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Abstract. We consider the problem of estimating the distribution of a nonparamet-
ric (kernel) estimator of the conditional expectation g(@; ) = E(d(Xi11) | ¥im = &)
of a strictly stationary stochastic process {X;,¢f > 1}. In this notation ¢(-) is
a real-valued Borel function and ¥, ,, a segment of lagged values, ie., ¥Yem =
(Xt—iy, Xtmig,..., X¢-i.,), where the integers i; satisfy 0 < i) < iy < -+ < < 00.
We show that under a fairly weak set of conditions on {X;,t > 1}, an appropri-
ately designed and simple bootstrap procedure that correctly imitates the conditional
distribution of X1 given the selective past ¥y .., approximates correctly the distri-
bution of the class of nonparametric estimators considered. The procedure proposed
is entirely nonparametric, its main dependence assumption refers to a strongly mix-
ing process with a palynomial decrease of the mixing rate and it is not based on any
particular assumptions on the model structure generating the observations.

Key words and phrases: Resampling, confidence intervals, dependence, nonparamet-
ric estimators.

1. Introduction

Let {X,,t > 1} be a strictly stationary, real valued random process and let ¢ be
a real-valued B-measurable function, where B denotes the Borel o-algebra over R. For

m € N, let © = (z;,,%i5,...,2;) € R™ and assume that the conditional expectation
(1.1) 9(x;¢8) = E(¢(Xt11) | Vi = 2)
exists, where Y, ., = (Xi—y,, Ximig, .., Xomi, ) a0d 0 < 4) < ip < -+ < 4y, < 00 are

integers. To give some examples, recall that g(z; ¢1) is the conditional mean and that
g{@; ¢2) — 9*(#; ¢1) is the conditional variance of {X;}, where ¢1(z) = z and ¢4(z) = 22,
while for ¢(z) = 1. (2} the conditional distribution function P(Xs 11 <y | Yim = )
appears.

Given an observed stretch X1, Xa,..., X1 of the process, a nonparametric {kernel)
estimator of g(e; ¢) is given by

T-1
oy H X)) Kn(x ~ Yim)
(12) i (3 ¢) = = .
gh( ) 23:;‘},.44 Kh(m - YS,m)
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where Kp(-} = h~™K(-/h) and the kernel K(} is a density function on R™. Non-
parametric estimation of g{z;¢) for particular choices of ¢ has received considerable
interest in the literature where such estimators have been also found useful in detect-
ing and modeling nonlinearity in time series analysis; cf. among others Tong (1990),
Auestad and Tjgstheim (1990} and Tjgstheim (1994). It is known, (see for instance
Rosenblatt (1991)), that under some appropriate conditions on the process {Xy,t > 1}
which include some dependence assumptions, some conditions on the kernel K and the
bandwidth h, the statistic vVTh™{(gy(x; @} — Elgn(x;¢)]) converges weakly towards a
normal distribution the variance of which is given by

(1.3) o (a;¢) = Var{§(Xen) | Yem = o} | K*(w)du,

_
v, ()

Here, fy, . {-) stands for the stationary density of Y;,. Furthermore, for A{"+49T — 0
the bias VTR™E(gr(z; ) — g(z; ¢)) is negligible while for Amt9/271/2 ¢, > 0 it is
nonvanishing and (under appropriate differentiability conditions) converges weakly to

Z%{/é @) (g, z)dy

(@ o)

(1.4) B(z; ¢) =

fth

cf. Auestad and Tjgstheim (1990) and Masry and Tjgstheim (1995). In the above

notation fy v " (z) = B fy, . (2)/0:, 0T, Fe X T U, 7) = B Fxesvom(9:2)/
dr;, 8z;, where fx,,, v,y &) denotes the (joint) density of (X¢r1, ¥im) and Ky =
Ju?K(u)du. The fact that the mean and. the variance of the limiting Gaussian dis-
tribution depend on unknown (and difficult to estimate) characteristics of the process,
leads to some inherent difficulties in using the above asymptotic normal approximation
for the practical construction of confidence intervals for g(x;¢). Bootstrap methods
offer, therefore, a potentially useful alternative.

The aim of this paper is to show that in the time series context, bootstrapping
kernel estimators can be done in a simple, effective and model free way. For this
we propose a bootstrap procedure that generates replicates {(X JH1 Yimhij = im +
1,4m +2,...,T — 1} of the observed pairs {(X;+1, Y;m); j—'am+1 im+2,...,T—1}
by correctly 1m1tat1ng the (unknown) conditional distribution function Fix, +1|yt_m( |
2) = P(Xi41 € | Yim = &), ie., the distribution of X, given the selective past
Yim = (Xiziy» Xt—is, ..., Xt—;.. ). Note that in this approach for each pair (X;4+1, ¥Yjm)
only the observation X1, is bootstrapped. We show that this bootstrap procedure which
is based on a simple and consistent estimator of the above conditional distribution func-
tion and which also automatically mimics the stationary density fy, . (), leads to an
asymptotically valid approximation of the distribution of g,(x;#). We stress here the
fact that our procedure is valid under a quite general set of dependence conditions on
the process {X;} which includes several of the mixing processes discussed in the litera-
ture, and works without any particular (parametric or non parametric) assumptions on
the model structure generating the observations. Loosely speaking, our procedure works
for every weakly dependent stationary process for which the statistic §n(z;¢) has the
asymptotic distributional behavior mentioned above (cf. also assumptions (A5) and (A6)
in Section 2). The reason why our procedure ‘works’ lies in the fact that the sampling
distribution of §,(x;¢) depends only on the conditional distribution Fx, ,i1v,.(- | &)
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and the stationary (marginal} distribution of Y, ,,. Therefore, in order for the bootstrap
to work, it is not necessary to imitate the whole (and probably very complicated) process
structure. A resampling procedure that “imitates” Fx,,, v, . (- | #) and Fy, (z) with
sufficient accuracy will have good chances of reproducing accurately the law of §p(z; ).
The bootstrap procedure discussed in this paper achieves this goal.

Bootstrapping time series data has received considerable interest in the last fifteen
years. As a follow-up to the i.i.d. bootstrap of Efron (1979) several different approaches
for bootstrapping stationary observations have been proposed in the literature. We
mention here the residual bootstrap (cf. Freedman (1984)), the block bootstrap (cf.
Kiinsch (1989), Liu and Singh {1992)), the stationary bootstrap (cf. Politis and Romano
(1994)} and the frequency domain bootstrap (cf. Franke and Hirdle (1992}). For an
overview of these different methods see Efron and Tibshirani (1993) and Shao and Tu
(1995).

