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Abstract. An advection-diffusion equation with time and space dependent random
coefficients is derived as a model for the plutonium concentration changes in the sur-
face soil around the Rocky Flats Plant northwest of Denver, Colorado. The equation
is used to fit a set of temporal-spatial data sampled annually over a 23 year period
from 71 sites around the plant. The coefficients of the advection-diffusion equation are
derived from the estimated covariance function of the observed random field using a
combination of maximum likelihood and quasi-likelihood techniques. Goodness-of-fit
of the model to the data is also assessed. Finally we interpret the model in terms of
the advection-diffusion mechanism.
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1. Introduction

The data analyzed in this paper are scil plutonium concentration measurements
taken between 1970 and 1992 by the Radiation Control Division of the Colorado De-
partment of Public Health and Environment. The purpose of the survey was to assess
the degree of plutonium contamination in the surface soil in the vicinity of what used to
be called the Rocky Flats Plant. The contamination was caused by a used leaking oil
coolant containing plutonium. Containers with the oil were stored near the south-east
security fence of the plant over the period 1958-1968. The leak caused by corrosion of
the containers was detected in 1964. In 1969 the containers were removed and the site
was cleaned and filled by gravel. Later it was covered by asphalt so that further surface
distribution of contaminated particles from the storage site into the area is prevented.

Several studies analyzing the Rocky Flats soil plutonium data were published in the
past, all of them trying to draw a contour map depicting the plutonium contamination
in the surface soil around the plant. A detailed discussion of their conclusions and other
relevant references are given in the report by Jones and Zhang (1994). What makes
our study special is the attempt to build a physically meaningful stochastic model that
can be used for drawing the contour maps. We assume the radioactive plum was created
mainly by contaminated particles of dust and soil airlifted into the area by the wind. The
transportation mechanism is thus random and we describe it using an advection-diffusion
equation with stochastic space-time dependent coefficients.

* Now at AQRM, Atmospheric Environment Setvice, Environment Canada, 4905 Dufferin Street,
Downsview, Ontario, Canada M3H 5T4.
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Literature on applications of partial differential equations (PDE’s) to data generated
by a random mechanism can be divided in two main groups. The first considers the PDE
as a model for an autoregression problem. See e.g. Jones and Vecchia (1993), Huebner
and Rozovskii (1995), Jones and Zhang (1997) and others. The second uses the FPDE to
model the trend in the data. See It6 and Kunisch (1990), Lamm (1992) etc. In the first
case, fitting of the model to the data requires estimation of parameters in a covariance
matrix of a probability distribution, while in the second case we have to deal with a
non-linear regression problem. There are several ways to incorporate randomness into
a PDE: through the input, by means of a white noise on the right side of the equation,
using random coefficients, random boundary conditions and a combination of the three
mentioned. The autoregression approach is preferred by statisticians. Its main goal
is to model the covariance structure of the data by means of a stochastic PDE with
one or two constant advection-diffusion parameters along with a usually simple linear
trend. The equation is used to obtain a relevant covariance matrix for a Gaussian model
used subsequently for prediction of the data. The non-linear regression problem usually
requires the advection-diffusion parameters in the model to be space dependent in order
to achieve a reasonable fit and it is preferred by applied mathematicians. The statistical
approach attempts to accommodate irregularly sampled data and emphasizes efficient
estimation of the parameters using maximum likelihood, whereas the papers in applied
mathematics assume lattice sampling and consider mainly least squares estimation.

The advection-diffusion equation as a model for pollutant transportation appears
in both mentioned contexts. It is worthwhile to mention the theoretical papers by
Kwakernaak (1974) and Chapter 7 in the monograph by Kallianpur and Xiong (1995)
discussing modeling of river water pollution with chemicals deposited according to a
Poisson process. Unny (1988) models transportation of chemicals in a groundwater
flow by starting with an advection-diffusion equation that has random coefficients and
transforms it into a problem with a white noise forcing term. A similar approach is used
in the case study on dispersive contaminant transportation in the Borden Aquifer by
Vomvoris and Gelhar (1986). The rather deterministic or trend oriented view on the
tracer experiment results from Borden Aquifer is apparent in papers by Sudicky et al.
(1983) and Farrell et al. (1994). A model for air lift transportation of chemicals is given
in Omatu (1984). As a tool for ocean study we find the advection-diffusion equation in
Piterbarg and Ostrovskii (1997).

Despite the number of papers and applications involving a stochastic advection-
diffusion equation there does not seem to be a systematic procedure for finding a fit
between the equation and the data. Here we provide one possible approach. The
advection-diffusion equation with random coefficients and its solution are introduced
in Section 2. We assume the logarithm of the solution is a Gaussian linear model with
correlated noise commonly used in statistics. The model is specified in Section 3. The
covariance matrix of the noise is supplied by a stochastic PDE. In Section 4 we estimate
the parameters and validate the model. Finally, in Section 5, we derive the random
coefficients of the advection-diffusion equation.

In classical mathematics and theoretical physics coefficients of the PDE are usually
derived by a theoretical consideration and then the scientist attempts to decide about
the agreement of the solution and the observed reality. Here we proceed in a somewhat
reversed way, specifying first the solution from the data and then deriving the equation
which can be interpreted in a meaningful manner.
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2. The model

Transportation of the plutonium into the surrounding of the plant is caused mainly
by the natural diffusion of the contaminated coolant into the soil and by the wind
airlifting the radioactive particles into the area. Such a process is often described by the
advection-diffusion equation

(21) Ec— E?_.g._.ai - i_|_ _3.._._ + e
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where ¢ is the time and z = (1, 22)7 are the coordinates on the surface. This means, the
temporal changes in the concentration ¢ = ¢(t, 2) on the left side of the equation are equal
to the changes in the concentration gradient minus a specific discharge of concentration
on the right. The discharge is linearly proportional to the wind speed. The functions
v1 = vi(t,z) and v = va(t, z) describe the wind speed along the axes x1 and z2. The
additive term vsc, where vs = v3(t, =}, characterizes the amount of radiation spread into
the system by radioactive particles already deposited at various sites of the monitored
area. We assume the coordinate system centered at the leak source.

