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Abstract. Satten ef al (1998, J. Amer. Statist. Assoc., 93, 318-327) praposed an
approach to the proportional hazards model for interval censored data in which pa-
rameter estimates are obtained by solving estimating equations which are the score
equations for the full data proportional hazards model, averaged over all rankings of
imputed failure times consistent with the observed censoring intervals. In this paper,
we extend this approach to incorporate data that are left-truncated and right cen-
sored (dynamic cohort data). Consistency and asymptotic normality of the estimators
obtained in this way are established.

Key words and phrases: Cox model, current status data, interval censoring, left
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1. Introduction

The proportional hazards or Cox model (Cox (1972)) is used for assessing the ef-
fects of covariates on survival time. The standard approach of estimating the model
parameters via the partial likelihood is applicable when a distinet failure or censoring
time is observed for each individual or experimental unit. However, in many instances,
one may only know a time interval in which the failure occurred, in which case we say
the data are interval censored. More specifically, for each individual, instead of a failure
time, we observe a censoring interval [¢;,v;) which is known to contain the actual failure
time. Special cases of interval censoring include grouped data {Kalbfleisch and Prentice
(1973)), where individuals are each seen at the same times (e.g., every six months or
longer), and current status data (Grummer-Strawn (1993)), where individuals are seen
only once after study enrollment.

When fitting the proportional hazards model to interval censored or grouped data,
several approaches are currently available. Finkelstein (1986) considered a parametric
method, in which the baseline distribution is fit simultaneously along with regression co-
efficients, by maximizing the full likelihood of the observed data; Diamond et al. (1986)
proposed a similar model for current status data. Many authors have considered use of
the marginal likelihood of all possible rankings for grouped data (Peto (1972), Kalbfleisch
and Prentice (1972, 1973), Sinha et al. (1994), Delong et al. (1994)). Although actual
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failure times are not observed, a rank-based approach to inference on regression param-
eters in the proportional hazards model that does not require knowledge of the baseline
distribution is available (Satten (1996)).

Very recently, Satten et al. (1998) proposed a semi-parametric approach where a
parametric form of the baseline distribution is assumed. Regression parameter estimates
are then obtained by solving estimating equations which are the partial likelihood score
equations for the full data proportional hazards model, averaged over all rankings of im-
puted failure times consistent with the observed censoring intervals. While a parametric
baseline hazard is fit to provide a model for imputing the missing failure times, the
method is semi-parametric in that the full data estimating equations for the regression
parameter do not include information on this baseline hazard. The cost of this flexibility
is that the resulting estimating equations for the regression parameters must be solved
using Monte-Carlo methods, specifically, stochastic approximations. An advantage to
this approach is that it can be adapted to handle data that are both left-truncated
(Andersen et al. (1993)) and interval-censored; this generalization is considered here for
the first time. Such data arises in dynamic cohort studies (Weinstock et ol. (1998)),
where the baseline hazard is a function of calendar time, rather than time on study.
In these studies, rolling admission of individuals who have not yet experienced a failure
event results in left-truncated data, while subsequent periodic observation causes failure-
time data to be interval censored. In the next section, we discuss this approach in more
details.

The main emphases of this paper are: to provide arguments for the consistency
and asymptotic normality of the estimators proposed by Satten ef al. (1998), which did
not contain any proofs; to extend the Satten et el approach to left-truncated as well as
interval censored data; and to assess the performance of these estimators by a simulation
study. Finally, the details of the proofs are themselves interesting as they are extendible
to other estimating equations that are averages of full data estimating equations.

The asymptotic results and their proofs are presented in Sections 2 and 3. Section 4
contains a small simulation study to assess the effect of mis-specification of the baseline
hazard function on the estimated regression parameters. The paper ends with a brief
discussion in Section 5.

