Ann. Inst. Statist. Math.
Vol. 52, No. 1, 108-122 (2000)

TIME-VARYING PARAMETERS PREDICTION

CARLO GRILLENZONI

IUAV: University Institute of Architecture of Venice,
St. Croce 1857, 30135 Veneria, Italy

(Received February 12, 1397; revised August 31, 1998)

Abstract. This paper develops a method of adaptive modeling that may be applied
to forecast non-stationary time series. The starting point are time-varying coefficients
models introduced in statistics, econometrics and engineering. The basic step of
modeling is represented by the implementation of adaptive recursive estimators for
tracking parameters. This is achieved by unifying basic algorithms—such as recursive
least squares (RLS)} and extended Kalman filter (EKF)—into a general scheme and
next by selecting its coefficients with the minimization of the sum of squared prediction
errors. This defines a non-linear estimation problem that may be analyzed in the
context of the conditional least squares (CLS) theory. A numerical application on
the IBM stock price series of Box-Jenkins illustrates the method and shows its good
forecasting ability.

Key words and phrases: Conditional least squares, extended Kalman filter, IBM
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1. Introduction

Adaptive prediction is a forecasting technique for non-gtationary time series which
is based on the recursive estimation of the models of the series. Given a model with
time-varying coeflicients and a recursive algorithm, the adaptive predictor may be im-
plemented by using the latest parameter estimate in the forecasting function of the model
(see Zellner et al. (1990)). In general, no law of evolution is assumed and the approach
is open to a large variety of recursive methods.

A selection principle for recursive estimators is provided by their tracking capability.
The ability to approach the trajectory of parameters is determined by three factors:

1} the structure of the recursive algorithm, that is the statistical philosophy of the
method;

2) the kind of adaptation mechanism, that is the form of weighting observations;

3) the design of the tracking coefficients (hyperparameters in the bayesian termi-
nology).
In engineering literature there have been several attempts to unify recursive algorithms
(see Ljung and Soderstrom (1983), Goodwin and Sin (1984)); however, the fundamental
question of designing hyperparameters has been treated heuristically (e.g. Salgado et al.
(1988)).

Statistical science has a solid tradition on the estimation of hyperparameters; see
Pagan (1980), Kitagawa and Gersh (1985) and Grillenzoni {1993} in the context of the
Kalman Filter. This strategy may be extended to general adaptive filters by defining
an objective function based on squared prediction errors {Grillenzoni (1994)). Such
an approach belongs to the conditional least squares (CLS) estimation for stochastic
processes discussed by Klimko and Nelson (1978), Tjostheim (1986) and Tong (1990).
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The paper is organized as follows: Section 2 discusses time-varying parameters with
reference to ARMA models. Section 3 presents an adaptive estimator that encompasses
many existing recursive algorithms. Finally, in Section 4 the adaptive framework is
illustrated with an application to the IBM series of Box and Jenkins {1976).

2. Evolving ARMA models

A non-stationary process {z;} having an auto-regressive moving average {ARMA)
representation with time-varying parameters, can be expressed as follows

n 9
(21)  z=pe+ Y Guzoit+ Y Gpar—j bar, a ~ID(0,6%), ¢=0,1,2,...

i=1 =1

where g, is a drift and a; is the input. We suppose that the law of evolution of the
parameters is unknow, in particular they may be stochastic or deterministic and can
depend on a; or ¢, or both; however, to allow for statistical treatment of (2.1), two
fundamental assumptions are nesded:

Al} The parameters Bye = {fie, ¢ir, 05} with k = 1,2,..., (1 + p + g), are smooth
functions. For example, they could be a mixture of random walks: B = Bre—1 + €kt
with var(ex;} small, and polynomials of the time: Br: = aop + @1kt + aoxt? + --- ; and
S0 On.

A2) The coefficients of the input process are constant, in particular the variance
o? < o0; this means that the final purpose of a time-varying parameter modeling is to
obtain stationary innovations.

This goal can be achieved by modeling the parameters in the proper way, or by using a,
suitable adaptive estimator for tracking their trajectory. This point will be discussed in
the next Section.

Stability. Stability is a useful feature of stochastic models because it is a sufficient
(although non-necessary) condition for optimal properties of parameter estimates and
forecasts. As a general definition of stochastic stability we adopt the principle that to
inputs {a;} bounded in probability, there must correspond outputs {2z} with the same
feature:

(2.2) su%)P(|ztl >z)=0o(l/z") as |z| = oo, with x> 0.
£

The above is stronger than the stability in probabdlity defined as limg_, o0 sUP; 5o P(|2¢] >
z) = 0. This condition, sometimes called tightness (see Kushner (1990)), is minimal and
ensures the existence of an invariant probability measure. However, the need to have
& > 0 in (2.2) follows by the fact that it is sufficient for the existence of moments of
order k < k, that is sup,.q |E(zf)] < oc.