If v3 depends on time only then, under mild growth conditions imposed on v =
(v1,v2)7, equation (2.1) has a unique solution described by the formula

22)  eltz) = exp { fa t vg(s)ds}
X E[f(Ws)exp{/:v(t + 5, W, )dW,
- %fot u(t + s, Ws)“zds} ‘ W, = a:]

where f = f(z) is the initial condition, W; = (W; 4, Wa,)T is a random vector of two
independent Brownian motions and the first integral in (2.2) is in Itd’s sense. Represen-
tation (2.2) is a consequence of the Feynman-Kac Theorem and Girsanov Theorem. See
Karatzes and Shreve (1988), Section 5.7. The observed concentrations change randomly
in time and space. If the wind speed vector is random, then so is ¢ and we can consider
(2.2) as a pathwise solution of (2.1). We will assume that with a suitable choice of the
initial condition f it is possible to express (2.2) in the rather naive form

(2.3) e(t,2) = exp{u(t, z) + 2(t, 7)},

where y is a deterministic function and z is a zero mean stochastic process. This permits
us to find a match between (2.1) and the data.

3. Modeling of stochasticity

The preliminary analysis of the data sampled in equal distance between 1984 and
1992 from two concentric circles with center in the plant (cf. Fig. 1) reveals that it is
reasonable to consider p(t, x) in (2.3) constant along the circles and model z(%,z) as a
stationary Gaussian temporal-spatial process. Let us denote by uy , the logarithm of
concentration observed in year f; from 4 circle at location z,, k= 1,...,K,n=1,...,N.
Because of the stationarity and the circular equidistant sampling, we can estimate the



A STOCHASTIC ADVECTION-DIFFUSION MODEL 87

Sampling Locations

wy -
-~
'Y - 'y
3 tE,
A
% "".‘ﬂ‘.
* > - &
=2 - b
1 S -H% & REP * @
-
5 - . M
vhd " .
- ‘;o
A * e Py Py

West <~ (km)} —> Esst

Fig. 1. The sampling locations. The diamonds form two concentric circles with radius 1.6 and
3.2 kilometers. Sampling there was conducted during 1984-1992.

covariance between the random variables z(fx+1,xn+1) and z(t,, 21} on the same circle
by means of the formula

K-k

N
D (@ tkmin — &) {wjn — ),

=1 n=1

(3.1) Rk, b) = EI‘N'

where we define u; y4n = u;,, and 4 is the sample mean. Notice that circularity of the
sampling path allows us to utilize all the N observations on the circle. A typical plot
for k = 0 is shown in Fig. 2. The plot is symmetric because we assume stationarity and
the maximum distance between two observations on a circle is limited by the diameter
of the circle. Figure 2 gives us an idea about the correlation between the logarithms
of the observed concentrations. Plots like these are used in time series analysis quite
often as a part of the procedure known also as the Box-Jenkins method. Surprisingly, in
kriging and spatial data analysis they occur rather rarely. The graphs in Fig. 2 resemnble
a Bessel function. Therefore we model the spatial covariance structure of the process z
by means of the function o2 Ry, where Ry is defined using the Bessel function of the first
kind order zero:

(3.2) Ro(0,z} = Jo(62]z}),

1
07 + 03

where |z| = \/1721 + mg and 44,65 > 0. A plot of the theoretical covariance function for
an estimated value of ¢ is in Fig. 3.
We recall that Jo(¢2|z]) is defined by the relation

(3.3) Jo(B2|z|) = -j;/ﬂw cos(fz]z| sin(A))d3.
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Fig. 2. The empirical autocorrelation function  Fig. 3. The theoretical autocorrelation function
estimated using (3.1) from the circular obser- modeled by the Bessel function Jo{f|z|) with
vations sampled in 1984. & =1.3.

A direct investigation of the temporal correlation is complicated by irregular sampling.
We do not have observations from more than nine consecutive years at one location. In
fact we have no data available from 1979, 1982 and 1983. Hence, the method which
led us to the Bessel function cannot be applied due to the small number of temporal
observations. To determine the covariance function R(t,z) of z(t,z) in time let us
consider the stochastic advection-diffusion equation

8 108 g
34 S (e T : P =
{3.4) (Bt 5 (8:12% + 522 1)) zdtde = o Z(dt, dx)

with a white noise orthogonal measure Z on the right side. This equation may be
interpreted in terms of Schwartz distributions. See It6 (1984) and Walsh {1986). Suppose
{erroneously) that (3.4) has a sufficiently smooth solution. In addition let R{t—s,z—y) =
Ez(t,z)z(s,y). If we multiply both sides of (3.4) by z(s,y), take the expectation and
interchange the order of expectation and differentiation symbols we get the equation

a 178 &
35 2o g —Q.
(3.5) (61& 2 (am§+amg 91))R 0
This is an analogy of the Yule-Walker equation in the time-series theory. See also Mohapl

(1994, 1999). We want the solution of (3.5) to agree with (3.2) at least for t = 0. Equation
(3.5) with initial condition (3.2} has a unique solution

. 1
(3.6} Ry(t,x) = 9%_4'9-%-/122 Jo(02|y|)
1 llz—-y? o
X o3 exp{—a ; - 07t dy

for every ¢t > 0 and z € R2. Application of Jy(#|x|} in spatial data analysis is advocated
e.g. in Guttorp (1994). The possibility to represent every homogeneous and isotropic
covariance function using J; is pointed out in Matérn (1986).
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ProposiTiON 3.1. The function Ry defined in (3.6) determines o siationary
temporal-spatial process.