Nevertheless, the specific problem of approximating the distribution of nonpara-
metric conditional moment estimators in a time series context has only very recently
attracted the attention of bootstrap researchers. Franke et al. (1996) proposed an ap-
proach which is based on certain autoregressive model assumptions for the process con-
sidered. The boatstrap procedure proposed in the present paper does not rely on model
assumptions for the original process, nor does it attempt to mimic the whole dependence
structure of the process. The idea that the reproduction of the whole dependence struc-
ture is not necessary for the bootstrap to work in nonparametric estimation problems is
used also in the (wild) bootstrap procedure proposed by Neumann and Kreiss {1998).
However, their approach deals only with the autoregressive function E(X;41 | Xt = )
and, more importantly, they impose a Markovian assumption on the data generating pro-
cess In order to generate the bootstrap replicates. No such model assumptions are needed
here. Furthermore, in both approaches mentioned above, preliminary (nonparametric)
estimators of certain conditional curves are required in order to generate the bootstrap
replicates. Apart from avoiding any explicit estimation of nonparametric characteristics
of the original process in order to carry out the bootstrap procedure, our approach is
also more general as it is applicable to a larger class of stochastic process, to a greater
class of estimation problems and it is totally model free. The latter aspect is of particu-
lar importance in nonlinear time series analysis since one of the frequent application of
nonparametric estimators of conditional moments is for model identification purposes;
cf. Tong (1990) and Tjgstheim (1994). Under a more restrictive set of dependence con-
ditions, than those imposed here, Neumann (1997) shows validity of a nearest neighbor
Markovian resampling procedure for supremum type statistics in a nonparametric esti-
mation context.

Our bootstrap procedure is related to the local bootstrap proposal by Shi {1991).
Like Shi’s approach our bootstrap replicates X F+1 are obtained using a local version of
the conditional distribution of X;i given the observed segment ¥;,. However, the
context here is much more general in that we deal with time dependent data and Y ,, is
a segment of lagged observations of the same stochastic process. Furthermore, we do not
assume any particular (e.g., regression type) model structure relating the set of random
variables X;;1 and Y} .. Note that bootstrap procedures related to that of Shi (1991)
have been also proposed by Falk and Reiss (1992) and Cao-Abad and Gonzalez-Manteiga.
(1993).

The paper is organized as follows. Section 2 states the assumptions imposed on the
process {X;,t > 1}, discusses in detail the bootstrap procedure proposed to approximate
the distribution of §n(x;¢), and establishes its asymptotic validity. To illustrate the
procedure a real data example is discussed in this section too. A summary is given in
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Section 3 while Section 4 contains all technical lemmas and proofs.
2. Assumptions and bootstrap approximations

The stochastic process {X;,t > 1} considered satisfies the following set of assump-
tions.

(A1) {Xy;t > 1} is a strictly stationary process and ¢ is a Borel function on R such
that E|¢(X:)* < oc for some s > 8.

(A2) i) The densities fy, () and fy,, . v..{- | ®), ! > 1 exist and are absolutely
continuous with respect to Lebegue measure. (Note that here and the sequel if [ <
im —i1 then fy,,, v, ..() is the joint density of the distinct random variables in the set
{Yt-H,mf Yt,m}-)

ii) fr,.(2z) > 0 for z € Dy(x) where D,(z) = {z : ||z — z|| < 7} for some
n >0 and | - || is the Euclidean norm. Furthermore, fy, .. () is assumed to be Lipschitz
continuous.

i) fr, ojxa (1) €C1 < oo and fy, x,,,( | ¥) is Lipschitz continuous, ie.,
|fY¢,m|Xe+1(:’B1 | y) - fY:,let+1 (3:2 | y)' < 0“231 - m?li for all #;, zz € R™.

iv) fY:,ng+4,m|X¢+1X¢+z+1(' [¥1,Y2) SCa < ooforalll>1.

The following assumptions are imposed on the smoothing bandwidth A and the
smoothing kernel K in (1.2).

{A3) The bandwidth A satisfies & — 0 and Th™ — oo as T — co.

(A4) K is a symmetric and square integrable density on R™ satisfying |K(u) —
K(v)| € C||lu - v|| for all u, v € R™. Furthermore, for ¢,j € {1,2,...,m}

/ufK('u)du =0 forsodd and fuiqu(u)du = §; ; K.

Here 6; ; is Kronecker's § and 0 < K3 < o for all i € {1,2,...,m}. Finally, K s a
product kernel the support of which is the unit ball in R™.

To state our main assumption on the dependence properties of {X;}, we first fix
some additional notation. A strictly stationary process {X;,t > 1} is said to be strongly
mixing if a(n) — 0 as n — oo where

aln) = sup iP(ANB) — P(A)P(B)l, n>0,
Ac M, BeMBZ,

cf. Rosenblatt (1956). Here M} and Mg, denote the o-fields generated by the random
variables {X1,X>,...,X:} and {X¢irn, X¢4n+1,--., } Tespectively. We assume that
(A5) {X,,t > 1} is strongly mixing and the mixing coefficient a(-) satisfies

o0
S () =0(N"Y) as N-oo
=N

for s such that the moment condition (A1) is satisfied.

Note that (A5) implies a polynomial decrease of the mixing coefficient which is
satisfied for a huge class of stochastic processes commonly discussed in the literature.
Robinson (1983} and Masry and Tjgstheim {1995) employ this kind of weak dependence
assumption in order to investigate the asymptotic properties of kernel estimators for
time series. We mention here that several of the commonly used parametric and non-
parametric linear and nonlinear time series models belong to the class of strictly station-
ary and geometrically ergodic Markov processes, e.g., they are geometrically absolutely
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regular (i.e., G-mixing), a condition that is stronger than geometrically c-mixing, ie.,
aln) < Cp™ for constants € > 0 and p € (0,1); see Doukhan {1994) for the different
mixing concepts. For a more specific discussion of particular time series models that
belong to the Markov class see among others Tong (1990), Tjpstheim {1990), Meyn and
Tweedie (1993) and Doukhan (1994). However, we stress here the fact that, the class of
processes for which (A5) is satisfied is not restricted to the Markov class.

