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Abstract. Model selection procedures, based on a simple ecross-validation technique
and on suitable predictive densities, are taken into account. In particular, the selec-
tion criterion involving the estimative predictive density is recalled and a procedure
based on the approximate p* predictive density is defined. This new model selec-
tion procedure, compared with some other well-known techniques on the basis of the
squared prediction error, gives satisfactory results. Moreover, higher-order asymptotic
expansions for the selection statistics based on the estimative and the approximate
p" predictive densities are derived, whenever a natural exponential model is assumed.
These approximations correspond to meaningful modifications of the Akaike's model
selection statistic.
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1. Introduction

This paper concerns the problem of selecting a snitable model from a class of plau-
sible statistical models and, for this purpose, selection criteria based on a simple cross-
validation technique and involving some well-known predictive densities are primarily
considered. Whenever a particular model is selected, it has to be viewed as an adequate
description, which may be fruitfully employed for some further inferential or predictive
analysis, of the underlying phenomenon, rather than a true representation of the process
which has generated a given set of data.

Let Xi,...,X, be n independent and identically distributed random variables and
let M;, 7 =1,...,k, be k plausible statistical models. The probability density functions,
specified within the model My, j = 1,...,k, constitute the family F; = {p;(z;w;),w; €
Q; C R%}, j = 1,...,k where w; is an unknown d;-dimensional parameter. In the
following, natural exponential families are mainly considered as statistical models.

Suppose that the set of data & = (z1,...,z,) is a realisation of the random vector
X = (X1,...,X,). The aim here is not to choose the model which has generated the
observation but to choose, within M;, j = 1,...,k, the model which offers the most
satisfactory explanation to the data. Thus, the key question is not which model is
correct, but, rather, which model would serve best the purpose of the analysis. Here, the
selected model is supposed to be used as a basis for making predictive inference and, for
this reason, the alternative selection procedure are compared in term of their predictive
capability.

t This research was partially supported by the Italian National Research Council grant n.96.01542.
CT10.
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In this context, model selection criteria based on a predictive approach are taken
into account and attention is devoted to procedures which may be applied to non-nested
models as well; that is, to the case where an arbitrary member or subset of Fy, 7 = 1i,...k,
can not be obtained by imposing constraints on the parameters of any Fi, ¢ #jorasa
limit in distribution of members of any Fj, i # j. Geisser {(1993), Chapter 4) reviews
the main techniques for selecting statistical models adopting a predictive viewpoint and
Clayton et al. (1986) make an interesting comparison of several predictive and non-
predictive model selection criteria.

This paper mainly concerns cross-validation or, adopting the terminology proposed
by Geisser and Eddy (1979), predictive sample reuse procedures, based on suitable pre-
dictive densities. In particular, the selection criterion involving the estimative predictive
density is recalled and a new one, based on the approximate p* predictive density (Vidoni
(1995)), is introduced. By means of a simple preliminary simulation study, this new se-
lection procedure is compared with other four alternative criteria on the basis of their
predictive capability. The results, concerning the estimation of the squared prediction
error, show that the approximate p* predictive density gives rise to a useful predictive
selection procedure.

Finally, when the assumed statistical model is a natural exponential family, meaning-
ful higher-order asymptotic expansions for the selection statistics based on the estimative
and the approximate p* predictive densities are derived. These results enable an inter-
esting characterisation of these two model selection techniques and allow a substantial
simplification in the selection statistics involved, which can be useful for computations.

2. Predictive density functions

2.1 Preliminaries

This section provides a brief review on predictive densities and their major proper-
ties. Only non-Bayesian predictive densities are taken into account.

Let us consider the simple situation where the observable random vector X =
(X1,...,X,) consists of independent identically distributed observations on a random
variable X, having probability density function p(z;w), w € @ C R%. The future or as
yet unobserved random variable Z is independent of X and has the same distribution as
X. Any estimator of the true probability density function p(z;w} of the future random
variable Z, based on the sample X, is called a predictive density function.

The simplest approach to prediction consists in using the estimative probability
density function pe(z) = p(z;&) obtained by substituting & = &(X) for w; @& is an
appropriate estimator of w, usually the maximum likelihood estimator. In spite of its
intuitiveness, p.(z) may not be entirely adequate for prediction, especially when the
dimension of w is large in comparison with n.

A number of recent papers aim to improve the estimative density. The contribu-
tion of Harris (1989), Vidoni {1995) and Komaki (1996), where the goodness of the
approximation is measured by the Kullback-Liebler divergence, are in this direction. In
particular, Harris (1989} proposed the parametric bootstrap predictive density, given by

(2.1) Py (730) = f P tpa (b w)dt,

computed at w = &, where p;(-;w) is the probability density function of the maximum
likelihood estimator. Density (2.1) has some desirable properties; namely, within natural
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exponential models, it is asymptotically superior to pe(2) in terms of average Kullback-
Leibler divergence. Unfortunately, it is usually not in a reasonable closed form and it
needs to be computed numerically even for simple models.