Now, sufficient conditions for the stochastic stability of (2.1) may be obtained by
solving the model for {z,;¢ > 0} and extending those established in the constant param-
eter case. In particular, if S, is the parameter space of a stationarity AR{p) process (e.g.
53 is the well known triangular region), then (2.1) has second order moments {k = 2) if
all sample realizations of {¢;;} lie inside S,,.

PROPOSITION 1. The non-stationary process (2.1} is second order, if the polyno-
mials §y(B) = 14+ ¢ B+ - -+ ¢ BP have roots whose realizations entirely lie outside the
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unit circle, with the exception, at most, of finite sets of points. The model (2.1) is invert-
ible (i.e. {a} can be generated from {z}) if a similar feature holds for the polynomials
8.(B)=1+6uB +---+ 64 B9

PrRoOOF. The result is intuitive and can be proved as in Pourahmadi (1936),
Grillenzoni (1990) or Chen and Tsay (1993). First we consider the model z; = ¢;2:—1+as;
by assumption, there is a fixed sequence ¢} such that

. oo, teT <o
< = ? v
loe| < % { ¢ <1, elsewhere } wpd

with probability one (w.p.1). Thus 2z is bounded by the process z; = ¢}2z;_, + a; and
solving for ¢ > 0 with initial condition z5 = ag we find that

¢ i
2= vha, = |][ ¢
i=0 =1
Since sup,. o ¥ = O(®T - pli=T!) = O(¢/T—¥), it follows that su Zt- [¥5]? < o0
=0 ¥it 1 Pino 2ui=0 ¥ !
thus z; has finite second order moments, and the same occurs for the process z;.

For the extension to AR(p) models, we consider polynomials ¢} (B) = [[F_;(1—o}4B)
(where B is the backward-shift operator: B*z, = z,_4), whose inverse roots p}, are fixed
and bound those of the polynomials ¢,{B) of model (2.1). As in the simpler case we
have the condition

A3)

. Pi<oo, tel;<x
(2.3) loie] < g3y = { g <1, elsewhere. } -p-1.

The process {z;} is still bounded in probability by ¢}(B)z} = a;, which has finite
variance. In fact, we note that the sub-processes 2}, = (1 — p},B)~'2}_y,, With 2§, = a4
and z,, = z{, are all second order. An algorithm for obtaining the weights {+};}, in this
case is given in Grillenzoni (1990).

Remark. A complete characterization of the stochastic stability for Markov pro-
cesses was provided by Meyn and T'weedie (1993). It includes the definition (2.2) as a
particular case. Since the model (2.1) can be expressed in Markovian form, it is possible
to show that Proposition 1 allows many other stability properties, such as irreducibility,
recurrence, regularity, non-evanescence and tightness. These are reviewed in Appendix 1.

Unstability. In many real situations, there may be the need to deal with non-
stationary processes {Z;} which are also stochastically unstable, i.e. asymptotically un-
bounded. This may be achieved by including in (2.1) a linear factor whose parameter
wanders outside the stability region:

T
— . 1
(2.4) (1-2B)Z =z, El&,/= Jim (T ;Em) > 1.

The fluctuations of the unstable root ®; can determine in Z, trends and cycles with
complex transitory components, such ag structural breaks and inverting slopes. Together
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with the sets T; in (2.3), we may conceive evolving models in which stable roots become
locally unstable and vice-versa.

Prediction. The cost for the adaptability of the above framework, is in forecasting.
Since the dynamic of parameters 3y; is unknown, the expression of the predictor #,(h) =
Elzisn | 2, 2¢-1,...], h > 1 cannot be derived. An approximate solution can be obtained
from the formula for stationary models

h—1 r
&e(h) ~ fu(h— 1) + Zq‘s( = Dah =9 + 3 dislh = zerns
i=1 i=h

g
+> B5e(h — Darsn—;
j=h

where f(h — 1) = Elgig4n | 2ty 2t-1,. ..}, etc... In adaptive forecasting, the parameter
predictors Be:(h — 1) are usually approximated by the latest recursive estimates 3x(t).
This solution may be improved, if on the basis of such estimates, models for {8k} are
built and used in forecasting.

