the assumnptions of the theorem.
Now for any RUEF g, we have the representation

g(s,4;8) = b'(s,t;0)lp(3; 8} + go(5: 8)

in view of (3.2). We first show that under assumptions M,, b(s,t;8) = b*(t;0) a.e. (u},
for some b*.

Define b*(t;8) = E,[b(5,t;8) | t] = Eqb(S,t; ) in view of independence of S and T,
and the condition (i) in Mj. Let bo(s,t;6) = b(s,t;8) — b*(t;8). Then E,[bo(s,T;8) |
s| = E,bo(s,T;0) = E b(s,T;8) — E,b*(T;8) = a(w) — a(w) = 0, since E,b(s,T;0) =
E,[b(s,T;8) | s] = a{w) and E b*(T;8) = E {E,[b(S,T;8) | T|} = E.b(5,T;8) =
E{E.[b{S,T;8) | S]} = a{w). But E,[bo(s,T;6) | s] = 0 implies bo(s,t;6) = 0 a.e.
(). Hence b(s,t;8) = b*(t; ).

Thus we have

(3.6) U(s,t) —w(8) = g(s,4;,6) = [b"(£;0)]'lo(s; 8) + go(s; 6),

for some go € Go(S), where E,b*(T;0) = a(w).
Multiplying both sides of (3.6) with I;(S;8), and taking expectation with respect to
8, for fixed £, we get

(3.7) Eo[U(S, 0)t(5;6)] = [b*(t:6)) 1) (6).
But for every fixed ¢,

(35) ElU(S.08(5:0)) = | S :0)|

in view of the regularity assumption for the UEF, where U*(t;0) = EgU(S,t) =
EplU(S,t) 1]

However E,U(T:0) = E,U(S,T) = w(F), so that E,[U*(T;6) — w(f)] = 0, and
then completeness implies U*(¢; #) = w(8), a.e. ().
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Hence, in (3.8) we have

B (s.04(50) = |22,
Thus in (3.7), we have
be(t:0) = 10 | 2507

and, hence b*(t;8) = a*(#) for some a*. From (3.6), then, it follows that U(s,t} = V(s)
a.e. (u) for some V. Thus, the theorem is proved.

4, Partial sufficiency of §

For the classes M; and M; of probability distributions considered in the earlier
sections, S may be considered to be sufficient with respect to #, when ¢ is unknown
(i.e. p-sufficient for #). It has been shown (Bhapkar (1997)) that S contains the whole
generalized Fisher information with respect to # that is available in (S, T"), when the joint
distribution satisfies the regularity conditions R.

For the case of scalar & (i.e. d; = 1) the generalized Fisher information with respect
to 8 in (S,T) is defined by (Godambe (1984))

{4.1) IET06,w) = inf E,[f(S, T;w) - u(S, Tsw);

here £p(s,t;w) = dlogp(s, t;w)/06 and U is the orthogonal complement in C of G, the
class of functions g = g{s,¢; @) in C which depend on w only through 6. More generally
for the vector 6 (i.e. di > 1) the generalized information matrix with respect to £ is
defined as

(4.2) 15T (0;w) = infu B, [(S, T;w) — u[lg(S, Tyw) — ul’;

here now u = u(s,t;w) is a vector with elements from 4. It has been shown by Bhapkar
and Srinivasan {1994) that

(4.3) 187 (G;w) = E,g*(5,T;0)g* (S,T; ),

where g* is the vector of projections of elements of §y(s,¢;w) on G.

It can be shown (Bhapkar (1989)} that confining % in (4.2) to a sub-class of U/
consisting of functions u(s,t;w) = N(w)l(s,t;w) leads to the usual Fisher information
with respect to @ (see, e.g., Efron (1977), Liang (1983), Zhu and Reid (1994)), defined
by

(4.4) I(S’T) (9, Ld) = Igp — IQ¢I¢-¢1 I¢,9,

when the Fisher information matrix is partitioned as

Iy I
weme=[i gl

Of course the expression (4.4) is valid for the case of positive definite Iy4; for a more
general expression see Bhapkar (1990). In any case we have

(4.5) 157 (6;w) < I5THB; W)
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as proved in Bhapkar (1989).
It turns out that for distributions in AM; we have

(4.6) 18T (8;w) = I57)(8;w) = I9)(8),
while for distributions in Ay we have
(4.7) 187 (8;0) = I9(0) < 1T (6;w).

The properties (4.6) and (4.7} have been used to claim (Bhapkar (1990, 1997}) the -
partial sufficiency property of S, in classes M; and Ms, on the basis of generalized
Fisher information with respect to #.