Vidoni (1993) pointed out that, although Harris’s proposal is often unsuitable for
exact calculations, it allows fairly simple approximations through straightforward asymp-
totic arguments. In particular, when (X' is a sufficient statistic, such as within natural
exponential models, it is possible to derive an high-order, closed-form approximation to
(2.1), which consists of approximating p; (-;w) by Barndorfl-Nielsen’s (1983) p*-formula
and then using a Laplace approximation with O(r~!) correction terms for integrating
out the parameter.

When the maximum likelihood estimator is not itself a sufficient statistic, an ap-
propriate sampling distribution, according to the conditionality principle, to be used
as a weighting function in (2.1) is the conditional density of &(X), given an ancillary
statistic a. This predictive density is called conditional parametric bootstrap predictive
density and it may be approximated using the same asymptotic arguments of the pre-
vious case, with the Barndorff-Nielsen’s p*-formula considered in the conditional form.
These approximations define the approximate p* predictive density, which appears in the
form Ppe (2;0) = p(z;&){1 + 4 H(2:&, a)}, where the term H(z;2, a), given explicitly hy
Vidoni (1995), is of order O{n~1) and involves, as variable terms, the first two deriva-
tives of £(w; z) = log p(z; w) with respect to w, evaluated at w = @, and, as coefficients,
likelihood quantities based on the observable random sample X.

2.2 The approzimate p* predictive density for natural exponential models

Since the selection procedures considered in the next sections are mainly applied
for discriminating between natural exponential families, a brief idea of the derivation
of fig«{2;&) for these models is given below. For the general case, see Vidoni (1995).
Hereafter it is convenient to use index notation and the Einstein summation convention,
according to which if an index occurs more than once in a single term then summation
over that index is understood.

Let us assume that the statistical model for each observation X;,...,X,, Z is a
natural exponential family of order d, with density function given by

(2.2) plz;w} = k(z)exp{ew"z" — K{w)}

where z = (z1,...,2%) and w = {W',...,w?) € R C R% In this case, the p*-formula (see
Barndorff-Nielsen (1983)), which gives an approximation to the density of the maximum
likelihood estimator &{.X ), with relative error of order O(n~=%2), is

(2.3) p* (@5 w) = c(w)|i (@) 2exp{le(w; @) - €a(D; @)}.

Here, £.(w; @) = €p{w; &) = n{K, (&))" — K{w)} is the log-likelihood function, |5(&)] =
|[nK,5(@)]| is the determinant of the observed information matrix evaluated at w = &
and c(w) is a normalising constant; K, (&) and K,,(&) are the partial derivatives of K (w)
with respect to the corresponding components of w, computed at w = &.

By using (2.3) as a weighing function in (2.1}, a predictive density can be defined
as

(24) pye (25 w) = / p(z )" (1 w)dt = / Pl t)e(w) F (B 2exp{L(w; £) — La(t: D)} dt,

computed at w = &, which is an approximation to the parametric bootstrap predictive
density, with relative error of order O(n=3/?). The predictive density (2.4) can be further
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approximated, retaining the same order of error, in the following two steps. First, by
writing explicitly the normalising constant c{w), the function ppe(z;&) may be express
as a ratio of integrals in the standard form (Tierney et al. (1989)); that is,

I pla i)Y Pexp{—r(t; w) }dt
(2.5) Ppr{23w) = T 15 2exp{—r(t;w) Jdt :

computed at w = ©, with r{t;w) = £a(t;t) — Lz (w; t) = n[K ()" —w") —{K(t)— K{w)}].
Secondly, since 7(t;w) is usually a smooth function with unique minimum at t = w, by
applying to the numerator and to the denominator of (2.5) an higher-order Laplace
approximation for the integral (Vidoni {1995), Equation Al), we obtain a relatively
simple close form expression. This approximation defines the approximate p* predictive
density given, in this particular instance, by

. 1 ]
b (s39) = a2 {1+ FHGD)
with
(2.6) H(zd) = {(z" - K)(z° = K)K™ - (27 ~ K,)K" K"Ky, — d}n7,

where K, = K,(&), K™ is the (r, s) element of the inverse of the matrix [K,,()] and
K5 is the third partial derivative of K(w} with respect to the corresponding components
of w, evaluated at w = w. This predictive density is an approximation, with relative error
of order O(n~3/2), to the parametric bootstrap predictive density, which maintains the
superiority over the estimative distribution pointed out by Harris (1989), while being
much simpler to compute.

Ezample 1. The gamma distribution. Suppose that X,..., X,, Z are mutually
independent and identically distributed with a common gamma density

p(m; A, B) ={T(B)} 'z e ™A% (z>0,1>0,8>0).