3. Optimized adaptive estimation

In the previous section we have introduced a class of models whose parameters are
time-varying. Since their dynamic is unknown, the classical solution of the Kalman
Filter (KF), and its extensions (e.g. Kitagawa (1987)), cannot be used in estimation.
Therefore the resort to more general algorithms described in Ljung and Soderstrom
(1983) and Goodwin and Sin (1984) is needed. In any event, the smoothness assumption
Al is a necessary condition to have a good statistical performance. This fact cannot
be precisely quantified because “convergence” of adaptive estimates is impossible even
when parameters are constant. In practice, only bounds on the tracking errors can be
achieved, but this depends on the stability of the algorithms (see e.g. Guo and Ljung
(19954, 1995b)).

Algorithms. Writing the model (2.1) as z; = 8.2, + ay, with 2} = [, 2e-1,...,81—¢]
and ﬁ; = [, D1, - - - y84¢], the typical recursive estimator for its parameters is

(3.1) B(t) = Bt — 1) + D()E)a(t)

which is obtained from the iterative estimator [355) by equating number of iterations
and number of processed data (i = T) = t. In (3.1), F(¢) is the covariance matrix
(it will be defined below), £(t) = [~8a:(8,)/8B,)g, 11, i the gradient and a(t) =
lze — 2(t)'B(t - 1) )] is the prediction error. From the computational viewpoint the vector
Z(t) = [1,2¢-1,...,6(t —q)] is updated with a( ) and having §, = z;/0;(B), the gradient
can be computed on-line as £(t) = &(t) - ;(t — DE(t — 7).

What fundamentally distinguishes the vanous algorithms, is the structure of the

matrix I'(f). The solutions related to recursive least squares (RLS, see Ljung and
Soderstrom (1983)), extended Kalman filter (EKF, see Goodwin and Sin (1984)) and
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least mean squares (LMS, see Widrow and Stearns (1985)) are given by

(322) RLS:D(f)= L |P(e_1)  DE-DEDEOTE-D} = o )
> N+ (YT - DEW)
e e 1y Be— DEOEOTE-1) .
820 BKF: B =P~ =B I D eal, 0<<
- 1 :
(8.2 0= EwE s

where X, v, p are adaptation coefficients and o2 = E(a?). It is well known that (3.2a)
corresponds to a sequential Gauss-Newton estimator with weighted covariance matrix
D(t) = {55 At~H€(1)€(5)'| 7, and (3.2¢) is its steepest-descent version. On the other hand,
(3.2b) implies that parameters follow a random walk model with input e, ~ NID(0,~I).
Thus, (3.2a) and (3.2¢) are essentially non-parametric methods, suitable when the vector
B, is a non-linear process or a deterministic sequence.

As a general remark, the necessary condition which enables (3.1} to track the changes
[8,—B,_,] and to have E||B(t)—B,|| < co, is that matrices (3.2a)~(3.2c) be positive definite
and bounded: 0 < I'(t) < oc. As concerned positivity, we may note that the coefficients
A, 7, 1 have the role of preventing I'(t) — 0. Indeed, having ['; = (3¢ At~%,€)~!, in
the RLS the vanishing occurs if the weighting factor A = 1, while in the LMS it happens
if the step-size 4 — 0 and in the EKF if the noise variance 4 = 0. This motivates
the constraints in (3.2a)-(3.2¢). As concerned boundedness of I'(t), which enables the
stability of equation (3.1), it is fundamentally related to its invertibility. In the RLS this
requires

(3.3) inf P

t>p

i
det ( 3 N+ )\t'p'yo‘ll) > o] =

t=p+1

where 01 = Ty. Condition (3.3) with A = 1 is also sufficient for the exponential
stability of the EKF (see Guo and Ljung (19954), p. 1380). Now, given the relationship
¢, = 7:/6,(B), we may see that (3.3) is satisfied under the conditions of Proposition 1
and non-degenerate values of A, ~g.

From (3.2a)-(3.2c} we may see that the various algorithms have apparent algebraic
connections. This enables us to recompose them into a general recursive estimator, as
follows