Now, using {A1)-{A5) it can be shown by well-known arguments that, as T — o

1 T-1

@D Z > |Cov k™ $(X o1} En(@ = Vo), K" $(Xj11)Kn(z — ¥ym)]| = 0
sg.'fz;:?+1
and
1 T-1
= 3 |Covh™EL(@ — Youm) K Kn(% ~ Vi) = 0
&, J=tm-+1

a#FF

cf. for instance Masry and Tjgstheim (1995), Lemmas 4.3 and 4.5. Under the same
set of assumptions this implies that §,(x;¢) — g{x;¢) in probability. Furthermore, by
straightforward calculations we get that

Var(fa. v, . (@) — From(®) [ K (u)du
and

Var(o(z; ) fs(2)) = fv,... () / K?(u)duE[¢*(X11) | Yim = @]

as T — oo where fh,yhm (z) = T71 Zf;,-LH Kp(x — Y, ) is a kernel estimator of
fr..(x).

As a careful examination of the proofs shows, the assumption (AS5) is imposed in
order to ensure that relations like (2.1) are fulfilled. In other words it will be possible to
replace the assumption (A5) by some other set of conditions on the dependence structure
of {X;} which ensure that relations similar to (2.1} hold. The strong mixing condition
(A5} is a technically convenient way to achieve this.

We next state an assumption dealing with the asymptotic distribution of the kernel
estimator (1.2). In this assumption ‘=’ denotes weak convergence,

(A6) VT (31 (x:6) — B(4n(w;6))) = N(0,0%(2;)) as T — oo where o%(w;6) is
given in (1.3}.

Asymptotic normality of vVTh™(j,(2:¢) — E|gn{x;$)]) has been established for
{strong) mixing processes {X;} which satisfy (A5) and under some additional smoothness
assumptions by Robinson {1983). Under a different set of conditions which however, also
include a strong mixing agssumption with a polynomial decrease of the mixing rate, the
same result has been established by Masry and Tjgstheim (1995). See Rosenblatt (1991)
for a general discussion.

'To handle the bias term we finally introduce the following assumption.

(A7) i) The kernel K(x) is two times continuously differentiable with respect to
r e R™,

ii) fx.y,¥,..(%) is two times differentiable with respect to @ and the functions

! w(y)f,;—zik) (y,x)dy and f’ﬁ[’(y)f)((ﬂitlﬂ;fjn(y, 2 )dy are Lipschitz continuous for ¢ = 1

t Yt.m
and ¢ = q;-l



144 EFSTATHIOS PAPARCDITIS AND DIMITRIS N. POLITIS

The local bootstrap procedure proposed in this paper is based on the simple idea
to obtain bootstrap replicates of the sequence of observed pairs {(X,4+1, Yim), 7 = im +
1,4m+2,...,T~1} by resampling the observation X;;; given the segment Y} ,, and using
a simple and consistent estimator of the conditional distribution function Fx, ., v, ..(: |
Y;m). In particular, for j = im + 1,im 4+ 2,...,7 — 1, denote by (X}, ¥;m) the
bootstrap replicate of the pair (X;4+1, Y;m) where

(2.2) X;+l ~ ﬁb,Xz+1|Yt,m (. | .Y.?am)

and Fu'b' Xer1|Yenm (' | ®) is a version of the empirical conditional distribution function
given hy

i 41 1(—00 1 (X)) K(z — Yim)
ZS i +1 Kb( Ys,m)

where Kp(-} = b ™K(-/b) and b > 0 is called the resampling width.
Note that by (2.2) the distribution of X, , varies with the index j and that condi-

(23) Fb,X¢+1|Yc,m(' | m) =

tionally on the observed sequence X;, X, ..., X7, the bootstrap replicates (X7, ¥m)
and (X}, Y;) are independent for i # j. Thus for every index j, X, is a random
variable taking values in the set {X; 2, X; 43,..., X7} with probability mass function
given by

(2-4) P( +1 - Xs+1 | Yj,m) = Kb(Yj,m - Ys,m)/ z Kb(Yj,m - }’i,m)
{=tm+1

and s =4 +1,9m+2,...,T—1. It is easily seen that for every ¥; ., Es,z  P(Xig =
Xot1 | Yjm) =1 and that {2.4) provides a practically simple rule for generating the
X7i1's. Thus, in contrast to the ii.d. case, the probability that X7, assumes any of
the observed values X; 2, X, 43,...,Xr is not constant but depends on the closeness
of the corresponding preceding segments Y;__11m, ¥i_+2.m,..., ¥YT_1,m to the segment
Y; m. Furthermore, to choose X} T We only consider those X.3+1 for Wthh Y, liesin
a, “small” nelghborhood of Y,,m, where the “size” of this neighborhood is controlled by
the resampling bandwidth &.

Remark 2.1.  An alternative approach to generate the bootstrap replicates will be
to use instead of the discrete version (2.3) a smoothed version of Fx,  (v...(- | Z}.

In particular, let f; x, +11¥em (- | %) be the kernel estimator of the conditional density
sz+1|Yt,m(' | :B) given by

i1 56— X ) Ko(@ = Yjm)
23_, +1 Kb( Ys,m)
Here, wp(-} = b~ 1x(-/b) and the kernel & : R — R satisfies the conditions given in (A4)

form=1. Now, for j =i +1,9m+2,...,T — 1, bootstrap replicates (X;H, Y, m) can
be obtained using

(25) fb,Xe+1EYz,m ( I fB) =

(2.6) X~ Foxal¥em( | Yim)-
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We mention here that in order to generate the X7 J+1'8 the explicit estimation of the con-

ditional density f, x, 1Yo (- | Yjm) can be avoided because X, can be also expressed
as

(2.7) Xy = X5, +bWh,
where W}, | is an i..d. sequence with Wj "1 ~ &(-) and independent from XJ ,

Now using the generated bootstrap sequence {(X}.;, Yim):j = im + Liim +

2,...,T — 1} the distribution of the statistic v Th™{(gn(x; ¢} — g{x;¢)} can be approxi-
mated by means of the bootstrap statistic VTh™(g;{(x; @) — g*(; 8)). Here

E_',' =tm+1 ¢( ;-}-I)I{h( - Y.‘.'m)

(2.8) gn(z;9) = ST o~ Vo)
and
(2.9) 9" (28} = E7[o(X711) | Yim = 2] = Gu(®: 6).