2. The estimators and their asymptotic properties

Following Satten et al. {1998), we consider an estimating equation which is the
expected value of the partial likelihood score function for the full-data proportional
hazards model with respect to the joint distribution of the rank order of the imputed
failure times for all the left-truncated and interval-censored observations. Specifically,
let £ = (t1,t2,...,1,) be the vector of (possibly right-censored) failure times; let § be a
vector of right-censoring indicators with components §; = 0 if the i-th individual is right
censored and & = 1 otherwise. Let 7; be the left truncation time for the ¢-th individual;
due to left truncation, data from the i-th individual is only observed because her failure
time exceeds 7;. If data are not subject to left truncation, then the distribution of 7; is
taken to be degenerate at 0. Let £ and u; be the left and right end-points, respectively,
of the censoring interval. Without loss of generality, we take ¢; > 7;. Let ¢, w and 7
denote vectors with i-th component #;, u; and 7; respectively. Let 2 be a vector of
covariates for the i-th observation, and let & denote the matrix whose i-th row is .
Let d; denote the vector (=, £;,u4,7;,6;) and let d denote the matrix whose i-th row is
d;. We assume that the observed data comprise iid samples of d;. Let F(t | d;5,6)
be a parametric family of conditional distributions of failure times ¢ given the observed
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censoring intervals, truncation times, covariates, and right-censoring indicator 8, and
assume this family of distributions contains the true distribution of ¢ and satisfies the
proportional hazards assumption when £ is unrestricted. For this family of distributions,
the conditional expectation of Sa(t | 6,7, z; 8), the partial likelihood score function for
the full data (left-truncated) proportional hazards model, given the observed censoring
intervals, is

(2.1) Sp(B.8) = Ep( 4656t | 6, 2,7, 8)]
= [ 85t 1.2,ms)ar(e | dif6);
the propasal is to estimate 8 by the solution to

(2.2) S5(8.6(8)) =0,

where é(ﬁ) is an estimate of the parameters #, as a function of §, required to specify F.

In equation (2.1) above, the partial likelihood score function for the full data (left-
truncated) proportional hazards model Sz(t | §, €, 7;8) can be written as follows (see
e.g. Andersen et al. (1993)). Let

R?‘, = {J : tj >t a.nd‘rj < ti};

note that if 7; = 0Vi (no left truncation} then the risk sets R; reduce to the usual risk
sets for the proportional hazards model. As when left truncation is absent, the partial
likelihood score function can be written as

n . ﬁT:r
. o 2
Ss(t |6,0,7:8) =Y 6 {m,;— Lyer % 7 }
i=1

Z:.:f €R; eﬁT 3

The distribution F' has the product form

(2.3) F(t]d;8,0) =[] Fit: | tiwi, 2 8,0 I(t; 2 €)%,

i=1

where I(C) = 1 if C is true and 0 otherwise. It is assumed that the censoring is indepen-
dent of failure times and the truncation mechanism so that

F(t; | ;8.0) - F(¢; | ;5.9
Fu; | :;8,8) — F(4; | z; 8.0)

As F(t; | @;;8,8) is in the proportional hazards family, we have

F(ti ] Ei,u,;,a:,;;ﬂ,ﬁ) = I(f; <t < 'Uq,)

Flt; | 2:8.0) =1 [1 - Foft; | )™,

where F,(t | 8) is the cumulative distribution function of failure-times in the baseline
group; we will refer to F,, as the baseline distribution. We will denote by A,(¢) the hazard
function for the distribution F,.

The log-likelihood of the observed data (4;,u;,8;}, 1 <t < n, given ¢ and 7, is

o b . F(utlm“ﬂ,e)‘—F(lemuﬂaa)
(2.4) L —;5* In [ 1-F(r | ;:8.9) }
1— F(4; | #;8,0)
{1 -6} [1 —F(r | a:,-;ﬂ,ﬁ')] '
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For a given B, & can be estimated by maximizing £° with respect to 8. Estimating 8
using {2.2) and 8(8) which maximizes (2.4) with respect to @ is equivalent to solving the
estimating equations

(2.5) Sp(8,60) =0
(2.6) Us(8,8) = 3 _Up(d::8,0) = 0

simultaneously for 3 and é, where

Flu; | z;;8,0)— F(¢; | %;3,9)]
1 — F(7; | ;06,8)
o8
1-F(¢; | :;8,8)
dIn
—'r—(].—é@) [1_Fg;z|$uﬁ79)]

om |
(27) U3(disB,6) = 5,

For future use, we define the corresponding partial derivatives with respect to 8 as
3(di; 8,0), and define the maximum likelihood score function for 8 obtained from (2.4)
as

aLe il
U3(8.0) = 57 = D Up(d:i5,6).
i=1

We also define the score functions which would be used in maximnm likelihood estimation
from the ‘complete’ data problem, i.e. those that would result if we had observed the
actual failure times for the (left-truncated) observations which were interval censored.
Specifically, define