PROOF. Let Sy be the circle {w : |w| = 62,w € R%}. We leave the reader to verify
the familiar identity

1 .
— i{zw}
(3.7) Tol@ae)) = - /S e,

where (z,w) = Tiwy + 22wy is the standard inner-product on R?. If we denote by xs, the
characteristic function of Sy, i.e. xg,(w} = 1 if w € Sp and xg,(w) = 0 otherwise, then
the right side of (3.7) is the backwards Fourier transform of yg,. Using the elementary
Fourier transform calculus we obtain:

(3.8) Ry = F~l(xs,) * FL(e~ (W +61)er2)
= F (g, e (w*+6Dtr2),

The inverse Fourier transform works on w while ¢ is fixed. The right side of (3.8) may
be further evaluated so that

3.9 Ro(t,x) = ~(OF+O5)/2 J, (65 ]

ozt
for ¢ > 0. The proof is thus complete.
Proposition 3.1 is somewhat surprising, because the arguments in Whittle (1962)
indicate that equation (3.4) does not define a stationary process with a finite variance.
The explanation is:
ProrosITION 3.2. Let Z be a white noise orthogonal measure which is supported

by the Borel o-algebra of subsets of Sy and is zero outside Sp. Let E(Z(dt,dw))? =
odtdw/2n. Define a measure-valued process {e(-,z) : = € R?} by the relation

(3.10) o) = [ ez, du)
S
and consider the stochastic advection-diffusion equation

9 178 8
A1 = 5l32+73 0 =

(3.11) (8:5 5 (81:? + s 6‘])) zdtdz = eg(dt, ).
If zo(z) is independent of Z and has a covariance function a2Jp(8,|x|)/ (67 + 63) then
(3.12) z(t,r) = /RQ T(t,z — y)20(y)dy

t

+ / T(t — s,z — ye(ds, y)dy,
o Jaz

where

(3.13) T(t,z) = L exp e g2t
’ 2mt 2t [
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is a stationary solution of (3.11) and has correlation function (3.9).

PROOF. The solution of (3.11) is defined e.g. in Walsh (1986) or Mohapl (1994,
1999), The proof is a direct consequence of Proposition 3.4 in Mohapl (1994). In terms
of Schwartz distributions, equation (3.11} can be written as

i
(3.14) £(t) — £(0) = /0" Ae(s)ds + BW(2),

where £(t) and W (t) are distribution-valued stochastic processes. Roughly speaking, the
equation is obtained from (3.11) if we multiply both sides of (3.11) by a rapidly decreasing
function ¢, integrate over R? and integrate the left side by parts. This procedure removes
the differentiability requirement from z and leads to an equality between integrals. The
rapidly decreasing functions form a linear space D with the known Schwartz topology.
We might also say that we replaced the variable z € R? by the variable ¢ € D. In this
translation

(3.15) £(t)g = f o(t,2)8(x)ds,
a2 32
(3.16) Ale(t)p = ]gt z)= ( a 2 92)¢(m)
and
(3.17) B'W(t) = [0 /S FUG)w) Z(dt, dw),

or rather B'W (¢) is the continuous modification of this linear function of ¢. Symbols A’
and B’ are referred to as dual operators. In this particular situation

178 8,
(3.18) A= 3 (53:—% + — axz -~ @ )

and A = A’. To determine B we calculate
(3.19) E(B'W(t)$B'W (s)))
= plt,s) fs FH (@) @) F () (w)dw

1 i{r—y.w
=otts) [ o) [ gfs £5e=9) dnp(y)dyd
= olt,3) /R $@)By(z)ds,
where we define p(t, s) = ¢? min(t, s} and
(3.20) Bo@) = [ F ) - 9y
R2

To apply Proposition 3.4 in Mohapl (1994) we must determine the distribution of the
initial condition ¢(0). This is a distribution-valued random element with covariance
operator

(3.21) Q=DB(A+ 41
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The proposition will be proved if we show that
(3.22) Q6(a) = [ Rola - )oludy

where Ry is defined by (3.2).
According to (3.18),

(3.23) (A+ A) lg(z)=F1 (ﬁ) % ¢(x).
Combined with (3.20) this provides
(3.24) B'(A+ A")B¢(z)

= ks w7 (g ) * 77 xs) 900

1
_ 1 .
1 1 ;
_— = Wz —y,w}
92+92 /R? o Loe dwqb(y)dy
= 75 o, ottale = Do)y

according to (3.7). This completes the proof.

COROLLARY 3.1. The process (3.12) admits for everyx € R* andt > 3> 0 a
representation

(3.25) 2(t,2) = e~ BN (5, 1)
t
. / / eitmw) —(83+62) (t~) 7y ).
& Sﬁ'

ProoF. This follows by a direct calculation from (3.12) and (3.10).