To study the asymptotic behavior of our procedure we let the bandwidth b used to
resarnple the observations in (2.3) get narrower as the sample size increases.
(A8) b= O(T %) where 0 < § < 1/{m(m + 2)}.
The following result establishes the large sample validity of the bootstrap approxi-
mation proposed. It uses Kolmogorov’s distance, defined by do(P, @} = sup g [P(X <
— Q(X < )|, in order to estimate the distance between two probability measures P
and Q.

THEOREM 2.1. Suppose that assumptions (Al)-(A6) hold.
1) If TY2pim+0/2 0 gnd (A8) is fulfilled then we have that, as T — oc

do{L(VTR™(Gn{z; 0) — g(x; 0))), LOVIR™ (G, (2;9) - g7 (2:9)) | Xa,..., X7)} — 0

in probability.
i) If TY2R(m+4)/2 Gy > 0, (A7) holds and b = O(T=?) for 0 < § < 1/{(m +
2)2} then the same result as in part i) of the Theorem is true.

Remark 2.2. Note that the above assumption on the asymptotic behavior of the
resampling width b compared to the behavior of the smoothing bandwidth A is needed
in order for the bootstrap to get a correct approximation of the asymptotic bias term
B(z;¢). Such an ‘oversmoothing assumption’, i.e., the bootstrap conditional mean
function g (x;¢) is somewhat smoother than gn(;@), is common in applications of
the bootstrap to problems similar to that considered here; see among others Romano
(1988), Hardle and Bowman (1988) and Franke and Hirdle (1992). An alternative is
to restrict the bootstrap in approximating the distribution of the ‘bias free’ statistic
dn(z; ¢) — E[gn(z; ¢)] and to estimate the bias term explicitly by estimating (nonpara-
metrically) the unknown quantities appearing in (1.4).

Remark 2.3. Using the bootstrap pairs {(X;+1s Yim)j =im+1,...,T—1} given

in Remark 2.1, the distribution of vVTh™(gs(2;¢) — g(x; ¢)) can be also approximated
by that of VTh™ (g} (z;¢) ~ g7 (x;¢)) where

E ...zm-f-l &( ;+1)Kh($ - Yy Yim)
Es-—tm+1 Kp(z ~ Ysm)

(2.10) it (@) =
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and gt {x;¢) = f¢(y)fg.xt+1|n,m (v | #)dy. Relation (2.7) suggests that the (asymp-
totic) properties of this bootstrap alternative in approximating the distribution of
VTh™(grn(z; ) — g(x; ¢)) will be identical to those of vVTh™{g} (x; ¢) — g*(x; ¢)) stated
in Thecrem 2.1. However, this bootstrap alternative will not be discussed further here.

As already mentioned in the Introduction, any bootstrap procedure that correctly
imitates the conditional distribution function Fy, | |y, ..(- | ) and the stationary distri-
bution Fy, . (-), will have good chances in approximating the distribution of the kernel
estimator gn(x;¢). Therefore, some other bootstrap alternatives that achieve this goal
could be also considered. One possibility in this direction will be to generate a whole
bootstrap process, say, {X},t > 1}, for which the conditional distribution of X} | given
Y, = (X3 Xi i, Xi_;, ) and the stationary distribution of ¥, mimic cor-
rectly that of X, given Y;, and that of Y} ,,. One way to achieve this is by means of
a Markovian bootstrap procedure in which the ene step transition distribution function
is based on an estimator of fx,,, v, or of Fx,,,y,... For purposes different to that
discussed here, such a Markovian bootstrap procedure has been proposed by Rajarshi
(1990) and Paparoditis and Politis (1997).

3. Numerical examples
Erample 1. Consider a data generating process that follows the model
Xt = SiH(Xt_Q) +€g,

where £; is an i.i.d. sequence of N{0, 1) random variables. For this model, we are inter-
ested in estimating the distribution of the conditional mean g(z) = E(Xy41 | Xi—1 = 2)
based on realizations of length T' = 300. To obtain this estimator, Epanechnikov’s kernel
with a smoothing bandwidth & = 0.7 has been applied. In this simulated example and in
order to reduce computations, the smoothing bandwidth A was chosen as the one which
was judged to give best visual fit to the theoretical curve g{z). Clearly, a objective rule
for selecting k, like one based on a cross-validation criterion, can be also applied to select
the smoothing bandwidth k. Such an application is demonstrated in the real data ex-
ample below. To resample the observations, the same kernel and a resampling width of
b= 1.2 has been used. Note that according to the theory developed, b should be larger
than h in order for the bootstrap to estimate consistently the bias. Table 1 presents
some of the results obtained for this particular values of ~ and b while Table 2 shows
some results for two different values of the smoothing bandwidth h and some different
values of the resampling width b. Note that the percentage points of the distribution
of VTh(s(z) — g(z))} presented in these tables has been approximated using the corre-
sponding percentage points of the bootstrap statistic vTh{g}{z}— g*(z)). The results of
the presented bootstrap approximations are based on 100 trials where for each simulated
trial the distribution of the bootstrap statistic has been evaluated using 1,000 bootstrap
replications. Finally, the estimation of the percentage points of the exact distribution is
based on 10,000 replications of the model considered. As these tables show, the boot-
strap provides a reasonable estimation of the percentage points of the distribution of the
kernel estimator considered. Furthermore, the bootstrap approximations did not seem
to be very sensitive with respect to the choice of the resampling width b. Nevertheless,
further investigations are required in order to provide some objective rule for selecting b
in practice.
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Table 1. Estimated exact (Exa) and bootstrap (Boo) estimates of some percentage points of
the distribution of the kernel estimator gy, (x) for different values of z. “Boo” refers to the mean
value while “STD” to the standard deviation of the bootstrap estimates aver 100 independent
replications of the model considered.