f(t: | =:,6,9) [l—F(zilmi,ﬁ,a)}
d1n dln
— Ti i3 —F i i ,9
U5 (11,61, 24, 733 ,60) = 6—— F(gﬂ"‘" B8 (15— g;‘“%ﬂ 3

f{tzlmnﬁae) [I—F(tz’:ﬁ,ﬂ,g)]
dln Aln
1— F(7; | :;8.0) 1 - F(r; | #;8,0)
50 +(1-4) 50

g(tiﬂ 6‘i5 €T, Tz;ﬁre) = 61;

n

Us(t| 8,2, 7:8,0) = > U5(t:, 6:, 1, 7;8.8),
i=1
and

Us(t | 6,2,758,0) = > Us(ti, bi 2,7 8,0).

i=1

Note the relation between the ‘observed’ and ‘complete’ data score functions gives
U3(6.0) = [ Us(t 18,2,7:4,0)dF (2| d:,0),

Let 8, and @, denote the true values of 8 and #. First, note that by equation
(2.1}, assuming F,(t | 8,) and the proportional hazards assumption are correct, the
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unconditional expected value of Sg(8,,8,) is equal to the unconditional expected value
of Sp(t | 8, z, 7, B), which in turn is zero (Andersen et al. {1993}). Hence, the estimating
equation (2.5) is unbiased. By the usual properties of maximum likelihood estimation,
the estimating equation (2.6) is also unbiased. If S$3(8,6) were a sum of iid terms
for each observation, we could use standard results for estimating equations to conclude
agymptotic consistency and normality of (3,8). This not being the case, a deeper analysis
is required to establish these asymptotic results. Also note that the usual martingale
theory does not seem to apply to interval censored data, as conditioning failure times to
lie in a finite interval involves both past and future information in the hazard function.

Following similar arguments as in Lin and Wei (1989), one can show that n=1/28,
{t|6,z,7;8) is expressible as a sum of iid terms up to ¢,(1); specifically,

(2.8) n~128s(t | 8,x,7;8,) =n" /2 Zn:qb(t,-, @, 7, 04: 8,) + 0p(1),
i=1
where
. — s(l)(ﬂa t'l')
{2.9) ot @i, 7,0 8) =6, (9% - W)
v [ s, 1)\ dH(t)
- m‘./u %) (&' s, t)) 50 (8,1;)
and where
Yi(t) = I[t; > ¢, < 1],
H(t) = P[t; <t,86; =1,7 < ],
(2.10) SOB Y =n Y It 2t < tef ®a®,  r=0,1,2
i=1
and
(2.11) s¥)(8,1) = EIST(8,1)).

In the above, for a vector a, a®" stands for 1, a and aa”, respectively for r =0, 1 and
2. We show that integration of (2.8) allows us to write

(212) n—1f2§ﬂ(ﬁo,eo) = n_1/2 i#’(‘ia ﬁmao) + Op(l)a

i=1

where

U

i ti, m‘isT‘iaéi; o dF t; gi:uis a:i;ﬁmeo if =1
(219) ¥(diB,0) =1 i & Bo)dF(t | )
¢4, i, 7,65 8,) if 6 =0

As mentioned earlier, we assume that d; = (&, €;,u;, 7, 6;) are iid, and that z is
bounded. Let ||a|| denote the Euclidean norm of a if a is a vector and the operatar
norm if a is a matrix. For notational convenience, let v and -y, denote (8,8} and (8,,8,),
respectively. We will assume, without specifying it on a case by case basis, that cer-
tain quantities are differentiable in the parameters %, at least in a neighborhood of the
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true value v,, and that the order of certain differentiation and integration can be inter-
changed. For € > 0 and b € RP for some p, let N.(b) = {b | |[b' — b|| < €} denote
the e-neighborhood of b. Throughout, v will denote the suprema of functions of 7y over
Ny;/al,), where K is a constant. If the function does not involve 8, then v denotes
the supremum over Nk, 7(8,).

We say that an iid sequence indexed by =, {g:(¥),i > 1}, satisfies the U-WLLN
condition at -y, if E{y, (7)) is continuous at 7,, and if for some § > 0, E(y{) < oo, where

Y1 = SUD |y, | <s/l41 (Y|, and if
(2.14) limsup E[Vi{y)} =0
»l0

for each v € Ns(v,), where Vi () = sup{|lyz1 (v) — »1 (7)]| : ¥ € N,{)}. If this condition

holds, then n=! ¥ y:(7) B Ely1(y)] uniformly in 4 € Nyja(v,); see e.g. Datta (1988).
Note that {2.14) can be replaced with more familiar sufficient conditions such as

1Y) = Ol < dllly = ¥IDW1 ¥y, 7 € Ns(,),

where d(z) — 0 as z — 0, and where E[W;] < oo0.