Let us consider the shape parameter 8 known. This is an exponential model, which
can be expressed in the natural form (2.2}, with w = —) and K(w) = -Blog(—w).
Moreover, the maximum likelihood estimator is & = —3X ! = —gn(3}" X;)~L. Thus, it
is not difficult to calculate the approximate p* predictive density, which is

By (230) = (s 9/%,8) 14 F28/(R) - (0 4 1)/(R) + 6+ 1y .

For the more interesting situation with both the scale and the shape parameter unknown,
see Vidoni (1995). With 3 = 1, we have the approximate p* predictive density associated
to an exponential distribution

(2.7) B (2;0) = p(z; 1/ X,1) [1 + —;—{(z/)_{)z —4(z/X) + 2}7:,—1] :

Eromple 2. The normal distribution. Suppose that X1,. .., X,, Z are mutually in-
dependent and normally distributed with both the mean g and the variance 62 unknown.
The normal distribution is a two-dimensional natural exponential family, with natural
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observation (z1,22) = (x,7?), natural parameter w = (wy,wy) = (po~%, —307 7} and
K(w) = —1log(—2ws) — H(w? /wa); moreover, g = X = L ¥ X, and 62 = 1 Z(Xt - X},
By differentiating the function K(w), it is not difficult to compute the correction term
H(z; i), associated to the normal model, and to determine the approximate p* predictive
density, which is

N - . 1 AN ga U -
Bp (z;0) = plz; 15 62) [1 + Z{(Z —- )&t - 6(z — p1)* /% + 3}n 1] )
When o2 is known, the approximate p* predictive density has the simple form

B (50} = plai 50) |1+ 5 (2 = )3~ ™.

3. A predictive approach to model selection

3.1 Selection criteria based on predictive densities

We consider now the use of predictive densities in model selection problems. In this
framework, a possibility is to use a cross-validation, or predictive sample reuse, procedure
and to select, with regard to the observation x, the model which has, in some sense, the
best predictive ability, according to the predictive density which is considered. In this
section, the selection criterion based on the estimative predictive density is recalled and
a new one, involving the approximate p* predictive density, is defined.

The idea bekind cross-validation techniques is to split the data into two parts and
to use the first part to fit a model and the second to judge the goodness of the prediction
based on the model which is considered. The simplest version of cross-validation consists
of leaving out one observation at a time. Thus, the predictive density taken into account
has to be computed using @y, the data with z; omitted. Its value at 2 = z; shows how
well the fitted model predicts the excluded data point; all the n subdivisions of & have
to be considered.

Geisser and Eddy (1979) use the estimative predictive density p.(-) and define a
selection procedure, termed predictive sample reuse quasi-likelihood (PSRQL), which
points to the model maximising the selection statistic

i

(3.1) Sqr = ZIOSP(%;@(Q) = Zf(@(zﬁ);ﬂ?i)a

i=1 i=1

where £(Wy;); z:) = log p(z4; &) and @y = &(wy)) is the maximum likelihood estimator
based on &;;. Hereafter, the index j, which labels the models, is omitted to simplify
the notation. This criterion does not need a remarkable computational effort. but it is
based on the estimative predictive density, which, as pointed out in Section 2, could give
inaccurate results, whenever the dimension of w is large in comparison with n.
An alternative criterion, called predictive sample teuse quasi-likelihood p*

(PSRQLP*}, may be defined by considering the approximate p* predictive density fp- ()
instead of p.(-). This criterion selects the model which maximises

T ) ) n 1 )
(32)  Sqrer =Y _logfy (3:5;8() = Sor + > log {1 + aH(mﬁw(i):G)} .
i=1

=1
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For natural exponential families, the O(n~') modifying term H(z;;dy;, ) is given by
(2.6), with z = z; and & = &(;). This new model selection criterion is not as immediate to
compute as the previous one but, at least within natural exponential models, it is based
on a better estimator for the probability density function of the future observation. In
particular, since for small values of n the improvement in terms of average Kullback-
Liebler divergence is substantial, this discriminating procedure is expected to provide a
better selection, according to the predictive capability of the alternative models.

3.2 A simple simulation study

The criterion based on the approximate p* predictive density is compared with other
four well-known selection procedures. Since the selected model is supposed to be consid-
ered for a subsequent prediction analysis, we would like to choose the model which best
serves this purpose, among a set of competitors. In this respect, it seems natural to com-
pare the alternative model selection procedures by assessing their predictive capability,
that is the capability of choosing, in some sense, the best model for making predictive
inference. Here, a simulation is performed in order to estimate the expected square error
of prediction of the alternative procedures, with regard to a simple selection problem
already considered by Geisser and Eddy (1979} and Clayton et al (1986). This is only
a preliminary study to have a first idea on the potential usefulness of the new criterion.
In order to perform a deeper comparative analysis, further simulations are needed but
this is beyond the scope of the present paper.