Considerations in Whittle (1954) and others inspire us to associate the covariance
function (3.9} with a formal differential equation

8 8 8
- (30) (v B ot)-e

where 91,92 > 0 and ¢ is a “white noise”. The equation has to do with the relation

(3.27) R Jo(®|z]) = 0
) a2 = dxl oAwiEy =

valid for every real number ¥ > 0. It is interesting that Zhang (1995) and his advisor
Jones found as best among all the models they fitted to the logarithms of the data a
process with covariance function they associated with the equation

a N\ (82 8 2
(3.28) (8t+ﬁ)(8$2+82:2 ﬁg)z—e.
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The process has obviously the same covariance structure in time as the solution of (3.11),
which means what we try to improve using (3.9) is the spatial part of the model for the
plutonium concentrations. The equation

o2 a2
3.29 s _ 92, _
(3:29) (83;% + dx2 v ) FTE

determines a process with non-negative correlation function 9|z|K)(¢|z|), where Kj is
the modified Bessel function of second kind order one. The Bessel function K is quite
popular in kriging and spatial data analysis. However, it is positive on its whole domain.
Our estimates of the autocorrelation attain also negative values. See Fig. 2. That is why
we expect to get better fit using the correlation Jo(#|z|) instead.

The possibility to obtain from the advection-diffusion equation various models for
the data by imposing conditions on the covariance structure of the input noise was ob-
served already by Whittle (1962). Our choice is determined by the estimated covariance
function plots.

4, Parameter estimation

Occasional difficulties in maximum likelihood estimation of a parameter in the co-
variance matrix of a spatial Gaussian process are discussed in Warnes and Ripley (1987).
We encounter all of them when estimating #: multimodality, roots of the score function
in close distance from each other and ill-conditioness of the covariance matrix causing
wild oscillations of the score function around the zero points.

First we estimated the parameters from individual years. We wanted to see whether
there is a trend in the estimates suggesting ineptness to describe the mean and correlation
of our sample by means of the limited number of parameters we intended to use. The
function Jp was chosen to fit as well as possible the empirical covariance function which
was estimated from the circular observations sampled through 1984-1992. To assess
relevance of the maximum likelihood estimates we also calculated #> by minimizing the
least-squares distance between the estimated and theoretical covariance functions and
compared it with #; obtained from the maximum likelihood estimating equation. See
Fig. 4. For the data from 1970-1983 we do not have the empirical covariance function
and that is why we use for comparison the quasi-likelihood estimating equations derived
in Mohapl (1998). See Fig. 5.

Given the satisfactory results from the preliminary estimation we proceeded with
calculation of the global maximum likelihood estimates of #;, f; and § in the spatial
trend. The maximum likelihood estimates were used for calculation and analysis of
residual, quantile and autocorrelation plots.

The model for our discrete observations e n sampled at time ¢ at location zy, is
given by equation (2.3):

(4.1) Incgn = 2(tg, zn) + pa(zn).

The process z is the solution (3.12) of the stochastic advection-diffusion equation (3.11).
The trend ug has general form

P
(4.2) us(@) =Y Bprla),
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Comparison of least squares and maximum likeli- Comparison of the MLE and QL estimates.
hood.

where {75, p = 1,..., P} are known base functions and the parameters {3,,p = 1,..., P}
are to be estimated.

Most of the data were sampled from two or three concentric circles. That does
not provide much information for description of the average concentration changes with
growing distance from the plant. But in 1989 and 1991 the concentrations were sampled
in seven distances from the plant: 1.6, 1.9, 2.4, 2.9, 3.2, 464 and 8.64 kilometers.
The distance from the plant introduces a natural stratification into the data and the
assumption about constant mean along the circles allows us to obtain estimates of the
means using plain averages over each stratum. The averages plotted against the distance
from RFP are displayed in Fig. 6 along with the regression line. If our assumption about
the correlation along circles is correct, the averages are maximum likelihood estimates.
See the Appendix, Corollary A.1. Due to the reasonable fit of the regression line we
choose

(4.3) pa(z) = —Biiz| + Ba,
where 3; > 0.

4.1 Preliminary estimation

Prior to fitting the final model we estimated parameters from sub-samples to get an
idea about the fit of our model and behavior of estimators. We started with estimation of
# from observations on individual circles. The covariance function of these chservations is
of the form o2 Ry, where Rg(z) = Jo(#|z|) and o > 0. It is obtained by reparametrization
from the covariance function defined by (3.2) if we replace o2/(6% + 63) with o2 and set
B2 = 6. The covariance matrix defined by Jy(8|z|) for observations on the circles in
Fig. 1 is for small values of @ ill-conditioned in sense of Press et al. (1986), Section
2.9, A problem which can be handled using the single value decomposition. See also
the Appendix of this paper. We calculated the root of the likelihood function by the
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Fig. 6. Mean plutonium concentrations in different distance from RFP estimated from the
1989 sample.

simplest possible method, which is division of the interval containing the root. The ill-
conditioness of the covariance matrix caused the score function to oscillate wildly around
the zero point where we expected the root. In most cases we were able to separate at
least two sets of roots. The criteria for choosing the most relevant maximum likelibood
estimate (MLE) was 42, the estimate of ¢2. We wanted 2 as small as possible. Then
we calculated the minimum of the function

N-1
(4.4) £6) = 3" (R(dn) — Ra(dn))?,

n=0

where d,, = 2rsin{nra/N) is the length of the circular trajectory between two observa-
tions on a circle with radius r, and compared it to the MLE. We recall that r = 1.6 and
3.2, respectively, IV = 20 and the observations are in an equal distance from each other.
We call the minimum of f in (4.4) the least squares (LS) estimate. The LS estimate
minimizes the squared distance between the true and estimated autocorrelation and can
thus provide an idea about relevance of the choice of MLE. The estimating equation
arising from (4.4} is unbiased and has also several roots, but they are not difficult to
calculate and it is easy to choose a proper one accordinig to the autocorrelation plot.
The LS estimates we obtained using (4.4) are shown in Fig. 4.