Another justification for such a claim is provided by the fact (see Bhapkar {1997))
that in classes M; and M, the marginal score function of S, viz. ly(s; 8) = dlog f(s;8)/
80 happens to be the optimal unbiased estimating function for 8. Note that this opti-
mality holds in the class of all regular unbiased estimating functions based on § and T',
and hence more generally in the class of all regular unbiased estimating fuctions.

Now Theorems 2.1 and 2.2 in this paper have provided a further justification for
this claim, especially in the estimation context.

Below now are given sotne examples of models where such p-sufficient statistics exist.
First, refer to Examples 2-5 of Basu (1977) for illustrations of S-sufficient statistics, i.e.
statistics wich satisfy M and § = ¢ in condition (iii). As an example of situation where
8 # ¢ we have the following example.

Example 4.1. Let & = (2,...,%,) be a random sample from the p-variate normal
distribution with mean g and known covariance matrix L. If g’ = (g}, ) and @ = i,
then § = X; is p-sufficient, since the conditional distribution of T = X, depends on
w = p only through 8§ = g, — £, 57 14 -

We note here that the condition M, is satisfied. Furthermore § = X; is not
necessarily Fraser-sufficient (i.e. S-sufficient in the terminclogy of Basu (1977)) especially
when p, is restricted.

More generally, when the positive difinite covariance matrix ¥ is unknown, and &
is the set of elements of both g, and ¥;;, we have p-sufficiency of S, which is the set of
elements of both X; and A;;, whenn>p—1, A =37 (X;— X)(X;— X) and A is

partitioned as
Ay A
A= .
[ Az Ax ]

These examples, and especially example 4.1, bring out the significance of Theorem
2.1. It is enough for estimation of w(f) to confine attention to estimators based on X;,
which has distribution depending on € alone, provided the remaining part of X, say
X5, has no additional information with respect to @ (in the sense that (4.6) holds with
S =X, and T = X5) in view of the fact that the conditional distribution of X, given
X1, depends only on ¢ which satisfies condition (iii) in M;.

As examples of models where conditions My are satisfied, we consider X =
(X3, Xa,...,X,), a random sample of size » from normal, inverse Gaussian or gamma
distributions as listed in Table I of Yanagimoto and Yamamoto (1993).

Note however that Yanagimoto and Yamamoto assert only that the marginal score
function of S is optimal in the class of regular estimating functions based on S alone,
while the assertion in Bhapkar (1997) is stronger in the sense that it is optimal in the
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class of all regular unbiased estimating functions. Furthermore, we have property (4.7)
and, also, Theorem 2.2.

It is interesting to note with respect to relation (4.7) the following details below for
the normal distribution.

Ezrample 42 Let X = (Xy,...,X,) bea random sample from normal distribution
with variance # = 0% and mean ¢. For § = (X, — X)?, T = X we have p-sufficiency
of § with respect to o2 (for n > 2) since conditions A3 are met. We have then

8,7 n—1
187 (0;w) = 19(0) = T
In this case it can be shown that
8Tg.. o H{X)rg. a1,
I( )(Biw)_l( )(Baw)_Wa

another interesting feature to note is that for the case n = 1 we have I{(#;w) = 1/207,
while Iz(8;w) = 0.

5. Remarks

For the class of regunlar distributions meeting conditions M; and/or M2, S may be
considered p-sufficient with respect to 8 in view of the justifications pointed out in the
previous section. More generally, when data X provide sufficient statistic (S, T} with
respect to w, where (5,T) meets conditions M; and/or Mg, then § can be claimed to
be p-sufficient in view of (4.6), (4.7) and the equality

(5.1) Ic(;x)(ﬂ;w) = I((;S'T) (8; w),

which is obviously anticipated (see Bhapkar (1991) for a formal proof).

It may be noted here that the condition (iv) in Mj is essential. Although Lloyd
(1987) had claimed that conditions M} (i.e. M; without (iv)) would lead to optimality
of marginal score function of § as an optimal unbiased estimating function for 8, a
counter-example was provided in Bhapkar (1995). See Bhapkar (1997) for discussion on
this matter.

Conditions (iii) and (iv) in M3 may be represented in an equivalent form, in view of
condition (iv), with (iii) replaced by (iii)’ the family of marginal probability distributions
{PLET) 1 ¢ € &} of T is complete.