Let us suppose that there are two plausible statistical models, based on the sim-
ple exponential distribution, for describing a dichotomously labelled set of data z =
(@1, 2) =(x11,-- -, T1,ny»F2,15- - -, T2.my }, Where ny +n2 = n. Under M, the associated
random vector X = (X3, X2) = (X11,..., X1,2,, X201, ..., Xo.n,) is a set of indepen-
dent random variables with density p(z;A) = Aexp(—Az), £ > 0, A > 0. Thus, the
sampling distribution does not depend on the label. Under My, the label is assumed
to be relevant so that the independent random variables Xpsy h=1,2¢=1,...,n4,
follow an exponential distribution with density p(z; An) = Ap exp(—Anz), 2 > 0, Ap > 0,
with A1 # As.

The selection criterion based on the approximate p* predictive density chooses the
model with the largest Sgrp-(M;), 7 = 1,2. According to (2.7) and (3.2), the selection
statistics are .

2

Sgrp- (M) = Z Z[ log(Z(r.i)) — gn,i(x)

h=1i=1

+ log {1 + %(g;m-(:l:)2 —4gpi(x) +2)(n — 1)_1}] .

where gni(®) = Tn,i/Z( i) and Z, ;) is the sample mean based on Z with @, ; omitted;

Sgrp- (M) = Z Z[ log(Zn (i) ~ qn,i{Tn)

h=1 i=1

+ log {1 + %(qh,i(mh)g — 4q,»,,‘,-(a:h) + 2)(11}, - l)—l }] ,

where gni(x,) = wh,é/:fh(h‘i) and Zp(n4) is the sample mean based on &, with 2
omitted. This procedure is compared with the Akaike's (1973) information criterion
(AIC}, the large sample Bayes criterion (LSB) proposed by Schwarz (1978), the PSRQL
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criterion, previously mentioned, and a Bayesian predictive sample reuse criterion. This
last procedure considers a Bayesian predictive density with a diffuse prior on the unknown
parameter and it is termed predictive sample reuse quasi-Bayes (PSRQB) criterion. For
these criteria the selection statistics can be found in Geisser and Eddy (1979) and Clayton
et al. (1986).

The aim of the simulation is to estimate the expected square error of prediction
associated to the five alternative selection procedures, for different parameter configura-
tions and sample sizes. More precisely, we need to predict future observations from each
population, namely Z; and Z;, where Z3, h = 1,2, is distributed as an observation from
the h-th population. Under M the two populations are the same. Given the predictors
Z, and Z, the expected square error of prediction is

E{(Z1— 21)* + (Z2 - 22)%)
= Var(Z1} + Var(Za) + E{(Z1 — E(Z1))*} + E{{Z2 — E(Z2))*};

thus, in the simulation, only the last two terms have to be estimated. Indeed, if M
is se]ected we conmder Z1 = Zg = X, the sample mean based on X, while, if M is
selected, then 2, = X, and Z; = Xa, Where Xy, h = 1,2, is the sample mean based on
X,

The estimates of the expected squared error of prediction are obtained by considering
10,000 samples for each sample size n, ranging from 8 to 40, with n; = ny = n/2.
Different parameter configurations are considered, by fixing A; = 1 and setting Az =
1(0.5)2.5; the configuration A\; = 1, Ay = 1, clearly means that the model M; is true,
while A\; = 1, A3 # 1 refers to the model Mj. The estimates are given in Table 1 and
the corresponding standard errors are estimated to be between 0.005 and 0.001, as n
increases from B to 40. The last colummn of Table 1 gives the expected squared error
of prediction when A; and Ay are known, namely when the true model is known. It
represents the unavoidable part of the error occurring in the prediction, which is due to
the variance of the future observations Z; and Z,.

Inspection of the table gives a preliminary idea on the behaviour of the alternative
criteria in this particular selection problem. As noted by Clayton et al (1986), the
LSB procedure performs better under M; and usually poorer under M,. This is clearly
related to the fact that the LSB criterion is consistent; that is, when the restricted model
is true, the probability of correct selection tends to 1, as n increases. Furthermore, the
other four methods do not present significantly different estimates and, at least in this
simple example, they are indistinguishable with respect to the prediction error. A further
additional comment is that the PSRQL method seems to perform a little better under
M3, for small values of n, while the PSRQLP* criterion, under M, it is usually closer
to the LSB procedure than the other three criteria and it performs better than the
Schwarz's (1978) criterion for ny = ny = 4.

Although a number of additional simulation are needed for a deeper analysis, these
preliminary results emphasise that the approximate p* predictive density, which is the-
oretically superior to the estimative one, gives rise to a predictive model selection pro-
cedure which is competitive with the existing criteria.