=
—2.4 —-1.8 -0.8 0.0 0.8 1.6 2.4

2.5% Exa -7.308 -—3.198 -2.215 —3.058 —-4.285 —5.080 —6.187
Boo —-7.058 —3.473 —2.5290 -2.998 -3.821 -—4.688 -—6.466

STD 1.287 0.514 0.387 0.362 0.479 0.606 1.340

5% Exa —§.198 —2.594 —1.679 —-2.583 -—3.747 —4.239 4042
Boo —-5.985 —2.809 -1988 -2.509 -3.319 -4.016 -5.309

5TD 1.108 0.452 0.345 0.333 0.420 0.538 1.173

10% Exa -5.067 -1.857 -1.109 -1995 -3.103 -3.404 -3.510
Boo —4.737 -2.005 -1.375 -1.852 -2.714 -3.277 -4.014

STD 0.940 0.385 0.308 0.312 0.399 1.475 0.976

90% Exa 3.648 3.546 3.133 1.959 1.093 1.886 5.125
Boo 4.009 3.367 2.834 1.935 1.391 1.972 4.595

STD 0.9%0 0.594 0.438 0.369 4.325 0.402 0.969

95% Exa 5.085 4.382 3.715 2,528 1.679 2.627 6.309
Boo 5.356 4.114 3.437 2.480 1.983 2.713 5.982

STD 1.153 G.678 0.493 0.389 0.339 0.486 1.147

97.5% Exa 6.353 5.092 4.203 3.003 2.243 3.236 7.270
Beo 6.394 4774 3.947 2.965 2.474 3.334 6.870

STD 1.316 0.760 0.552 0.424 0.383 0.5561 1.308

Fzample 2. In this example realizations of length T = 500 from the random coef-
ficient autoregressive process
Xi =0 X1 + ey,

are considered where 6, ~ N(0,0.9%), &, ~ N(0,1) and {6,} independent of {z,}; cf.
Tong (1990}, p. 111. Here we are interested in estimating the distribution of a kernel
estimator of %(z) = E(X2,, | X: = z) = 1 + 0.81z2. Note that in this example s(z) is
the conditional variance of X;.; given that X; = 2. Denote by &%(x) a kernel estimator
of s*(x) using Epanechnikov’s kernel and A = 0.7. Figure 1 shows the simulated exact
density of VTh(5*(z) — s2(z)) for £ = 0 based on 1000 replications of this model. Also
shown in this figure are four bootstrap estimates of this density based on different original
time series. The bootstrap approximations presented are based on the same kernel, a
resampling width of & = 1.0 and 1000 bootstrap replications. All estimated densities
shown in this figure have been obtained using the Gaussian smoothing kerne! and a
bandwidth selection according to Silverman’s rule. Finally, plotted in these exhibits
are also the corresponding large sample Gaussian approximations of the distribution of
VTh(§%(z) — s%(z)) with bias and the variance estimated from the data. As this figure
shows, the bootstrap works very satisfactorily and reproduces quite accurately the overall
behavior including some nonsymmetric features of the true distribution of the statistic
considered.
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Table 2. Estimated exact (Exa) and bootstrap (Boo) estimates of some percentage points of
the distribution of the kernel estimator g, (x) for some different values of £ and b. “Boo” refers
to the mean value of the bootstrap estimates over 100 independent replications of the model
considered. The numbers in parentheses are the standard deviations of the bootstrap estimates.

Percentage
5% 95%
x = r=
-1.0 0.0 1.0 -1.0 0.0 1.0
h=05 Exa —-2.237 -—-2.402 -3.125 3.247 2,352 2.242
Boo &=1.0 —2.401 —2.443 -3.044 3.133 2.444 2.378
{0.349) (0.284) (0.394) (0.448) (0.362) (0.375)
b=1.2 -2.427 -2.534 -3.108 3.0mM 2.554 2.466
(0.303) (0.328) (0.379)  (0.397) (0.307) (0.366)
b=14 —2.540 -—2.568 -3.088 3.106 2,534  2.552
(0.395) (0.267) (0.408)  (0.383) (0.282) (0.349)
h=07 Exa —-1.938 -—-2.583 -3.883 3.908 2.528 1.720
Boo b=1.0 —1.851 --2.469 -3.578 3.618 2.458 1.993
(0.339) (0.349) (0.423)  (0.547) (0.408) (0.384)
b=1.2 —2.081 -2.509 -3.510 3.458 2480 2.081
{0.295) (0.333) (0.449)  (0.447) (0.389) (0.381)
b=14 —=2.104 -2.566 -—3.456 3.464 2.540 2.120

{0.386) (0.309) (0.448) (0.446) (0.307) (0.350)

A real data example. Theorem 2.1 enables us to use the proposed bootstrap pro-
cedure in order to obtain asymptotically valid confidence intervals for g(x; ¢). Consider
for instance, the estimation of lower and upper bounds of a 90% pointwise confidence
interval for the ‘lag three’ conditional mean E(X;11 | X¢_2 = z), where X; = log,o(Z;)
and Z; is the well-known MacKenzie river series of the annual Canadian lynx trappings.
The original series consists of T = 114 observations. In Tong (1990}, p. 11, a kernel
estimator of £(X;;1 | X;—2 = x) has been used in order to demonstrate some nonlin-
earity features of this series. We discuss this example here again and demonstrate how
the bootstrap proposal of this paper can be used to obtain confidence intervals for the
unknown mean function E(X,;, | X;-o = z}. For simplicity denote by §,(x) the kernel
estimator (1.2) of E(X,y; | X;—2 = 2) obtained using Epanechnikov’s kernel with the
smoothing bandwidth h = 0.44. This bandwidth has been obtained as the minimizer of
the function CV'(A) over a set of values of A in the interval (0, 3), where CV (k) is given
b

d T-3

CV(h) = ﬁ Z{Xj+3 ~ dn (X))
J=1

with §r ;(z) the leave-one-out estimator of g{r); see Hirdle and Vieu (1992) and Kim
and Cox (1996) for details on this cross-validation rule. The bootstrap replicates
{(X41, Xj~2},7 = 3,4,...,T — 1} have been generated using in (2.3) the same kernel
and the bandwidth b = 2x h = 0.9. Recall that in order for the bootstrap to capture cor-
rectly the bias of this nonparametric estimator, the resampling width g should be some-
what larger than the smoothing bandwidth A. The pointwise confidence intervals has
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Fig. 1. Estimated exact density (solid line) of vTh(3%(z) — s(z}}, + = 0, for the process of
Example 2. The dashed line is the corresponding bootstrap approximation and the dotted line
the asymptotic Gaussian approximation.

AL+ 1)
34
32
LI -
28
26 L
2.4 .
22
2.0

X{t-2)

Fig. 2. A kernel estimate of the conditional mean E(Xt+1 | Xi—2 = x) together with the
a pointwise 90% bootstrap confidence interval for the logarithmically transformed MacKenzie
River series of annual Canadian lynx trappings.

been calculated using the formula [§,(z) — (Th)~Y2Ufgs(x), dn(z) — (Th) VU o5(x)]
where UZ(x) is the a percentage point of the distribution of the bootstrap statistic
\/ﬁ(g,’:(m) — g*(x)) and which has been approximated by the corresponding empiri-
cal percentage point based on 1000 bootstrap replications. The results obtained are
summarized in Fig. 2.