Let U(d;iB5,60) = U5(di;5,0)7, Us(d;B,0HT)T and US(E, 6, 7, 7;6,0) =
UG(t:, 8, i, 73 8,0)T, UG(4:, 65, &, 70 B, #)7)”. Assuming that the following regularity
conditions hold:

CL: ElU(dy;B,,0.)12 < oo (Ut 6,2, 7i58,,0,)| and w(dy,t1,61) =
SUP4ye N, () ||%w(t1 ;d1; 8,8, for some € > 0, have finite moment generating functions
in some neighborhcod of 0,

(2: The sequences {-g—g }, {%—‘f} }, {¢UT} and {pUT} each satisfy the U-WLLN

condition at 4,
we obtain the following theorem establishing the consistency of the sclution of the pro-
posed estimating equations.

THEOREM 2.1. Under Cl and C2, given any € > 0, there exist a K < oo and an
integer n, such that

Pr{{2.5) and (2.6) have a solution y withn'/?||%¥ —firo|| <K}>1-€VYn2n,

If we assume further that

C3: The matrix A = ’:An AIQJ is non-singular, where
Az A

(2.15) An = Q(B,) — E{¢(t1, &1, m1,61:8,)
WGt 61, 2,713 B,,60) —Uf;(dl;ﬁo,ﬂ,,)]T},
(2.16) Ay = E{¢(t1, 21, 11,61, 05,)
(UG (81,61, 21,715 8,,00) — U5 (d1;B,,00))7 ),

o .
(2.17) Ay = £ { HMild:8,8) ’
op BB,
a=8,
(2.18) Ay — 5| Hs(h1iB.6)
L

and
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(2) (1) 22
a6 - {45 6o _ ss(m(ﬁ;,?)z bsOg, )20 01

then we obtain the following theorem establishing the asymptotic distribution of the
solutions of the proposed estimating equations.

THEOREM 2.2. Let# = (8,8) solve (2.5) and (2.6) and n!/2(—+,) = Op(1). Then
under C1-C3,

n'2(4—v,) S N, V)

where the variance-covariance matriz 'V has the sandwich form

(2.19) V=A1.9.47"
with W is given by

v- (3 vl
where
(2.20) @y = E[p(dy; B,,8,)%(dy; B, 80) 7,
(2.21) U1z = EYp(dy; B, 0,45 (d1; B,.05)7),
and
(2.22) W2 = EUg(di; B, 00)U3(dr: B,.8,)"].
3. Proofs

The following two lemmas will be used to prove the theorems stated in Section 2.
The first lemuma shows that the estimating equations with interval censored data inherit
an asymptotic iid representation from the full data estimating equations.

LEMMA 3.1. Asn — oo,
(3.1) 128, () = n=1/285(y) + 0p(1)

uniformly iny € Ng, m{7,), for each K < oo, where

Sy = ¥(dsm).
i=1

PrOOF. Consider R,{8) = n~1/2{8s(t | §,x;8) — 85(t | 6, z; B)}, where

T

Sa(t|6,2;8) =Y lti, 2, 7,8 8).

i=1



REGRESSION WITH DYNAMIC COHOQORT DATA 167

Then
128 5(7) — S(m)} = / Rau(B)dF(t | d:5,0)

= f Ro(B)exp{n~2U°(t | 6,2,79") — U°(y")]}
. dF(t j d;ﬁoyg{)))

where «* lies on the line segment joining <y and ,. Therefore,

3.2) Vin 2{Ss(r) = Ss(} € AnBa,

where

an = exp{ K\ In 0 )i |

and

B, = E[(vnnnw) Dexp{-\/ IIH'WUC(?)H} | d;-n,].
Note that by a Taylor expansion,

Vi ARl < a2 ) + K -\ nla%”’(”) ”

The first term above is O,(1) since the central limit theorem ensures that n~1/2U°%(y,)
converges to a zero-mean normal random vector. The second term converges by the
U-WLLN condition to K - |]E%H°(dl;1) v, il; hence, A, = Ou(1).