4.  Asymptotic expansions for the selection statistics
4.1 The procedure based on the estimative predictive density

There are two main motivations behind the asymptotic expansions considered in
the present section; namely, to obtain suitable higher-order approximations to Sgy, and



64 PACLO VIDONI

Table 1. Estimates of the expected squared error of prediction.*

Selection criterion

Size of A, Az
Az each sample AlIC BIC PSRQB PSRQL PSRQLP* known
1 4 2.399 2.395 2.396 2,395 2.383 2.00
8 2.194 2.175 2193 2.192 2.189
12 2.130 2,113 2.131 2.130 2.129
20 2.078 2.064 2.078 2.077 2.077
1.5 4 1.776 1.775 1.775 1.770 1.768 1.44
8 1.629 1.626 1.628 1.826 1.627
12 1.577 1.579 1.677 1.576 1.577
20 1.531 1.539 1.531 1.531 1.532
2 4 1.587 1.587 1.585 1.578 1.582 1.25
8 1.436 1.446 1.435 1.435 1.437
12 1.381 1.398 1.382 1.383 1.383
20 1.328 1.348 1.328 1.329 1.329
2.5 4 1.500 1.502 1.500 1.49%4 1.502 1.16
8 1.338 1.354 1.340 1.342 1.343
12 1.276 1.206 1.277 1.281 1.272
20 1.224 1.238 1.225 1.226 1.225

“Based on 10,000 samples for each sample size with standard error estimated to be
between 0.005 and 0.001, as n increases from 8 to 40.

Sorpr, which turns out to be easier to compute, and to find out the features of the
alternative models, besides goodness-of-fit, which are involved in these model selection
procedures. Here, index notation and Einstein summation convention are maintained;
however, with a slight abuse of notation, summation over the index ¢, which refers to
the predictive sample reuse technique, is expressed explicitly. Moreover, when the sign
“e" appears in a formula, it means that the terms following are asymptotically smaller
of order at least n=2/2 than the preceding ones; the sign “ee” means a drop of order n~!
and so on. This notation may be useful for an immediate determination of the order of
the terms involved in an asymptotic expansion.

Let us consider Sgz, given by (3.1), and expand £{&;y; z;) around &) = @, in such
a way that

n

(4.1) Sor = Z{E({D; x;) + (tﬁ(i) — L@ )

i=1
1. . . -
+ 5(:.0(,;) — O) s (@5 ;) + Op(n 3)},
where (D) — @)™ = () ~ @) (D) —@)° and £.(&; 2:), £rs(©; i) are the partial deriva-
tives of £(w, z;} = log p{z;w) with respect to the corresponding components of w, evalu-

ated at w = &. In order to obtain an alternative expression for Sgg, the following Taylor
expansion, around wg;) = &, is useful

(4.2) £ (@) ) = 6D &) + () — @) brs{@ )
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~

+ = () — @) st (@5 2) + Op(n™2).

baj -

Here £, (¢y; ®) and £g, (& ¢}, with R, = (rq,...,7m}, m € NT, are the m-th partial
derivatives of the log-likelihood function #{w; &) = 3~ £(w; r;), with respect to the com-
ponents of w with indices in R, computed at w = & ;) and w = &, respectively. Since w
and &) are such that £,.(&; &) = 0 and £-{dg); &) = £.(Q;); 2:), multiplication of (4.2)
by €7(&; ¢}, namely the (r,u) element of the inverse of the matrix [€.,(&; )], gives

- - i ]. - N - Sl L 1] _
(4:3) (@ = &) = LBy i)™ = 5 u{diy; 2:) b (@g3); 2:) P28 i gy + Op(n2).

Here £ = £g, (&;2), with Ry = (r1,..-,7™m), m € N¥; moreover, {4.3) assures that
(&g — @) = Op(n~!). Replacing (4.3) in (4.1), the selection statistic Spz can be
rewritten as a modification of the profile log-likelihood function £(&; &)} such as

{4.4) Sor = H@; x) ¥ zn:{é,.(ab; ), (@) 2) e

i=1

o - A A LS I T
R L N RERTM ERNTA:

i=1

1 & o ae
= 5 2 A6 (@320l (@ 2 ) 0@ 2 ) H B ¥ by + Oy (077
=1

Whenever the assumed statistical model coincides with the true one, the following asymp-
totic relations hold (see, for example, Barndorff-Nielsen and Cox (1994), Chapter 5)

1 = 1
- s x:) s (W 25) = Up s 1), —Lra (&5 = Urs 1),
nz:z (W 2:)€a(; ;) = Up s + 0p(1) nf? (@; &) = vpg + 0p(1)

=1

with tUry = E{ls(w; X);w} and vys = B{{-(w; X)€,(w; X);w}. As a consequence of the
well-known identity v, = —y 4, it is almost immediate to obtain

Sor = U &) + vr, s + 0p(1) = Y& x) — d + 0, (1),

where ©"* is the (r, s} element of the inverse of the matrix [v;,,]. Note that £(&; ) — d
defines the Akaike's (1973) model selection criterion; thus, as shown in Stone (1977), the
cross-validation procedure based on the estimative predictive distribution turns out to be
first-order equivalent to the Akaike’s selection statistic. However, this equivalence is only
a preliminary feature of S, and, as shown below for natural exponential families, more
information on Sg;, is gained by considering the higher-order terms in the asymptotic
expansion (4.4).