(342) B(t)=Bt-1)+ ur(t) £(t) [z — () Bt — 1)), B(0) = B,

(3.4b) T(2) =% It -1) - (;;;gf)(f?ﬁtzf)(;(;)l) +4I,  T(0) = I

where By, Yo are initial values. Algorithm (3.4) encompasses (3.1)~(3.2), in fact setting
1 = 1, v = 0 we have the RLS, when g = 1, A = 1 we have the EKF and for v = 0,
1/A = 0 one obtains the LMS without the normalization |€(t)]. The unification (3.4) is
motivated by the aim of improving the tracking capability of (3.1), namely to minimize
the distance E||8(t) — B,||. This approach is largely tentative, but we recall that the
dynamic of parameters is unknown.
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Optimization. Algorithm (3.4} involves the unknown coefficients & = [i, A, ¥ Y0, 85)
whose range of variation, except for 0 < A < 1, is somewhat wide. Until now, in engi-
neering literature, only heuristic rules have been provided for their selection. Using the
general bound 0 < I'(t) < oo, Salgado, Goodwin and Middleton (1988) have established
their ranges as follows: A € [.95,.99], ¢ € [.1,.5], ¥ € [.0,.1]. These constraints are
too loose, and do not enable a good design of (3.4). Given a sample of observations
{z1,...,2r}, it is appropriate to solve the problem in terms of optimal selection, by
minimizing a loss function based on the prediction errors &(t)

T
(35 3% %0, Bolr = arg min {QT(a) = D [~ &()B - 1)12} :

t=p+1

This approach is similar to the optimization of smoothing coefficients of non-parametric
estimators (e.g. the cross-validation selection of the bandwidths in kernel-type estima-
tors). However, from a parametric viewpoint it belongs to the conditional least squares
(CLS) method discussed in Klimko and Nelson (1978), Tjostheim (1986) and Tong
({1990), Chapter 5), where the term conditional concerns the set of past information,
because Q7 (8) = 3_,[2: — Es(2e | 2¢-1,...}]%

Anocther correspondence of (3.5) is wzth the maximumn likelihood estimation of the
parameters of state-space models, in which the likelihood function is evaluated by means
of the Kalman filter (see Kitagawa and Gersh (1985)). However, major differences are the
semi-parametric nature of the model (2.1), the use of filter (3.4) in place of the KF and
the direct estimation of the initial values B;, v0I. The last point, in particular, tends
to avoid the drawbacks of transient behaviour and error propagation of the heuristic
solutions discussed in the bayesian literature; in particular that of diffuse priors for
I'(0). On the other hand, it may rise specific problems of parametric identifiability (see
Pagan (1980)). To prevent situations of this type, parsimonious parametrizations, such
as 4 = ~o/1000, or constraints on the vector 8, = [ug, $10,- - -, fg0), can be used.

In practical terms, the optimization (3.5} is performed by iterative (off-line) estima-
tors, such as Newton or Gauss-Newton, where the functional Q7(-) is computed through
the recursive filter (3.4). Given the prediction errors &;(8) = [2: — Es{z | 2z-1,-..)]
iterative estimates are

ai4+1)  =(d)

W] Em 0, 4
)4l i . (o}
(3.62) by =67 +a tZC: ¢ J ZC ( y with ¢ = -Fg‘

T -1
A(i+1) £,(3) AC a8, . _
(36]1)) 5 = 6’1" G _E Wt ] E C with Wg = W

where «; are stepsizes. Unlike the gradient {£,} in (3.1), the analytical expression of
the derivatives {{,, W} is difficult to obtain and this complicates the statistical analysis
(see Pagan (1980)).

Assuming that problems of parametric identifiability (which make the matrices
[T, &L [T~ 32, W) asymptotically singular) do not arise, the consistency of {3.6)
fundamentally depends on the smoothness of Qr(-).

PROPOSITION 2. Under the conditions of Proposition 1, property (3.3) and:
Bl) T7'8Qr(80)/08 converges to zero with probability one (w.p.1).



114 CARLOC GRILLENZONI

B2) Mr(6) = T718%Qr(80) /0838 converges w.p.1 to a positive definite matriz.
B3) limg— oo SUP & L M7 (67} ~ Mr(8o)| < 00 w.p.1l for |67 — bo| <&
the estimates (3.6) converge w.p.1 to the value & that minimizes (3.5).

ProoF. This result is a corollary of the CLS theorem reviewed in Appendix 2. In
particular , Proposition 1 allows for the existence of second order moments and asymp-
totic independence of {z;}. Invertibility in Proposition 1 and property (3.3) enable the
algorithm (3.4) to be stable so that the functional Qr(8) is bounded. Conditions Bl and
B2 guarantee that asymptotically Qr has a minimum at 8, and B3 that the residual of
the Taylor expansion of Q7 in §; can be ignored.

In the application of the CLS theorem to the estimation of the drift f in the state-
space model z; = ¢;2¢1 + a; with ¢ = 0o + f1e¢—1 + €4, Tjostheim (1986) required the
existence of fourth order moments of {2 }. In Appendix 3, we show that such moments
are involved in the estimator (3.6), therefore they are required in Proposition 2. However,
proceeding as in stationary models, one may show that {z;} is also a fourth order process
under the conditions of Proposition 1.