The LS estimator has a close link to the smoothed periodogram estimator. See e.g.
Heyde and Gay (1993). Figure 4 indicates absence of an increasing or decreasing trend
in the estimates suggesting a time dependence of &. The shift between LS estimates from
inner and outer circles may reflect dependence of the parameter on the distance from the
plant. The estimates in Fig. 4 were used for elementary diagnostics like calculation of
residuals and inspection of residual plots, normality checkups, comparison of empirical
and theoretical autocorrelation function ete. See Box and Jenkins (1970) for details.

It is worthwhile to note that the MLE’s and LS estimates obtained from the inner
circles agree fairly well, whereas MLE’s from the outer circle are shifted. We found
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another set of MLE’s in close vicinity of 1.45 which also agreed with the LS estimates
fairly reasonably, but provided a somewhat larger 2. The common —2ln likelihood
function for a column vector u = (u1,...,un)? of observations from a Gaussian process
with covariance function (3.2) and mean (4.2) is

(4.5) In(u,8,8,0) = Nln(27) + N In(c?)
+ In{det(T'g)) + é%_‘é‘(‘u - M,B)Tre_l(u — i),

where T’y is the covariance matrix with components

(46) '?'n,m(g) = JO(Bl'Tﬂ - :L‘m‘)
and
(4.7) pe = XB.

The matrix X of explanatory variables has N-dimensional column vectors made up of
{%(zs) :n=1,...,N}, p=1,...,P. The estimating equations for the parameters in
the mean obtained by minimization of the —2 In-likelihood are

4.8 § = g - 5.
( ) ﬁ (XTPB lx) IXTFQ 1
Parameters o and ¢ are estimated using

. 1 -
(4.9) 52(8) = 7 (w - 1) TT; (w = pug),

N N

(4.10) 33 am(B)vnm(0)

n=1m=1

1
- &g—w)(u - u3) Vo(u—pug) =0,
where vy, m (9) are the components of the matrix
(4.11) Vo =T;9,TeT,"

and the elements of I’y are composed of I'g elements differentiated with respect to 8.

Formulas (4.8), (4.9) and (4.10) were used to calculate the values plotted in Fig. 6.
The MLE’s of 3, 02 and 6 are in Table 3 in the Appendix. To get a feedback about
relevance of the MLE'’s we calculated another set of estimates using the quasi-likelihood
(QL) functions suggested in Mohapl (1998):

(412) (e ) 1) ~ 0 Ro(0) =0,

N N
(4.13) SN ks — 2o ) (e — pa(20)) (i — pa(Em))

=1

3

— 6 Ro(zn, — Tm)) = 0.

The mean yg is calculated according to (4.3). We choose k(z) = Jo(|#|). Relation (4.12}
produces the familiar moment estimator, arguments leading to (4.13) and a simulation
study are given in Mohapl (1998). Table 4 containing the QL estimates is given in the
Appendix. Graphical comparison of the MLE’s and QL estimates of & is shown in Fig. 5.
The QL function failed to have a root when the sample size was small. The sample
sizes used for calculation of the estimates are in Tables 3 and 4, respectively. The QL
estimator seems to be more sensitive to the sample size. More details can be found in
the Appendix.
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4.2  Mazimum likelihood estimation

The above estimating equations are designed for a set of spatial observations sampled
at a fixed year around the plant. Next we construct the overall likelihood function for
the temporal-spatial data set. The procedure is rather standard. Therefore we present
only what was used for our data and leave the possible generalizations to the reader.
Simple autoregression analysis of the observations in time indicates very little temporal
dependence. See also Jones and Zhang (1994), p. 4. What else, we have a relatively short
period of observation. This motivates us to utilize the fact that the estimated value of
f2 is between 1.5 and 2 and set #; = #3. This way we obtain a simple model with a
reasonable fit and interpretation.

As we mentioned, in this section we assume that our model has mean (4.2) and
covariance Ez(0,0)z(t,z) = 0c?Ry(t, z), where

(4.14) Rolt,2) = =105 6lal),
and a,6 > 0 are parameters to be estimated. According to (3.25), for each pairt > s > 0,

(4.15) E(2(t,z) — e~ =) 5(s, 2)) (2(t,y) — 7" "2 (s,3))
= 02(1 - e 2 (=) gy (0] — g

Let us denote

(4.16) z = (2(t, 1), ..., 2(t, zn))7.

In consequence of (4.15),

{(4.17) 2 —e 2, N(0,0%(1 - 6-292&—3))[\9),

where A denotes the multivariate normal distribution. Simultaneously,

(4.18) zs ~ N(0,0°Ty).

Using the Markov property of the process z and the standard chain rule for condi-

tional probabilities we get the joint probability density function of z = {z(ty, 2n) 1 k =
LKn=1... N}

1 1 rr1
(2r0?) 2 det(Tg) 7 {‘z_zzh b z*l}

{(4.19) f(z,8,0) =

1 K-1
X |:(21r02)N/2 det(I‘g)J [H V1— -262(tk . 1)]

K
1
X exl){_ Z 20_2(1 _ e—Zﬂﬂ(tk—tk—l))

k=2

—62 (b —ts_ T
% (Ztk — =8tk =tk 1)ztk_1)

-1 —0%{t—ty_
x Tt (2, — ™ (et ”ztk_l)}.
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Set ug = (Ug1,--.,uUkn) . and denote ug , = Ineg . The MLE of 3 is

(4.20) A=

1 & 1
T 22 [~ et
k=

X (XTTFIX) XTI (g, — 78 (b)),

If we set
(4.21) U =g — pg,
then
~ 2 1 —TF—I = o L
(4.22) 6°(0) = Triile 1t kZ: 1 — e—20%(t—tr—1)
=2

x(ukAe B(tk te— 1) T I)T

X Fgl(ﬁk — 6_92““““1)&&—1)}-

The parameter 8 is estimated from the equation

—2.92(tk—tk,1)

(423) KZ Z Yr.m 8)Un m(e + 492 292(&—1&41)

n=1m=1

_292(tk th-1)

02(@) Z (1 e—20%(te—t - 1))

-ez(tk_tk,,) — 0 (e —th_1) 3

x (uk — € uk_l)

1) Ty (T — e
K
A
5200) (=

x {296—92(“_““1)’&{_1?;1(ﬁk - B—ez(t"—t’“'l)ﬁk_ﬂ

e e A L A R )

1
- u1 Veul = .

a2(8)

'The above formulas can be extended to the case when the spatial sampling scheme is
fixed but a different number of observations is sampled each year (missing observations
case).