For natural exponential models, with probability density function given by (2.2), we
have

Colwizi) =27 = Ko (w), fr,.(w;z) = ~Kg, {w),

(4.5) £ (w;z) = img -nK,(w), £g,(w;x)=-nKg_ (w),

i=1
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with Rp, = (r1,...,7m), m € NT/{1}. Let us define

1. 1 < . . 1 . 1 \ X
EMN = H ;{(Ii - K}N - rs}, ;L'Mrst = E ;{(-’Ei - K)Ts - Krst}1
48) W= {3 @ - Ry nk
( 6) n rafuw — E Z(z‘t - ) — N pgin

i=1

4 3R — 16 (o — R) K}

i=1

where [A], h € N, indicates a sum of & terms obtained by permutation of the subscripts
and (z; — K)™ = (2] — K, )(z} — K.), (2 — K)™ = (z; — K)*(z! - K;) and (z; —
Kyrste = (g, — K)*t(z* — K,). Relations (4.6) correspond to the sample version of
the quantities constituting, respectively, the second, third and fourth expected balance
relations, computed at w = &. The expected balance relations, also called Bartlett
identities, are obtained by differentiating v, = E{f (w; X);w} = 0, with respect to the
components of w (see, for example, Barndorff-Nielsen and Cox (1994}, Section 5.2). In
particular, the second expected balance relation corresponds to the above mentioned
identity vrs = —vyr 5, while the third and the fourth expected balance relations are

Vrst + 'Ur,.st[3] + Up ot = a,
Uratu T Ur,stu [4] + 'Urs,tuis] + Ur s,tn [6] + Vratu = 0,

with vg,_,. s, = E{lg, (w; X} g {w; X);w}, Ry = (71, .., Tm)s Sh = {(S1,---,9),
m,h € N*. If the assumed statistical model is correctly specified, the sample statistics
(4.8) are of order O,(n~Y?2), otherwise they present values which differ systematically
from zero. In the first case, by considering (4.5) and (4.6}, formula (4.4} may be rewritten
as

@7  Sgu= U&sa)td M. Ern 1D gdn‘l ~ %Rmn*l : gMNK'”n"Z
_ E Y Rruksvktwk -2 -2
2 rsit nopwTt + Op(n ),

where Rza = f(mf{m,w}“( e KoV KtY ig 5 multivariate generalisation of the square of
the third standardized cumulant (McCullagh (1987), Section 2.8), evaluated at w = &.
Thus, Sqi, can be viewed as a modification of the Akaike’s model selection statistic
involving the dimension of the parameter space, a sample index of skewness and the
sample version of the second and the third expected balance relations. Moreover, formula
(4.7) provides, for natural exponential models, a simple expression for the higher-order
terms not considered in the approximation given by Stone (1977).

4.2 The procedure based on the approzimate p* predictive density

Assuming an underlying natural exponential model, a higher-order asymptotic ex-
pansion may be derived for Sgpp- as well. By expanding the logarithmic function in
(3.2), we have

(4.8) Sqrer = 3 LGuy;e) T AL BY Oy(n7?),

i=1
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where A = £ H(zi;0() and B = —} Y {H(zi;d))}?, with the O(n!') term
H(z;;&y) given by (2.6), with z; and @&, substituted for z and .

The first term in (4.8) is equal to Sp,, which may be approximated by (4.7). In
order to obtain an asymptotic approximation for the second and the third terms in (4.8},
it is necessary to consider the following stochastic Taylor expansions, around ;) = @

K (@) = ffr + (“:'(i) - “:')skrs + Op(nEQ)v
KTS(Q@)) — I‘(rs + (E:J(,) _ Q)tgruf"{svktuv + Op(n—2),
Krst(‘b(i)) = I%rst + (‘-D{z) - “A-’)ukr.stu + Op(n_z)

and the relation (4.3) computed for natural exponential families. By means of an al-
gebraic procedure similar to that considered for Sgyr, since K™ = Ky, Krtkse W) =