4. Conclusions

In this paper we have seen that for a bootstrap procedure to “work” in approxi-
mating the distribution of nonparametric estimators in a time series context, it is not
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necessary to reproduce the whole dependence structure of the stochastic process consid-
ered but it suffices to correctly imitate the conditional distribution of which the non-
parametric estimator can be considered as a “parameter”. This can be interpreted as a
consequence for the bootstrap of what Hart (1996) called the whitening by windowing
principle in the context of nonparatmetric estimation. We proposed here a rather simple
and flexible bootstrap procedure which implicitly uses a consistent estimator of the ap-
propriate conditional distribution to generate the bootstrap replicates. Qur procedure
works without any particular model assumptions on the data generating process and
under a quite general set of dependence conditions (cf, assumption (A5)). Furthermore,
it side steps all the well-known initial estimation problems associated with applications
of the bootstrap in nonparametric contexts similar to that considered here. It is worth
mentioning that the idea underlying the bootstrap procedure proposed is not restricted
to the case of a univariate time series discussed here but it is also applicable to nonpara-
metric estimation problems in which the segment Y; ,, contains not only lagged values
of X, but also those of other stochastic processes that might influence the motion of
X, 41; cf. for instance Chen and Tsay (1993).

5. Proofs

The proof of Theorem 2.1 will be given in the following steps. We first establish
Lemma 5.1 which deals with the uniform convergence properties of bootstrap conditional
means g*(z; @) to g(x; ) for real-valued Borel functions ¢ and for values of 2 in the
with sample size decreasing interval [z — d;& + d]. According to equation (5.5) the
bootstrap statistic VTh™(§}(x;¢) — ¢* (z;qﬁ)) can be partioned in two terms. Lemma
5.2 shows that the first term converges weakly to the desired Gaussian distribution while
Lemma 5.3 shows that the second term correctly approximates the (asymptotic) bias of
the estimator gy (x; ¢).

LEMMA 5.1. Fordy > 0 let Dy(z) = [ — dr; = + dr). Let further ¢ be a Borel
function such that E|p(Xiy1)| < oo, If essumptions (A2) (A4), (A5) and (A8) are
Fulfilled and if dr — 0 as T — oo then

sup |g*(z;¢) —g(z;9)| — 0
zeD (x)

in probability.

PROOF. Note that §*(2;9) = 4n(z; ¢} is a {Nadaraya-Watson) kernel estimator of
g(z; ¢) and that

l9*(z:¢) — 9(z; )| < 11—{|9(Z; @) (fo, ¥om(2) = FYim(2))
b, ¥y.m (%)
T—1

% > el Xir)K(z = Yim)

J=im+1

—fso(y)fxmn‘m(y,Z)dy
where fo v, (x) =T~ Z — +1 Ky(x — Y;m). Since g(z;¢) is continuous, it is also
bounded in Dy{z). Furthermore, by (A2) ii) infzep,(z) f¥,.. (2) = 7> 0. Therefore, to

+
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establish the assertion of the lemma it suffices to show that both differences on the right
hand side of the above inequality goes to zero in probability and uniformly in Dy(z). In
the following we show this for the term

T-1

sup |1} Z o( X1} Ke(z — Yim) _/’p(y)sz+1 Y, (U, 2)dy

z€Dy(x) i1

only, since sUP,ep,(y) | fb,ytgm(z) - fy,.. (2}l — 0 in probability, can be shown using
similar arguments. We have

T-1
(5.1) sup |T7' ) <P(Xj+1)Kb(z—Yj,m)—fso(y)fxmvg,m(%z)dy
z€Dy{=x) F=im 1
T-1
< sup |71 Z O(Xj1+1)Ke(z — Yjm)
zeDa{z) F=tm41

- /(p(y)Kb(z — V) fX o1 Yo (¥ v)dydv

+ sup f P Kb (2 — V) Fxoys v (4, 0)dydo

zeDa(z)

*]W(y)fxmm,m(y, Z)dy] :

By (A2) ii} we get for the second term above

/Ep(y)Kb(z - v)f)(:-u Yim (yv ﬂ)dydv - /‘P(?J)fxm | £ (y': Z)dy)

<

/(P(y)(er,+l Yt.‘m(y? z - bu) - th+1 Yt,m(y? z))K(u)dudyl

(5.2) < [ @)1 Fri e (2 = bt | 9) = Fromiens(2 | 9) 1K () Fx (v)dudy

< bcfIluHK(u)dUJIw(y)lfxz(y)dy
(5.3) = O(b).

Consider next the first term on the right hand side of (5.1) and replace
f go_(y)Kb{z - v)fx,., ¥, (i, v)dydv by the asymptotically equivalent term
Lt [ o(y)Ko(z — v) fx,,, ¥i.. (4, v)dydv. Furthermore, note that Dy(z) can be cov-
ered by a finite number Nt of cubes I, » with centers ; the sides of which have length

Lp. Note that Ny = (2d/Lz)™. By the Lipschitz continuity of K we then have

T-1
1
sup |= > @(Xjr1)Ke(z — Yym)
2€Du(@) | 5oy 41
T4,
- [P KE = ), v )y
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T-1
1
< il . . —{m+1)}
< Jmax Tj_;+1WG,T(n) + O(Lrb~(m+1)

where
Wir(:) = o(Xj01) Ko(® — Yim) — E(o(X;41 ) Kp(2i — Yjm))-
Applying Markov’s inequality we get

T-1
i
el ~(m+1)
(5.4) P(IS%%xNT T_Z W;r(z)| > Lrb )
F=im—+1
Nr 1 T-1
<> PliF > Wir(a)| > Leb™ ™+
i=1 J=tm+1
2(m+1) Nt T-1 2
p2im+l 1
- z T Z W:T(%)
T =1 (T j=im+1 )
0 (btmﬂ)d?)
m+2
L3
where the last equation follows because uniformly in @, E(T~ EJ_M a Wir()? =

O(T~15~™). Now, for Lt = b/TY/(™+2) and b= O(T~%) with § as in (A8) we get that,
pmAgm LAt AT — gm0 and Leb~ (™) - 0.