"To compare our model to the one used by Jones and Zhang (1994) we first analyzed
the data sampled from the two concentric circles with radius 1.6 and 3.2 kilometer. We
have 20 data points on each circle sampled in 9 subsequent years 1984-1992. This means
we can apply formulas (4.20), (4.22) and (4.23) with N = 40 and K = 9 and estimate
the parameters €, 5 and 0. We found two sets of MLE’s summarized in the next table.

If we realize that our model has only four parameters while the model suggested by
Jones and Zhang (1994) has eleven, then our model fits very well. The interesting thing
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is that the lower # estimate leads to a lower estimate of ¢ than the higher estimate.
From Figs. 3, 4 and 5 we can see that both sets of estimates are quite relevant. Another
finding is that the quasi-likelihood estimates of § from individual years computed by
(4.12) do point rather to the smaller estimate of 4.

To estimate the parameters for the whole data set we used the composite likelihood
instead of the global likelihood function. This move may be justified by the low tem-
poral correlation and presumption that lost of efficiency caused by use of a composite
score function is compensated by numerical precision we gain when avoiding numercus
inversion of the ill-conditioned covariance matrix for spatial observations. In general,
composite likelihood estimators are not as efficient as MLE’s. See Lindsay (1988). But
in situations like ours they are much easier to calculate. OQur data set can be divided
into four main subclasses. Three of them contain yearly data with the same number of
observations, the rest consists of observations from some 5 years that do not fit in the
previous categories. The spatial sample size N was 13, 40 and 73 for the first three,
respectively, one of the remaining five samples had N = 53, in the rest N < 10. We ob-
tain the composite likelihood by neglecting the correlation between the subsamples and
treating them as independent. It is easy to see that the composite likelihood estimators
of 3 and o are a plain average of the MLE's for the individual subsamples, § must be
estimated from the composite score function which sums up the individual scores for 8.
We obtained two sets of estimates:

The results agree well with the MLE’s in Table 1. When comparing the —2log-
likelihood values in Table 2 with those in Jones and Zhang (1994} we should keep in
mind that our model has only four parameters whereas those considered by Jones and
Zhang have between ten and fourteen. The apparent increase of % has to do with
the trend in our observations. On the two circles our estimate of trend agrees with
the stratified mean. For the whole data set the fit of a linear trend is not that good.
Although &2 is smaller for § = 1.255, analysis of the residual and autoregression plots
we can construct for the observations on circles with r = 1.6 and » = 3.2 shows that it
is more appropriate to choose the set of estimates with larger 0. See Figs. 7-10.

Table 1. The maximum likelihood estimates from. the concentric circles with radius 1.6 and
3.2 kilometers estimated using formulas (4.20), (4.22) and (4.23). Total number of observations
is 360.

8 1314  1.773
B 0.498  0.502
e -0219 -0.214
&2 0.223  0.262

—21n likelihood 586.082 €655.242

Table 2. The composite likelihood estimates from the whole sample. The total number of
observations is 559.

F 1.255 1.662
61 0.330 0.241
& —0.117 —0.481
a2 1.626 2.421

—21n likelthood 1715.331 2014.035
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Fig. 7. Residual plot for 71 logarithms of obser-  Fig. 8. Quantile plot for 71 logarithms of obser-
vations sampled in 1991, The residuals are ob-  vations sampled in 1991. The residuals are ob-
tained by means of the final model (4.24). tained by means of the final model (4.24).

In consequence of the above arguments, the final model we propose for the RFP
Soil Plutonium Data. is

(4.24) c(t, &) = exp{z(t, x) — 0.241|z] — 0.481},

where z(t,z) is the stationary solution of (3.11) with §; = 6, and covariance function
o2 Ry(t, x) described by (4.14). We take g2 = 2.421 and 6 = 1.662.

Once we estimated the parameters and accept the assumption that z is a Gaussian
process then we can use the logarithms of observations and formula (4.1) to predict
further logarithmized data and obtain the properly scaled predictions by exponentiating.
This is a rather standard procedure based on Theorem 2.5.1 in Anderson (1958). The
result is visualized in Figs. 11 and 12.

5. Advection-diffusion model

Next we return to the general physical model described by the advection-diffusion
equation. In Section 3 we derived from the data a Gaussian process z(t, z}, in Section 4
we estimated its parameters and next we use z(t, z) to obtain the coefficients v, ve and
vz of the equation (2.1) introduced in Section 2. We proceed by differentiation of the
solution (2.3). This will provide an insight into the physical meaning of (2.3) and its
relation to the actual advection-diffusion transportation process.

PROPOSITION 5.1. Suppoese that v is a differentiable function. Then the process

(5.1) e(t, z) = exp{2(t, z) — S1v(|z]) + B2}
satisfies an advection-diffusion equation

(5.2) -—qc— 8—2+i2- - 0 + 0
. 3¢~ 81:% 522 c " £ Vg 52, ¢+ UscC.
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Autocorrelation

ACF

Fig. 9. Autocorrelation plot for a subset of 20 residuals presented in Figs. 7 and 8. The
residuals are positioned en the circle with diameter 1.6.
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Fig. 10. Autocorrelation plot for a subset of 20 residuals presented in Figs. 7 and 8 The
residuale are positioned on the circle with diameter 3.2.