To estimate the magnitude of B, consider its expected value;

1/3

B[B,] < (BIR2) 3(E [exp{?’K ViU “}D ’

where R = V||R.(8){. By a similar Taylor expansion as used above,
(3.3) Viin ™20l < [n PO )+ K on Y wla, 4, 6),
i=1

where w{z;, ¢;,6;) is defined in Cl. By elementary calculations with iid summands,
the moment generating function of the rhs of (3.3} is bounded in n (and, in fact, is
convergent). Note also that

(3.4) R}, < |R.(B) + K -\[||In"'Ta(t | 6,2,7:8) - Q(B,)]
VR[S St - @)

where Ip(t | 6, z,7;8) = 6%Sﬂ(t | 8§, &, 1; B) is the partial likelihood information matrix
for the full data (left-truncated) proportional hazards model. By similar arguments as in
Theorem 2.1 of Lin and Wei (1989) we get that || R,(8,)|| = 0,(1). By an adaptation of

?
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Theorem 3.2 (and Theorem 4.2) of Andersen and Gill (1982) to the case of left truncated
data, the second term of the right hand side of (3.4) is 0,(1). Because the U-WLLN
condition can be shown to hold for §¢/88, the third term of the right hand side of (3.4)

is 0,(1} as well. Therefore by (3.4), R}, = 0,(1). To prove that E[R;m] — 0, it is now
enough to show that the second moment of R}, is bounded. It follows from the properties

of $5(7,) and $p(7,) that
(3.5) limsup E||R.{8,)||* < oc.

Since the space of the explanatory variables & is bounded, it follows that

8{2 t S(I) :t®2
VI 'Za(t | 6,2, 7;8)|| < Vf” 0)(§ N 5(0)(59, t))z o

where M < co is a constant independent of n, and where

(t)iMa

N(t)y=n"") I(t; <t,6 =1, > 7).

i=]1
In addition, it can be verified that \/||ln~t 327, -a%qﬁ(t,;, T, i, 6, B,)|| has finite second

moment. Therefore, it follows from (3.4) that limsup, E|R}?] < oo, which in turn proves

that E{R; il ?] = 0. Therefore, E[Bp] — 0 and hence A, B, = 0,(1), proving the lemma
by (3.2). O

Let
9S5(8.0) 8Ss(B,8)
A (ﬁ 9) = [A?l(ﬂ,ﬂ) A?Q(ﬂ?o) — ___1_ oB 05‘3
e 2(8,8) An(8.6) n | 0Ug(B,6) 8Us(8,6)
oB ET)

A3, and AR, are easily obtained by differentiation of rhs(2.7) with respect to 8 and @,
respectively, while AT, and AT, are given by

28,0 = - [1Ta(t|6,2,7:8)
o Sﬁ(t 1 6:m$T1ﬂ)[U}c3(t !‘Ss z,T; B, e) - Ug(ﬁ:a)]T]dF(t [ dsﬁaa)

and
ALB.6) =~ [ Sslt 6.2, B)Us(¢16.2,7:6,0)~ U8, 0T aF(t | di5.6).
The next lemma establishes the local uniform convergence of the Hessian matrix.

LEMMA 3.2, For any K < oo,

V AL ~ Al = 0,(1).

Ny —172{%)

ProOOF. Convergence of A}, () and AJ,(7) follows immediately by the U-WLLN
condition. As shown before, \/||n=Zs(t | 6,2, 7;8) — Q(B,}|| = 0,(1) and is bounded;
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therefore the convergence in probability holds in L; as well. By a similar calculation as
in (3.2),

< ARE[Ch | d.7,)s

@6)  An=V|n™ [Zo(t18,mp4RE ] di) - QU6

where A, is as in (3.2) and

Cp = VH”_lzﬂ(t |61"B’T;ﬁ) - Q(ﬁO)HEXP{K ' V ”n_l’,?Uc(’r) H} = O‘p(l)'
Note also for large n,
kO
1) 020w Men{KIn U] + K73 (e t6) |
i=1

for some constant M independent of n. Using elementary calculations for the iid sum-
mands, the expected value of the right hand side of (3.7) can be shown to converge
to that of its in probability limit. Therefore, by the extended dominated convergence
theorem, E[C,] — 0 and hence