Proor oF THEOREM 2.1. It suffices to show ii) since assertion i) follows by the
same arguments but by ignoring the bias term. To prove this assertion note first that

(5.8)  VTh™gi(z;0) - ¢"(2:9))

1 pm T2l
— ’f _ n* ’ K _ Y-]m
fry (@) ¥V T J=1Zm:+1 X;0) — 9" (@ ) ) Kn(x — Y;m)
1 hm T-1
th (x) -’.7‘_ (‘25( Fe1) — g ( Y;m; d)) Kn(z Yjm)
T 1
V (Yim;¢) — g (2 @)} Kn{z — Yjm)-
fh Yim (2 3= tm+1

Now, since under the assumptions made f. v, ,.(z) = fv... () in probability, the de-
sired result follows immediately from Lemmas 5.2 and 5.3.

LEMMA 5.2. Under assumptions (Al)-(A5) and (AB) we have conditionally on
X1.Xg, ..., X7 that, as T — o0

\/h_m A X11) — §°(Yimi PNEp(z — Yim) = N(O,Tz(m; #))

j= zm+1

where 7 (z; ¢) = f3, (2)o”(z;¢) and 0*(2; ¢) is given in (1.3).
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ProoF. Note that conditionally on X7, X, ..., X,
{(a( ;+1) g (Yim; ) Kn(2 — Yim),
j=im+ Lim+ 2. T LT =im+1,dm+ 2.0, }

forms a triangular array of independent random variables. Define U}, = qb(X;‘ ) -
g*(Y; m;¢) and observe that conditionally on Y, we have for the s-order moment of
U;+1
Y 1 @(Xi1) = 85 (Yjmi 8))° Ko Ym — Yim)

2n~z,,.+1 Kb(YJ m =Yy m)

E* (Ui =

Clearly,
E*(Uin) = E (0(Xj1) | Yim) — 9" (Yjmi¢) = 0.
Now, to establish the theorem we have to show that
h"" T-1
(5.6) > E(ULL KR (@ - Yim) - (3 6)
i=tin+1
and that for every 5 > 0 the Linderberg condition

m T-1
6D S ElUEe - Vi) TET UL KR ~ Yim) > )] — 0
J-zm+1

in probability, is satisfied.
Consider first (5.6} and let

Vi) = / (60) — a(2: ) Fxsuni v, (v | 2)dy

and V*(2;¢) = E*(U},,)? given that ¥},, = &. We then have
pm Il
Y B K - Vi)
Fim 1
am T-1
=T 3 V(Ymi $)KE(E — Yym)
J =im+1
hm T—-1
Y (VN Yimi8) - V(¥im; 6))KE (@ — ¥ym)
F=im+l
=N +T

with an obvious notation for T; and 7>. Now by standard arguments and by the con-
tinuity of V(-;¢) we have Ty — 72(x;¢) in probability. Furthermore, using V{z;¢) =
9(z; (z) = 7*) - g*(2; o(x) = =) and V*(2;9) = g"(2; 8(z) = %) — (9" (2; ¢z} = 2))?,
we get for the second term and for ¢ = ¢ resp. <,o = ¢ in Lemma 5.1 that

Tals  sup  [V'(z39) - V(z:9)l Z Kn(@ ~ ¥jm)
zE[@—h,z+h] _1 =i +1
<SOp(1) sup lg'(i6%) — oz %)
zE[x—F e+
+0p(1) sup  |g7(z:0) —g(z;9)]  sup  |g"(z;9) + g(z: )|
z€[x—h,z+h] z€[x—h,x+h]

— 0 in probability.
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To establish the Lindeberg condition (5.7) note that

E E* T YU Kn(z — Ym) 2 I(B™T ! ]+1Kh( — Yjm) > 1)
i=tm+1

h2m

T2 Z E*( ;+1 4K§(m—YJ’,m)'

To evaluate this term we proceed as in the proof of (5.6) and first show that
p3m T-1 4
- E*(Us ) Kz - Y;m) = Op(1).
F=im+1

For this let
M(z; ¢) = / (B(5) — 9(25 ) Fxons 1o (4 | 2)dly

and M*(z; ¢) = E*(U;.,)* conditionally on Y}, = #. We then have

hSm T-1
68 1Y MGwKKE - Yim) = M@0)fr..(@) [ Kiwiu
j=tm+1
and
h3m T-1
(69 = D M (Yimid) = M(Y;mi )IKA(® — ¥jm)
j=im+1
< sup [MT(z;6) — M(2;9)]|0,(1).
z&[z—h,2+R]
Now, since
M*(2;6) = g*(2:6%) — 49" (2;6%)g" (2: ) — 29" (%;6%)9" (2:¢) — 30" (%:6)
and

M(z;¢) = g(w; ¢*) — 4g(w; ¢°)g(w; ) — 29(; ¢*)97 (21 ¢) — 3¢* (w1 9),

it follows using Lemma 5.1 that sup,c(z_p z1n [M*(2;¢) — M(z:¢)| — 0. Because of
this and equations (5.8) and (5.9) we, finally, conclude that

S BTN U Ka(e — Vi) TR T U KR (E = Yim) > 1)
jeimtl
= Op(y~ T Th™™).

LEMMA 5.3. Under assumptions (A1)-(A7) and for g ~ T7° with 0 < 8 <
1/{(m + 2)? + 1} we have that, as T — oo

F ( \/h_m Z (6 (Ym:i9) — 9" (2 9))Knle — Yim) — B(z; )
R, Y3m (E

j=tm+1
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in probability, where B{x; ) is given in (1.4).