Now a statistic T', which satisfies (iii)’ has been termed ancilloary with respect to 8
by Godambe (1980) (or p-ancillary in the complete sense in Bhapkar (1989)) provided
the conditional distribution, given ¢, depends on w only through #. We note that this
qualifying condition is met in M3 in view of conditions (i) and (iv). Thus, under condi-
tions My we have not only § p-sufficient with respect to € {according to our definition in
Section 4), but we also have T' p-ancillary with respect to 8. However, we note that the
condition (iv) in Mj plays a crucial role here too. Without (iv), neither (iii) nor (iii)’,
in conjunction with (i} and (ii) in Ms, would necessarily lead to either p-sufficiency of
S or p-ancillarity of T'.

In the context of Example 4.2, Theorem 2.2 adds considerable force to the claim
that § = Y (X; — X)? be considered p-sufficient for # = 02, when it is considered in
conjunction with the property

(5.2) 159(8:w) = 19)(8)
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and, also, the property of optimality of the marginal score function of § as a RUEF for
8.

It may also be noted here that & has also been shown to be G-sufficient, and also
M-sufficient, by Barndorf-Nielsen (1978). In this light the facts mentioned in Section 4
provide a strong justification for considering S to be p-sufficient with respect to 8 = o2,
While discussing Fisher's fiducial argument Seidenfeld (1992) had posed the question,
“...in what sense 9 can be considered to be sufficient with respecct to o2 in the absence
of any knowledge concerning p...” The justification in this paper does provide one
affirmative answer to this question.

Appendix

For the lemmas that are proved here, assume the regularity conditions R, given
below, for the joint distribution P5>7 of (8,T), with the pdf p(s,t;w) with respect to
measure f.

R: (i) The marginal distribution Pés) of § has pdf f(s;8) with respect to measure ».

(ii) The relation [ f(s;6)dv(s) = 1 can be differentiated twice under the integral
sign with respect to elements of 9,

(iii) The Fisher information matrix I'5}(8) of § is positive definite.

(iv) The conditional distribution P{T15) of T, given s, has pdf A(t | s;w) with respect
to measure dn, a.e. ().

(v) Therelation [ A(t | s;w)dn,(¢) = 1 can be differentiated with respect to elements
of w twice under the integral sign.

{vi) The relation [ g(s,t;8)p(s,t;w)du(s,t) = 0 can be differentiated under the inte-
gral sign with respect to elements of w for any real-valued function g such that E,g =0
and E,g? < oo, where g is differentiable with respect to elements of 4.

Condition (vi) is essentially the regularity condition on the unbiased estimating
function g for #; see Godambe and Thompson (1974).

Let II = II; x II; be a probability measure over 2, which is the product of measures
I1; and Il over © and @, respectively.

Consider the Hilbert space C of real-valued functions ¢ = ¢(s, t;w) which satisfy

E(e) = /c(s,t;w)de,S*T)(s,t)dH{w) =0
and
E(?) = /c2(s,t;w)dPéS‘T)(s,t)dII(w) < o0;

then the norm of ¢ is [E{c?)]'/2.
Define now

G={g=g9(5t9):g(s,t:8) = c(s,£,6,¢) a.e. (ux II) for some c € C}
G(S) ={9=g(s;0): g(5;0) = 9"(5,1;0) ae. (u x Iy) for some ¢g* € G}
G1(5) = {91 = 01(5:6) : 91 (5;8) = ¢'()l(5;6) and gy € G(S)}.

The following two lemmas are easy to prove.

LeMMA A.l. Let Go(S) be the orthogonal complement of G1(S) in G(5). Define

G*(5,T) = {9* =¢"(s,4;6): g" € G and

k*(s;6) = / 9*(s,t;8)dPT19) (1)dII, (¢) € G1(S) a.e. (v % 111)}.
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Then G = Go(S) & G*(S, T).
LEMMA A2, Let G(S,T) be defined by

G(S,T)={g9=9(s,t;6) : g€ G and
g =b'(s,t;0)lp(5;0) such that
E,(b(s,T;8) | 5] = a{w) a.e. (v x M)}

Then (i) G(S,T) C G*(S,T), and (ii) +f g* € G*(S,T) and g* L G(5,T), then k*(s;8) =0
a.e. (v x1I).

Then we have the following:
LEMMA A.3. IfII is the one-point distribution at w, then G*(S5,T) = G(5,T).

PROOF. If ¢g* is defined as in Lemma A.2, then k*(s;w) = 0, where k*(s;w) =
E.lg(s,T;8) | s], in view of Lemma A.2. Thus, g* € G(T' | 5), where

G(T | S)={g=9g(s,1;0) : g € G, E.[g(5,T:0} | s] = 0, ae. ()}

However G(T' | §) € G(5,T), so that g* LG(T | §), since g*LG(S,T). Hence g* = 0 and
the lemma follows.
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