(3.8) A, 50

by (3.6). Using similar arguments as above we can show that

39  \/n" / R (B)US(E | 6,2,7:6,8) — US (8,0 dF(t | diy) % 0.
Note also that
6.10) 7t [ Byt 16,0,m BUG(¢ |8,2:6,0) - U380 ar (e | dim

= n—l/Z(Mﬁi,‘&‘,Ti,&aﬁ)[“%(ﬁ,;,&@,%,Ti;ﬁ‘a) _ug(d-i;ﬂ,G)]T
i=1
-dF(t | d;7)
L E{¢(t1’wl’Tl’él"ﬁu){uf?(tlaﬁla 31171;30780) - %(dl;ﬁmoo)]T}!

uniformly in ¥ € Ny 7 (7,). Combining (3.8)~(3.10) we obtain the uniform convergence
of AT,(7). Convergence of ATy(y) can be proved in by an argument which is similar to
that leading to {3.9) and (3.10). O

The two theorems of Section 2 can now be proved.

PROOF OF THEOREM 2.1. Let T(v) = [Sg(¥),U;(7)]7. We may assume without
loss of generality that A is positive definite by replacing T(y) by its product with an
orthogonal matrix if necessary. By the usual Taylor expansion,

(3.11) n 2Ty =072 T(y,) - An(ynt Py - v,),

where 4* is on the line segment joining -y and 7,. By Lemma 3.1 and the central limit
theorem, n~1/2P(y,) = Op(1). Let ¢ be arbitrary. Then there exists M < oo such that
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for all large enough =, on a set of probability at least 1 — ¢/2, [n~Y/2T(y,)|| < M. Let
A > 0 be the minimum eigenvalue of A. Choose K large enough that K2A/2— KM > 0.
Then using (3.11) and Lemma 3.2, we find that for all large enough 7, on a set of
probability at least 1 — ¢, (y— v, )  T(y) > n~Y(K2A/2 - KM) > 0, for |[y— 1, =
Kn~1/2, Hence, by a version of Brouwer’s fixed point theorem (Lemma 2 of Aitchison
and Silvey (1958)), on the same set of probability at least 1 — ¢, T'(y) = 0 has a solution

in NK/\/E(TO} O

ProoF orF THEOREM 2.2. Since T'(§) = 0, by Taylor expansion we have

(3.12) Ay I 2 (F — q,) =n"12T(y,)

where * lies on the line segment joining v and 4. Since [[§ — 4,|| = Ou(n"1/?), by

Lemma 3.2, A,(y*) 5 A. Also by the central limit theorem, n=1/2T(y,) < N0, o).
Hence, the theorem follows from (3.12). O

4. A simulation study

The results of Sections 2 and 3 establish the consistency and asymptotic normality
of the solution to the score equations (2.5) and (2.6). However, the integrals in equations
(2.1), {2.15)—(2.18) will generally be intractable. The Monte-Carlo procedure proposed
by Satten et al. (1998) must be used to solve the score equations and provide variance
estimates for the point estimates. This Monte-Carlo procedure is easily extended to
the case of left-truncated data considered here; the only change required is that the
partial likelihood score equation for # and the maximum likelihood score equation for @
be replaced by the versions presented here which account for left truncation.

In this section, we present the results of a simulation study to assess the performance
of our method when the assumed baseline distribution is mis-specified. For comparison,
we include the performance of the fully parametric method, i.e. maximization of the
likelihood (2.4} with respect to both 8 and 6. Results for the semi-parametric method
were obtained using the Monte Carlo methodology described above.

We generated 100 data sets each containing 500 failure times, a binary covariate,
and a left-truncation time. In each data set, 250 observations were generated with
z = 0 and z = 1, respectively. The data were generated using 8 = In(2) =~ 0.693
corresponding to a hazard ratio for covariate values £ = 1 to z = 0 of exp(f) = 2.0.
The baseline distribution used to generate these data was a log-logistic distribution
with shape parameter 4 and location parameter 0.01. For each observation, we also
generated 18 renewal times from a renewal process begun at time 0; the increments
followed a lognormal distribution with mean 15 and standard error 109.8. We used the
fourth renewal time as the left-truncation time. Observations for which the failure time
was earlier than the left-truncation time were rejected, and a new pair of failure times
and left-truncation times were generated until 250 observations were generated for each
covariate value. On average, 93.66 observations in each data set were discarded due to
left truncation.