Finally, on the basis of the results of Appendix 3, an extension of the RLS algorithm
(3.1) and (3.2a) toward time-varying weighting factors {):} is proposed in Appendix 4.

4. The iBM case study

The case study concerns the IBM stock price series during the period May 17, 1961-
November 2, 1962; the plot of data in levels Z; and in differences z; = {Z; — Z;_1) is
given in Fig. 1 (a,b). For this series Box and Jenkins ({1976), p. 239) have confirmed
the hypothesis of random walk, which is widely diffused in financial data. In fact,
the ML-estimation of the identified IMA(1,1) model z; = fa;— + a; provided a non-
significant MA-parameter. The same data-set has been republished by Tong ((1990), p.
512), together with its calendar. This enables us to obtain the weekly average of the
IBM series, which contains T" = 77 observations and has a richer dynamic structure.

As is known from Weiss (1984}, given a process Z; ~ ARJMA(p, d,q) (where d is
the order of integration), the aggregated series Z, = (Z, + Z;—1 + - -+ + Z4—x) behaves
like an ARIMA(p,d,r) where r = int[(p+d+ 1)+ (g—p—d— 1)/k] and int(-) takes the
integer part. Weiss (1984) also showed that as & — oo the model becomes IMA(d, d);
therefore if Z, is a random walk and k is not small, then Z, should be an IMA(1,1).

Empirical investigation of the IBM series has provided results more complex than
those expected from the previous discussion. Indeed, the models identified for the weekly
average in differences and in levels, were ARI{3,1) and ARMA(2,1):

4.1a =304z _; — 127zT + 292zT + @y, Yer = 9,905
(4.1a) s R T Ry e R Q7
(4.1b) Z, = %13755 Z._4- (380 Zoot (264 Grez+dr,  Qqp = 10,005,

Unlike the daily series, these models are mgmﬁcantly better, in terms of the statistic Qr,
than the correspondmg random walk Z, = .9972Z,_; + &, Q77 = 13,332. As shown
by Rao (1961), the OLS estimator applied to models with unstable roots substantially
improves its consistency property, although estimates are not asymptotically normal.
Hence, there are not counterindications to the implementation of the model (4.1b}. The
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Fig. 1. Plot of the IBM series: (a) in levels; (b) in differences.

Table 1. CLS estimates of the coefficients of algorithm (3.4) applied to models (4.1).

Model 0 A I $10 dap Pzp /830 Qr

(4.1a)  .938494 .782206 —1.05758 546323 —.451328 068321 5410
{140) (125) (31) (141} (B3) {55)

{4.1a) 354499 520214 —.578651 461552 —.360024 .098062 6047
(35) (68) {18} (99) (27) {29)

(4.1b} 1.034802 .956084 —.158910 1.356285 —.357421 .151143 8270

(10.3} {18.3) (8.5) {23.5) (5.7 (2.5)

AR(1) .038408 .625269 —.349404 1.012237 . . 10016

(1.2) (10.5) (22.2) {123)

constant parameter models (4.1a) and (4.1b) will be the benchmarks for evaluating the
performance of the adaptive techniques discussed in Section 3.

We now apply the adaptive framework (3.4)—(3.5) to the models of the weekly IBM
series. The best algorithm structure was tentatively identified without the Kalman fil-
ter component, because the estimates of the coefficient + were non significant. CLS
estimations were carried out with the MAXLIK routine of the Gauss package; results
are reported in Table 1. The t-statistics (in parenthesesj must be considered with cau-
tion because the asymptotic normality may not hold for highly nonlinear estimations
{Tjostheim (1986)).

We now describe in detail the content of Table 1: Row 1 contains the estimates of
the coefficients of algorithm (3.4) with the constraint v = 0 and applied to model {4.1a).
Row 2 concerns the same experiment but performed with the constraint v = %0/100,
which was suggested by the unconstrained estimation. As we may see, the statistical
performance sligthly worsens. Row 3 deals with the model (4.1b), of the IBM series in
levels, and the constraint v = 75/1000. Despite the non-stability of the series {Z,}, the
iterative estimation converged; however, the statistic Qr is not as good as before. Row
4 concerns the same estimation as in row 3, but done on an AR(1) model. With this
experiment we are mainly interested to track the time-path of an unstable root.

Important remarks can be made on Table 1: In all cases we may see that in-sample
forecasting performance, expressed by the statistic Or, significantly improves over the
constant parameter models (4.1a} and (4.1b). In contrast with the expectation of the
heuristic design of hyperparameters (see e.g. Ljung and Siderstrom (1983)), the value of
the LMS coefficient y is negative. This is probably associated to non-linear characteristics
of the IBM series (see Tong (1990)). The factor A belongs to the admissible range
{0,1), but estimated values do not fall in the set [.95,.99] which is usually recommended.
Moreover, as for v, the coefficient ¢ does not seem significant.