&+ 0p(nt) and K K™ = d, it follows that

— P "1 s fors, 1201, 1 Lo
(49)  Sqrp- = #(&; ——d—-g ~K)P R~ sdn™! - odPn

1 N
52w K
i=1 .
1. ot e Dot £
- {Edﬁ'rs + KﬂKsuKUwKtu'vw
— KMt Kve gre (f{twpkuvq + gktuvf{wpq) }"_2

(mi = K)ratKrsKtu Kquuvwn—Z

=

+

] =
-

= |l

(z; — f()rstuﬁ-rsktun—2 :“_' Op(n_'g).
1

Qo| =

«.
H

Finally, by adding and subtracting conveniently Koy Krge and — Ky + [3]]2’,,3!2}“ -

[6](x; — K)™°K™, formula (4.9) may be rewritten as
UL IS | 1 A
(4.10) Sgrp- = {0 ) el -Z-MTSK""n 1t §dn'1 - Zdzn‘l -~ %Rg;;n-l
3 4 3. o1l . oA
— gngn_l + §R4n_1 — §dM,.8K‘"Sn‘2 + %MrSK”K"“KW
. f Ao 5o s o~
) (Ktuvw - quKtwpKuvq - ZquKtuqupq) n‘g

1

1 .- " N A ~ " N .
+ ZMrsthKtquwKuvwn—g _ ngatuKrsKtunﬁz

';‘ Op(”ﬂ):

where Riz = Ky Kuwu KT K™K® and Rys = K, Ky K™K K™ are the multi-
variate generahsatlons of the square of the third standardized cumulant, computed at
w = @, and R4 = KrsuK rs Kt is the multivariate generalisation of the fourth stan-
dard1zed cumulant, computed at w = & (McCullagh (1987), Section 2.8). The sample
statistics MN,, M, and M, .y, are defined by (4.6).
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The final approximation {4.10} holds whenever the assumed statistical model is
correctly specified and it is a suitable modification of the profile log-likelihood function
£(; &) which, up to terms of order O,(1), corresponds to the Akaike’s (1973) criterion.
Here, the modifying term involves further quantities beyond those given in the expansion
for Sgr. In particular, we can find in (4.10) the sample version of the fourth expected
balance relation, computed at w = &, and the standardised cumulants R13 and }?4, which
do not appear in the asymptotic expansion for Sgz.

5. Comments and conclusions

This paper provides a new model selection criterion involving the approximate p*
predictive density, by means of a simple cross-validation technique. A preliminary simu-
lation study shows that this new model selection procedure, compared with some other
well-known techniques on the basis of the squared prediction error, gives satisfactory re-
sults. Moreover, higher-order asymptotic expansions for the selection statistics based on
the estimative and the approximate p* predictive distribution are derived. These results
are given, in particular, for natural exponential models and may be fruitfully considered,
up to terms of order O,(n~"), as a simple alternative to the selection statistics (3.1} and
(3.2), when the dimension of the observed sample x is large. These approximations are
obtained with the key assumption that the model is correctly specified. Although, within
a model selection procedure, such an assumption is not completely plausible, one can
still use these approximate selection statistics when the assumed statistical models are
not remarkably different from the true one. Otherwise, it may be convenient to consider
the original selection statistics or the expansions (4.4) and (4.9), which do not require
any underlying hypothesis on the true model.

Ezample 1. (continued) The gamma distribution. The approximations (4.7) and
(4.10), up to terms of order Op(n~!), are almost immediate to compute for the gamma

distribution. In particulsr, if the shape parameter 8 is known, Riz = Rz = 4/3,
R4 = 6/}3 and then

Sqr = Ziogp(m,;;ﬁ/i,ﬁ) -1- Z{ﬁ(‘ci — 2)2/(2)? - 1}n1
i=1

i=1

1
- 5(3 + 4[)'_1)7?,_1 + Op(n"?’/g),

SqLp- = Zlogp(:c,;;ﬁ/i,ﬁ) —-1- éZ{ﬁ(m -2)*/(z)? - 1}n"
i=1

t==1

1
— 1(3 + 5/3_1)71—1 + Op(n"'3/2),

where T is the sample mean based on 2. With 8 = 1, we obtain the approximations
associated to an exponential distribution.

Ezample 2. (continued) The normal distribution. Whenever a normal distribu-
tion with both the mean u and the variance o2 unknown is assumed, the computations
require an additional effort. Since (z1,23) = (2,82), w = (wy,ws) = (po2, —L1072),
and K(w)} = —3log(—2uwy) — §(w#/wa) we obtain the partial derivatives Ki(w) = u,

Ky(w) = 02 4+ 42, Ki3(w) = 02, Kio{w) = Ka1(w) = 2uc? and Kao(w) = 206* + 4uo?;
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moreover Ri3 = Ra3 = Ry = 0. Thus, the approximations (4.7) and (4.10}, up to terms
of order Oy(rn™!), are

Sar = 3 _logp(zii f1,6%) — 2 = My K™n™" = 307" 4+ 0p(n™%7%),
t=1

"
1.~ _ _
SqoLp- = Zlogp(mz-;ﬁ,&z) -2- EMTSK”’n‘l — o1 4 O, (n~%2).