Each simulated data set was then subject to three types of censoring: “light”,
“heavy”, and “current-status”. In light censoring, the censoring interval for the i-th
ordered failure time overlaps only with the (i — 1)-th and (§ + 1)-th ordered failure
times. Heavy censoring was achieved by using the renewal times described above. If the
fajlure time was before the 18th renewal time, then the first renewal times before and
after the failure time was used as the censoring interval; otherwise, the observation was



REGRESSION WITH DYNAMIC COHORT DATA 171

Table 1. Simulation results for log logistic baseline analyzed with Weibull distribution®.

Method 8 S.E.(3") S.E.(3 - 57}
No Censoring
Exact? 0.703 0.0945

{0.475, 0.919) (0.0892, 0.103)
Light Censoring

Parametric® 0.840 0.0975
(0.642, 1.092)  (0.0928, 0.106)
Semiparametricd 0.703 0.0943 5.1x10~8

{0.476, 0.919)  (0.0880, 0.103)  (3.2x107%, 13.9x 10~
Heavy Ceunsoring

Parametric 0.820 0.131
(0.531, 1.152)  (0.120, 0.151)
Semiparametric 0.711 0.128 5.8%107%

(0.357,0.993)  (0.0980, 0.159)  (3.8x107%, 7.6%x10™%)
Current Status

Parametric 0.743 0.152
{0.380, 1.166)  (0.133, 0.167)
Semiparametric 0.709 0.161 6.4x10~4

(0.367, 1.064)  {0.113, 0.231)  {4.1x10°%, 10.6x10~%)

a. Values shown are means of 100 simulations, and the ranges of the 100 simulations are
shown in parentheses. b. Exact refers to fitting the left-truncated proportional hazards model
to the actual failure times with no censoring. ¢. Parametric refers to a fully parametric model
for analyzing left-truncated interval-censored data. d. Semiparametric refers to the proposed
estimating equation approach for left-truncated interval-censored data using the right-censoring
form of the proportional hazards model.

considered to be right censored at the 18th renewal time. For the heavy censored data,
approximately 26.8% of the observations were right censored. The average number of
intervals each interval overlapped with (a measure of the extent of censoring used by
Satten et al. {1998)) was T1%. Current status data were created hy generating a single
independent log-logistic random variate s; for observation in each data set and choosing
as the censoring interval which of the intervals [r;, 7; + s;) or |1 + s;,00) contained the
true failure time. Approximately 50.3% of the observations fell into intervals of the form
[’Ti + 54, OO)

All analyses using the proposed semiparametric method and the fully parametric
method assumed that the baseline distribution was a Weibull distribution. For each
censoring type, we estimated the log-hazard ratio 3 and the standard error of 3 using
the proposed semiparametric method and the fully parametric method. The Monte-
Carlo procedure for parameter estimation with our proposed semiparametric method
used 400 steps and a block size of 50 (see Satten et al. (1998) for details); the standard
error of the Monte Carlo approximant to the true parameter estimate was also estimated.
For comparison, we also estimated 8 and its standard error using the exact failure times
using the standard proportional hazards mode],

Table 1 summarizes the results of our simulations. 3* denotes the approximate
solution using the Monte-Carlo procedure. For the light censoring, the proposed semi-
parametric approach gives point estimates and standard errors that are very close to the
values obtained using exact failure times. For the heavily censored and current-status
data sets, the mean values of estimated 8 are also close to the values obtained using
the exact failure times, and in both cases the difference between these means is not
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significant. The mean values of estimated § obtained using the parametric method were
significantly different from In(2) for all three censoring types, while those from the semi-
parametric method were not. In addition, the estimated mean square error was smaller
for the semi-parametric than for the parametric method for light censored data {0.009
vs. 0.031) and heavy censored data (0.017 vs. 0.033) and nearly equal for current status
data (0.0265 vs. 0.0255).

5. Discussion

A natural question regarding our method is, why use the estimating equation (2.5)
when a parametric likelihood has already been assumed and is used for estimating nui-
sance parameters #. As shown in Section 4, the answer is that the ranking carried out
in (2.5) results in an estimating equation that is more robust to mis-specification of the
baseline distribution than the parametric maximum likelihood estimator of 8. Similar re-
sults were demonstrated in Satten et al. (1998), but without left truncation. In practice,
we recommend that a flexible spline model be used to model the baseline distribution,
so that there is additional confidence that important features of the baseline distribution
which might effect estimation of # are not missed.
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