In summary, the reduction of the statistic Qr allowed by the method (3.4)-(3.5) over
the constant parameter models (4.1a) and {4.1b), ranges from —45% of row 1 to —18%
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Fig. 2. Recursive estimates generated with the coefficients in row 2 of Tahle 1: (a) Parameters
Ga(t)——, @o(t)y — — —, ¢3(t) — - —; (b) Variances I'y;{¢), i = 1,...,3.
0.4 . (a) : : ) .
0.3 i
0.2 ]
0.1 - : T
0 20 40 60 80 1] 20 40 60 80
Fig. 3. Recursive estimates generated with the coefficients in row 3 of Table 1: (a) Parameters
le1(t) — 1] , —@a{t) — — —, #3(t) — - —; (b) Variances [';;{(t),i=1,...,3.
102 S () E— Y L) .
1.01
099
0.98
0.97 - - - 0 : ’ .
0 20 40 60 80 Q 20 40 60 80

Fig. 4. Estimates 1 {t) and ['11(t) generated by the coefficients in row 4 of Table 1.

of row 3. These are good results which confirm the non-constancy of the parameters of
the IBM models. Figures 2—4 plot the recursive estimates () and [';(t) generated by
the algorithm (3.4) with the coefficients in Table 1. Particularly interesting is the path
on the unit circle of the “root” @;(t) obtained from row 4.

Forecasting. In the previous experiments the orders (p,q) of the models were se-
lected from the off-line identification and estimation (4.1}. In the context of time-varying
parameters, the validity of this approach is based on the assumption that the average
values Bir = Er(Bs) = T} Ele E(8;:) were different from zero. Since this condition
may not be satisfied, the sole effective way for improving adaptive modeling is to increase
{p,q) tentatively. With reference to the series {2;} and using F-tests, we have checked
that the most significant reduetion of Q7 is achieved by an AR(5) model. Estimates of
the coefficients of the filter (3.4) with the preceeding constraint are given in Table 2. It
can be seen that the improvement of Qr over the model (4.1a} is now —63%.
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Table 2. CLS estimates of the coefficients of algorithm (3.4) applied to an AR(5) model.

Series Yo X m P19 #20 $30 L) $50 Qr

Z 06018 .79848 -1.1303 .7H005 —.TOD08 .27563 .04705 —.06957 3677
(40) {151} (14) (62) {15) (15} (3.5) {4.4)

ot ' N
e ~
0 5 i \ !
- - [ +
- Wit

-1 i 1 1 s

0.1

0.05

0 80 0 20 40 60 80
Fig. 5. Recursive estimates generated by the coefficents in Table 2: (a) qbl; —_— o — — —
g3t~ ~; (b) ¢ae ——, ¢st — — —; (&) Duat, i = 1,..., B (d)aie 2o

Since AR models are linear in the parameters, we may simplify the notation used
for their recursive estimates as ﬁt, .. Now, Fig. 5 (a,b) show the series by i=1,...,5
generated by algorithm (3.4) with the coefficients in Table 2. Figure 5 (c,d) show the
paths of the corresponding “variances” ;e and innovations é;. We may see that the
mean values of @4, @s5; approach zero and the series {d,} is nearly stationary. This is
one the final goals of the adaptive modeling.

Prediction experiments were carried out on the series {z;} using the adaptive AR(3)
and AR(5) models implied by Tables 1 and 2. Prediction algorithms used a multilayer
structure, in the sense that ARMA models were constructed for the recursive estimates;
for those in Fig. 2 we had

$1e = 031+ 918 111 + €38 R? = 84%
(1.2)  (19.8)
ot = —(10428 + 863 b1 +ea, RE=T5%
2 __
bat = {(2]99? + (;719‘? ¢3t 1+ e3t, R* = 64%.

We may see that, despite the random walk structure of the equation {(3.4a), the above
models do not contain unit roots. From Section 2, the approximate forecasting function
is given by

3
Zi(h) = Z ﬁ??’it(h — 1)z (h — i), éit(h) = + ﬁz‘ﬁgz‘:(h -1), =123

Ci=1
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Fig. 6. Plot of statistics (4.2) for stationary (——) and adaptive {— — -} models of the series

{Z:}: (a} AR{3) models; (b) AR(5) models.