The equation holds almost surely in the sense of Schwartz distributions. The coefficients
vy, v2 and vs are random and depend on time and space:

(5.3) n(t2) = o-a(t,2) - i e,
(5.4) a(t,2) = m2(t,2) — A 24(la)

and
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Fig. 11. A 3D plot for concentrations observed in Fig. 12. Contour plot for concentrations ohser-
1991. We used the observations to predict values ved in 1991. We used the ¢bservations to pre-
on a 21 by 21 point rectangular net with center dict values on a 21 by 21 point rectangular net
in zero and interpolated the surface. with center in zero and interpolated the con-

tours. The contour lines are 0.05 mdg/g from
each other.

(5.5) vs(dty 2) = BuA(lel) + PLa(el) + Jo((6? + 62)lal)

||

1
+ 5(9% — 82)2(t, x) + ¢5(dt, z).
Proor. The process z is, due to Corollary 3.1, an Itd process in time for each
fixed z € R? and therefore, according to the Itd's formula,

3 8 1
(5.6) 5= Cq%t EJ.J((ef + 02)|z|)e.

The process €g is infinitely many times differentiable in the z variables. This property
is inherited by the processes z and ¢, respectively. Plain differentiation provides:

o
T — =
(5.7} qulc e,
32 {92 8 ﬂl.fu'"l 8
58 —_—r= | — - — | ———— A —.
8 83’%0 (B:c% £ by Vi + m%’}’(|$|) et T

The function ¥ denotes the derivative of y. Analogically for z:

| & &* d Bix2 d
59 —_— = —_— i | — A -
(5.9) Bm%c (835%2 950 { e Alzl) | e+ 2 325C
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Since
32 32
(5.10) (a—:c% + 5&}2 + 9%)2 =0,
and
a 1
(5.11) 52t -2—(6% +02)z = ep(dt,-),
we have
a &2 a*

(8 1., 9 ;
_(&2+2(91+62)Z)C—(Ula—m+vgax2)ﬂ

N (—\/ﬂ%?(lml)+ﬁ1‘?(lx|)

1
A+ )+ 05 - e )

S PR D
= 133:1 26z2 ¢+ v3e.

The last equality holds almost surely and completes the proof.

According to Section 1, v; and v in equation (5.2) characterize the wind speed.
Relations (5.3) and (5.4) say that v = (v1,v;) at given time and space equals to the gra-
dient of the logarithmized concentration values. Hence, in our final setting, v is a vector
orthogonal to the contours of the logarithmized concentration surface. It characterizes
the force distributing the contaminated particles from RFP into the area. The mean of
v at a given place is a vector independent of time with components

T1

(5.13) Ev, = f o

. Ty |
Wz|]) and Evp=p m'r(lml)
we can interpret as average wind speed along the coordinates. The quantity

(5.14) V{(Bv1)? + (Ev2)?) = B1l¥(|])]

is the average magnitude of the wind velocity at location 2. When (r) = r, the right side
of (5.14) is constant and equals to ;. Thus B, is related to the wind speed magnitude
in the area. Notice that a plain linear trend Biz; 4+ Gazs + Bz provides v; and vs
with a constant trend 5; and 3, respectively, and vg, the Malthusian rate, with zero
mean. However, that would violate the assumption about the constant mean of the
logarithmized observations along circles with center in the origin.

By the last theorem, v5 is a stochastic process with a trend that does not depend on
time. The product vsc¢ can be interpreted as the radiation contributed into the system
by particles already firmly deposited at various locations. The random part of vs reflects
the possibility of random redepositing of the surface soil. The mean of v3 is zero if and
only if y(|z|) is a harmonic function, i.e. satisfies the Laplace equation with zero on the
right hand side. If &, = f; then v3 is at each fixed location a plain Brownian motion in




A STOCHASTIC ADVECTION-DIFFUSION MODEL 103

time. If 4(r} = r then Fvs = 8;1/|x|. This means the pollution rate goes steeply up as
we get close to the coordinate origin where the plant is located. This is explained by the
fact that the highest plutonium amount is in the soil closest to RFP.

Appendix
Here we provide the supplementary relations used in calculation of the maximum
likelihood estimates in Subsections 4.1 and 4.2. The relations are specific for the cir-

cular sampling scheme and they were used to overcome the difficulties caused by the
ill-conditioned covariance matrix [y defined by the Bessel function Jy(#|z|).

LemMMA Al Let N be even and {z1,...,Tn} be a set of points in R? distributed

in equal distance from each other on a circle with diameter v > 0. Then the matriz I'g
with components (4.6) has eigenvalues

(A1) A(8) = }:JO (26r sin (3n) ) cos (2;” )

k=1,...,N/2. To each eigenvalue belong two eigenvectors

00 (e (), (e ()

k=1,...,N/2
Proor. BSee Grenander and Rosenblatt (1984}, Sections 3.4~3.5.

CoROLLARY A.l. Consider N observations with —21In likelihood function (4.5)
sampled in equel distance from a circle of radius r and let N be even.
If ug = 18, where 1 is a column of ones then the MLE of 3 is the sample mean.

The matriz Vy in (4.11) has eigenvalues Ay, given by the formula

(A.3) A(0) = —2r Z en(8) cos (ﬂn)
where
L T
(A4) tn (@) = sin (%n) A (26'7‘5111 (ﬁn)> n=1,..., N,

. ki
Jo (29r sin (ﬁn))
k=1,...,N/2. The corresponding eigenvectors are described by (A.2).