Proor. Using (A7) we have

R
T Z (9*(Y3'.m;¢)—g*(w, ONEKr(z — Y;0m)

=,.,'I

_ c-p 2 6) / X; i ~ %3 ) Kn(x — Yim)

i= zm+1

hm
Z VT Xjos, — T3 )(Xsmi, — 2:,)

k 5=1 —1m+1

(e,
x g * (Jm’@Kh(“:“ Y;m)

- . . xi {x; Tig
where Y ., is a suitable value between z and Y} ., and g*( 3 (z;¢) and g* ™" )(:1:; ®)
denote the first and second order partial derivatives of g*(@; ¢) with respect to ;, and
z;, and x;, respectively. To prove the lemma it suffices to show that in probability,

G Tl
(5'10) V Z (XJ —i I%k)Kh(m_ Jm)_”chf( k)(ﬂ’)Kz:

F=im+1
(=) x4
(5.11) R CA R %’(ar@)
1 — .
(612 5 > gEnm)(z;4) Z (Xjoi ~ 2 ) (Xjmis — 20, ) Kn(® — Yim)
k,8=1 F=tm+1
1 m
- -Q-CthfY,,m('-‘ﬂ) ZQ(I""“")(CE é)
and
£ i) ~{x; ®
(5-13) ze[a:silsz+h]l : ( ‘»é) 9{ !'“)(z ¢) f_" 0
where

(5.14) glEsmie)(z; ¢)

B[ =

1 B
B m{ (1+ 6'“’5)(/ ¢(y) fxmn ,,,(y,z)dy g(z; ¢)f§::’fn "’)(z))

— g= W (2;0)f ) (2) - g (2, 0) ) (2 )}

Note that §(mi*xi")(z;¢) = g(m*wik)(z;tﬁ).
Establishing (5.10) to {5.13) the assertion of the lemma follows then because

1 Tig 1 Tig, Liy »Tq
3 {/é(y ﬁmlyt,),,(y,w)dy~g(w;¢)f§g_; ")(m)}
— g(mzk)(m,qb)f(yﬂ:nk)(m) + ‘Ql"g{mkmik)(m;(ﬁ}flﬁ‘m(z)-

,m
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Since the proofs of (5.10) to (5.13) include several and tedious manipulations of formulaes
we omit in what follows the details and stress only the essentials. In the sequel K, wi) (z—

Y;.m) and K, bm"‘x")( — Y;m) denote the first and second order partial derivatives of
Kiy(z — Y;,) with respect to the variables z;, and z;,.
To prove (5.10) note that for v = (v, vi;, ..., vi,. ) we have
T-1
B
- E > (Xjma — za ) Kn(® — Yim)
J=im+1

= \/hmT/(Uik — 2, ) Kn(® — v) fy, . (v)dv

_ Tl/zh(m+4)/2/ 2K(u)duf(:hk)( ) + 0(1)

Furthermore,
pm To1
el z Var((X;-i. — 73 )Kn(z ~ Yim)) < A2 Var(Ku(e — Yim))
J=im+1

= O(h?)
while by (A5) and as for (2.1)

m  T-1
T > 1CoV((Xei, — 24 ) Kn(@ — Vo), (Xj—in — i JKn(2 ~ ¥im))| — 0.
B, J=im 1
EEE]

To prove (5.11} express the partial derivative as

1 T-1 (s, )
T D HX 1)K, F e~ Yim)

F=im+1

MCT 1
g (% ¢) e
;T =)
L Y K ~<m—vj,m)}
J=im+1
and verify that

1 I 1

(5.15) T > ¢(XJ‘+1)K£ @ — ¥jm) _’_/¢ ﬁfx)rm x)dy
j=im+1

and
1 & ey (25,)

(516) 5 > K- Yim) o frk (@)

in probability. Consider for instance (5.15). Using [ K®uw)(u)du = 0 and
fu;, K%) (u)du = —§, ; we get by straightforward calculations

1 = (2,) £
Y $GEE 2 Yim) | = [ 60w, 1)y + 000)

"'"\'rm‘l'l
1= (ziy)
T2 Y Var(¢(Xje) K, (& = Yim)) = O((T6™)71),
F=im+1

and
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Z Cov{(e( 5+1)K{x”‘)( - Yim), ¢(X3+1)K(mzk)(ﬂ’ - Y;m)) —

s, f=im +1
e

To establish (5.12) note that

1 i (e
E (5 Z g( * IS)('T‘ ¢' V J it ‘T'ik)(Xj—‘is - xia)Kh(a: - Yj:m))

kos=1 i= mm+1
(T —i, )h{m+4)/2 m

= Z (mu‘m“)(ﬂ: QS)/uzkuz,K(u)fth(z - uh)

k,s=1

- %Cthfye,m (@) o) (56) + of1)
k=1

and that

—Va.r( Z (Xj-ie = Tin ) (Xj-i, = 23, )Kn(z — Yj-m)) = O(h%).

i=tm+1

Finally, to establish {5.13) verify first that

(517 ¢ (z30) = —1———{ S KK (2 Vym)

Fovon(2) | 4,577,

z¢)— Z K (2 - Y5,
—'ﬁm+1
T-1

T ) 1 {1,
-g " (2;05)? Z K, }(Z— ¥jm)

#("s i
~yg Z K (2 - Jm)}

'—zm+1

By the same arguments as in Lemma 5.1 it can be seen that to establish the desired
uniform convergence it suffices to show that every component on the right hand side
of (5.17) converges uniformly on (& — A,z + h] to the corresponding component on
the right hand side of (5.14). Since the arguments used are very similar for all terms

considered, we demonstrate this for the term 71 Z 3-,, 1 MK ) K, (i zee) (z—Y;m)
Let Sr(z) = Z? ZL_H HX JH)KIEE'H‘“)(Z — Y;m). We then have

618 | 2EEE) - 50+ ) S o )i

Zm Tiy Tiy
T /¢(y)K£ k J(Z - U)th+1 Yt‘m(y"v)dydv

]-‘Jf“&l\, Ty Ty
e RO ARt
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Using (A7), [ K& (u)du = [u, KN u)du = 0, [ g, ug K Cvin) (u)du =
146, x the substitution z;—v; = u;b and a Taylor series expansion of fx,,, v, . (y, z—ub),
we get similarly as in (5.2) that the expression on the right hand side of (5.18) is O(b)
uniformly in z. Furthermore, by the mean value theorem and applying the splitting
device of the supremum used in the proof of Lemma 5.1 we get

sup < max
1<i<Ny

1 _
1 Sp(ai) - EST(mi))( + O(Lb=™+9),
z€[z~h,z+h] T

Z(50(2) - B(S(2)))

Since Var(T=1(S7(2))) = O(T~1b~{"*+4)) yniformly in z, we get using Markov’s in-
equality and along the same lines as in (5.4) that

b(m+2)hm
m+2
L3y

P (lélilg%T %(ST(%‘) - E(ST(%)))' > LTb‘-(m+3)) -0

Thus for Lt as in Lemma 5.1 and b= O(T %) with 0 < § < 1/(m + 2)2 we have that,
plim+2pm f(Llm+AT) — O(h™) — 0 and Lrb=t7+3) -, 0.
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