20
10

Fig. 7. Plot of data {Z72,...,%77}{——) and their forecasts obtained from stationary (— - —)
and adaptive (— — —) AR(5) models.

To compare the forecasting ability of stationary and adaptive AR models we have
used mean absolute forecast error (MAFE) statistics, defined as

1o -
{4.2) MAFE,(h) = ;Z JBersen — Zers(R)],  A=1,2,...

s=1

where n is the sample size of the mean and s shifts the forecast origin. In the IBM
application we have taken ¢t =61, n =10 and h = 1,2,..., 6; specifically, forecast origin
was changed 10 times, and each time 6 forecasts were computed. As it can be seen in
Fig. 1b, the forecast period is complete because contains positive and negative trends
and a turning point. Plot of statistics (4.2) for the various models are given in Fig. 6.

In comparing Fig. 6(a) and 6(b), we may see that the AR(5} specification yields a set
of MAFE statistics which are uniformly (in k) and significantly lower than thase of the
stationary model. The gain of forecasting capability of the adaptive AR(5) model can be
quantified, on average, as 35%; although it is smaller than the in-sample performance,
expressed by Qr, this result legitimates the complexity of techniques proposed in the
paper. Furthermore, from Fig. 7, which plots the last set of forecasts, we may see that
adaptive predictions may locally (in ¢) be very accurate.
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Technical Appendices

Appendix 1 Definitions of stochastic stability
A general characterization of the stochastic stability for Markovian processes {z:},
was provided by Meyn and Tweedie (1993). Letting 74 = inf;5o{t : 2, € A} the hitting
time (i.e. the first time the process returns in the set 4} and Pt(z, 4) = P(2 € A |
zo = %) the -th step transition probability from the initial state z, the process {2} is
definined:
1) drreducible, if P(t4 < oo | zg = z) > 0 for every z, A bounded.
This means that any bounded state can be reached in a finite time from any initial
condition.
2) recurrent, if P(r4 < 0o | 20 = ) = 1, and further E(r4 | 20 = z) < c0.
This concept clearly strengthens that of irreducibility introduced above.
3} non-evanescent, if P(z; — oo | zp = #) = 0, which means asymptotic bound-
edness.
This is the condition of stability which is more close to that introduced in the paper.
4)  tight, if lim; . inf P(x,C.) > (1 — ¢), for any € > 0 and C, compact.
This concept concerns the transition probabilities, rather than the process itself.
5) ergodic, if P*(z,C) 2 7(C), where m(-) is an invariant probability measure.
This property is the most strong and defines the convergence in probability of the process.
Given the non-stationarity of model (2.1), ergodicity cannot be guaranteed in our
case. However, under Proposition 1 the process is non—evanescent and therefore is
bounded in probability on average, in the sense that Pr(z,-) = T-13.L, PHx,") is
tight (see Meyn and Tweedie (1993), Chapter 12). As a consequence weh have that
Pr(z,C) converges weakly to #(C) which is a sub-invariant measure for the average
probablllty of any compact This measure is related the average moments, defined as
fig = limpoo T~ 57 E(2F) , which exist for k < 4 under the conditions of Proposi-
tion 1.

Appendix 2 The conditional least squares theorem

The theorem pravides the existence of a consistent estimator for a vector of nonlinear
parameters § in a stochastic process. Letting 81 = {2t—1,2:-2,...} the set of past
information, it requires the distribution of the prediction errors a:(6) = [z; — Es(2: |
Se-1)] = (2 — :c’tfi't“_l), where ﬁt|t_1 = E{8, | $¢—1). In conditional form, this is given
by (@ | Se_1) ~ IID[0, o = (}T,+0)] where v} and T = E[(8,~Bye—1) (Bi—Bue_1)' |
T¢—1] are conditional dispersions. Finally, let us denote partial derivatives of 4, as follows:
(,(8) = —0a,(6)/06 and W ,(8) = 524,(8) /0656 .

THEOREM. Assume that {z;} is a second order process, and that {4;} is almost
surely twice continuously differentiable in an open set Djs containing 6y, the unknoun
parameters. Moreover, assume that there are positive constants Cy, €z, Cs such that,
fort > p + 1, the followz'ng conditions hold:

C;(ﬁe F(00)(:(8e)] < C1, Cr< o

(11) [W’ (60)‘Ut (80)W {8o)] < Czl Cy <00

(iii) limp_,ec info {RT(ég) 13T (B0 80)] }a;-f.c;vsl Cs >0
Rr(8) ~ Rr(60) + & T1 1 [0(6)We(6) — 4(60)W(50)]

“ 00 on the set D, = {§: ||6—8|| < £} C Ds, where || || is the euclidean norm.