PROOF. The previous lemma asserts that 1 is an eigenvector of I'y. The result
is thus a straight consequence of formula (4.8), The second statement follows from the
familiar single value decomposition.

Simple plots of the eigenvalues as functions of # may clarify the degree of ill-
conditioness of the covariance matrix as well as the unsettled behavior of the score
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function (4.10). The above lemma can be generalized to the case of two concentric
circles.

LEMMA A2, Suppose we have two concentric circles with diameters r1 and o,
respectively, 0 < ry < ro. We sample N observations from each circle, N is even. The
locations of observation are equally spaced and under the same angle on both circles. Let
us represent 'y with components (4.6) in the form

_(The K
49 Feh(Kg 1“2,9)'

where I'; g is the covariance matriz of observations sampled on the circle with diameter
ri, 1 =1,2. We claim that

i) T 0, T2 and Ky share the same system of eigenvectors and the eigenvalues of
Ky are non-negative,

ii) if M, ¢ = 1,2 and k are eigenvalues for a fized # sharing o common (col-
umn) eigenvector e then there are constants ¢y and ca such that the column vector
E = (c1e7,e2eT)T of dimension 2N is the eigenvector of Ty,

iil) the pair (c1,c2) and the eigenvalue A corresponding to E are calculated from
the eguation

(A.6) ();cl fz) (2) - '\(Z:)

We omit the proof and emphasize that A and ¢ above depend on #. We have also
no guarantee that Iy is invertible. However, if we are given a particular set of sampling
locations then we can use the previous Lemma to calculate k from the equality Kge = ke,
where e is the eigenvector corresponding to A; and Az, and check if k& = /A1 Ao, If the
approximate equality is true then I'y may be singular.

CoroLLARY A.2. IfTy is invertible and the vectors w1, ug of observations were
sampled from two concentric circles with radii 0 < vy < 7o, respectively, at locations
specified in the previous lemma then the MLE of B in (4.2), (4.3) can be calculated
according to the formula

- ) (@)
AT ~ | =
(4.1 (ﬁ2 -z 1 dy)’
where 4; is the sample mean of u;, i = 1,2.

Proor. For sake of brevity we include the minus signs in (6.7) into the r’s. In the
standard vector notation used in regression problems pg = X 3, where

_ ?"11 1
(A.8) X = (m 1)
and 1 is a column vector of N ones. The vector 1 is a common eigenvector for I'y y and
T3 9. According to Lemma A.2, i}, there are constants ¢;, ¢ such that

-1
P]_‘a Kg 1 _ 611
(a9 (% ) ()=o)
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Table 3. The maximum likelihood estimates from individual planes calculated using formulas
(4.8), (4.9) and (4.10).

Year N & & {32 a2
70 13 1.565 0.305 0.280 3.131
71 13 1.501 0.327 1.061 3.583
72 13 1.501 0.315 0.902 3571
74 13 1.565 0.271 0.716 2.025
76 13 1.565 0.208 -0.398 1.969
77 13 1501 @374 0.769 2.008
80 13 1.501 0.355 0.168 2287
81 12 1.667 0.047 -—-0528 1.775
84 40 1.751 0.783 0.254 1.430
85 40 1,505 0.453 —0.398 0,225
86 53 1.401 0.189 —0.889 3.678
87 40 1.75%1 0.355 —-0.192 0.707
88 40 1.751 0.498 -—-0.179 0.613
89 71 1.860 0.273 -0.291 2.282
90 40 1.720 0.428 -=0.592 0.200
g1 Tl 1.885 0.287 —-0.609 2987
92 40 1.685 0.558 —-0.011 1.013

Table 4. The quasi-likelihood estimates from individual planes calculated using formulas (4.8),
{(4.12) and (4.13}. For small sample sizes the equations had no solution.

Year N é el G2 o?
84 40 1.314 0.783 -—-0.254 3.273
85 40 1.296 0.453 0.398 1.937
86 53 1.266 0.513 0,019 2.127
87 40 1.278 0.355 0.192 1.609
88 40 1.314 0.498 0.179 2.364
83 71 1.667 0.482 0.384 1.913
90 40 1.275 0.428 0.592 1.981
g1 71 1.6567 0506 —-0.874 3.744
92 40 1.244 0.588 0.011 2.443

Consequently,

T
A10 ¥Tp-ly — { aaml al rml 1
(410) Ty X (cml el ral 1

T
:N(Cl'f'l Cl) (T‘l l)
Car1 ¢ rq 1}°
Analogically we calculate

(A.11) XTr;lu=N (Cl’"l o1 )T (":”),

ey Cg
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where u = (u7 ,ul )7 is the vector of observations. The proof is now a direct consequence
of (4.8).

Corollary A.2 asserts that the estimator (A.7) agrees with what is obtained by simply
interpolating the stratified means received from individual circles using a straight line.

Finally we are in the position briefly describe application of the single value decom-
position (SVD) procedure. The idea is (see Press et al. (1986)) to replace the eigenvector
expansion of the image

N
(A.12) Iz = AlzTer)ex
n=1

by its truncation to first K summands for which the ratio A\y/Ax, & = 1,..., K, does
not exceed a certain value cx. We assume Ay > Ag > --- > 0 with at least some A
positive. The I'g is used for estimation of both mean and variance. Where possible, we
utilized Corollaries A.1 and A.2 for estimation of 3. Our choice of K was determined
by the estimate of ¢?. We did choose cx in a way which led to estimates of o2 that
reasonably compared to the sample variance. Using SVD we naturally introduce a bias
into our estimates. We noticed that compared to o2, estimates of & and § were not quite
sensitive to the choice of K. We did not attempt to adjust for the bias.
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