(iv) limgy o0 5UP,_q ;
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Then, there exists a sequence of estimates {371} strongly consistent for 8y and a Ty such
that Qr(8) attains a relative minimum at 8¢ for T > Tg.

As in non-linear least squares (NLS) theory, the result is proved by using a Taylor
expansion of @7 (8) around 8y (see Tjostheim (1986) or Tong (1990), Chapter 5). Looking
at the assumptions, we see that (i) and (ii) define second order properties of the processes
{¢,,W:}. By stochastic calculus, these are satisfied if {2, } is a fourth order process, that
is if the assumptions of Proposition 1 hold. (iii) is a condition of parametric identifiability,
that is of feasibility of the Gauss-Newton step in the algorithms (3.6). Finally, (iv) is a
condition of smoothness of {a;,(,, W} around 6.

Appendix 3 Fourth order moments in CLS estimates
Focusing on an AR(1) model and the RLS algorithm with coefficent A, the prediction

error is defined as G:(\) = 2z, — q?at_lzt_l. Since gfﬁt can be expressed as a weighted OLS
estimator, we have

Oy _ 32t—1€5t—1

C==H T
20-18( i N2 ) (T M e z)
- EJ)
t-1 -2
(A.la) =21 (E At_i-lzf-l)
i=2
t—1 t—-1
. { lZ(t —i— I)A“i‘2z¢-1zi] [Z ’\t_i_]ziz—l]
i=2 i=2
t—1 i—1
- [Z(t —i— 1)At—i—22;_'2_1] lz At_i_1Z¢_1zi] }
i=2 1=2
(A1b) Y (R {[(t— DAt — Biot]Reey — [(t — 1)Comy — De1]Se1}
t—1 =241t
(B ) TS
=2 i=2 j=2

- zi—12zj—1{Zizj_1 — 252i-1)

thus, we may see that 4th moments of {2} are involved in the estimators (3.6). However,
since {k - A¥} — 0 as k — oo, it is clear that under Proposition 1 (which also allows for
existence of such moments), conditions (i) and (ii) of the CLS theorem are satisfied.

Appendix 4 An extension of the RLS algorithm

Expression (A.1) for the gradient may be directly extended to AR(p) models by
substituting the scalar z;_; with the vector =, = [2,_1, ..., %—p). It is relatively complex,
but can still be computed recursively; in particular, replacing z2_; with z;z, in the second
term of (A.la), we have

t—1 t-1
(A.2) Z(t -1 =)A= (£ - 1) Z DUNLtP s ¥ 4
i=2 i=2

t-1
~ SN izl € (£ - 1)Ci - D
i=2
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= (t — D}[ACia + A 37 ]
—[ADy—g + ATt~ V)mim_y)-

This suggests that a recursive algorithm for estimating the hyperparameter A may be
implemented. Indeed, using the sequential loss function Q;(\} = aZ(A}, from the first
order condition {;a; = 0, expressions (A.1b) and (A.2)}, we may obtain the LMS algorithm

(A3a) A =Xy +p'ile - zidyy)
(A3b) = z’aR;j{Rt—l[(t — Dty — bea] = [(t — 1)Ceoy — Dya]de1}

Ry =M_iRe g+ 2124 Cio1=A-1Ci2 + A 217},
G- = M1t 0+ N T 129 Di =MD o+ »\;_11 (t = Vze—12,_,

~ - ~ o] ~ - ~ -~
b1 =Aabia+ A (- D@—12e-1 81 = A1 + 121

where p* a coefficient that enables to track the possible variability of the factor A.

Algorithm (A.3) must run in parallel with the RLS estimator &: = [qnblt, ven ,qut]; in fact,
the two filters share the prediction errors 4;. Finally, the RLS version of {A.3) can be
obtained as in (3.2a) by substituting p* with 4z = (\*4;7% + ff)"l, where 0 < A* < 1.
Extension of the methods (A.3a) and {A.3b) to general (ARMA) models is difficult
because the parameters require nonlinear estimators which cannot be expressed in the
compact form 8, = (3¢ X~iz,z})~1 L A=z, 2,. Moreover, the vector of regressors z;
involves lagged errors @(t — j), 1 € j < ¢ which depend on ﬁ(t —j—1) and consequently
on A. All of these facts make computation of derivative (A.1) extremely complex. The
same situation accurs for other kinds of hyperparameters, such as those of LMS and
EKF methods. For example, in an AR model, algorithms (3.1)—(3.2¢) can be expressed

as &t 2> H;=;’+1(I — WT;T; )iz but 86:(4)/Ou has not a compact form.
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