Here

Mrskmn_l = i {fl(xz)z(&z + 2{:‘,2)/5'2 — (Zﬁ/&)fl (wi)fg(mi) + %fz(:&)‘z — 2} n_l

i=1

with f1(z:) = (z; — 2)/8, falzi) = (z? - 6% — 42)/5? and f1, &2 the maximum likelihood
estimates based on @. With 62 known, we obtain the simple formulae

k] n ) 3 ) )
SQrL = Zlogp(wi;ﬁ, §%) - 1— Z[{(:c,- — /et —1n7t - 5n Ly 0,(n~%?%),

i=1

- 3 _ _
Sorpe = 3 logp(wi;4,6%) —1— 5 § :[{(sca 12/0%} - 1n~! = In71 + Op(n™7).
=]

The interpretation of the approximations (4.7} and (4.10) and, consequently, of the
selection statistics Sgz and Sgzp- demands further attention; here, some preliminary
considerations are presented. As mentioned previously, when the assumed parametric
statistical model is correctly specified, Sgr. and Sgrp+ correspond, up to terms of order
Op(1), to the Akaike's (1973) model selection criterion. Furthermore, the higher-order
modlfymg terms involve, besides the dimension d of the parameter space, the fourth
and the square of the third standardized cumulants evaluated at w = w, namely Ry,
Ri3 and Rgs and the quantities Mrs, M,,; and M, defined by {4.6). Since these
sample statistics refer, respectively, to the second, third and forth expected balance
relations, it is reasonable to argue that, in absence of model misspecification, they are
nearly negligible. In particular, M,.,, which corresponds to the information identity,
is used by White (1982), Royal (1986) and Orme (1990) in order to define tests of
model misspecification. Analogously, M,,; and Mg, may be viewed ag statistics which
measure the misspecification of the model, with particular reference to skewness and
kurtosis. Thus, these further terms seems to allow for a more accurate evaluation of the
predictive ability of the model which is considered.

In particular, expansion (4.10) points out that, up to terms of order Oy n=3/2), the
selection statistic Sgz pe corresponds to a modification of the profile log-hkehhood func-
tion. This modification apparently penalises models with many parameters and models
with a remarkable skewness and a low kurtosis. However, these penalisations are not
substantial since they are adjusted by the corresponding sample balance relations and,
together, provide a measure of model misspecification based on violations of the expected
balance relations, with reference to the data x. With regard to the selection statistic
Sqr, the corresponding asymptotic expansion (4.7) presents less terms than those ob-
tained for Sgrp« and, for this reason, it is supposed to have a lower discriminating
ability, as far as a further prediction analysis is concerned.



70 PAOLO VIDONI
Acknowledgements

The author would like to thank the referees whose comments led to improvements
in the presentation.

REFERENCES

Akaike, H. (1973). Information theory and extension of the maximum likelihood principle, Second
Symposium on Information Theory (eds. N. B. Petron and F. Caski), 267-281, Akademiai Kiado,
Budapest.

Barndorfl-Nielsen, O. E. (1983). On a formula for the distribution of the maximum likelihood estimator,
Biometrika, 70, 343-365.

Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics, Chapman and Hall, London.

Clayton, M. K., Geisser, §. and Jennings, D. E. (1986). A comparison of several model selection
procedures, Bayesian Inference and Decision Technigues (eds. P. Gioel and A. Zellner), 425-439,
Elsevier Science Publishers, North Holland, Arsterdam.

Geisser, 8. (1993). Predictive Inference: An Introduction, Chapman and Hall, New York.

Geisser, 5. and Eddy, W. F. (1979). A predictive approach to model selection, J. Amer. Statist. Assoc.,
T4, 153-160.

Harris, I. R. (1989). Predictive fit for natural exponential families, Riometrika, 76, 675-684.

Komaki, F. (1996). On asymptotic properties of predictive distributions, Biometrika, 83, 200-314.

McCullagh, P. (1987). Tensor Methods in Statistics, Chapman and Hall, London.

Orme, C. {1990). The small-sample performance of the information-matrix test, J. Econometrics, 46,
309-331.

Royall, R. M. (1986). Model robust confidence interval using maximum likelihood estimator, Interna-
tional Statistical Review, 54, 221-226.

Schwarz, G. (1978). Estimating the dimension of a model, Ann. Statist., 6, 461-464.

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike's crite-
rion, J. Roy. Statist. Sec. Ser. B, 39, 44-47.

Tierney, L., Kass, R. E. and Kadane, J. B. {1989). Fully exponential Laplace approximations to expec-
tations and variances of non-positive functions, J. Amer. Statist. Assoa., 84, T10-716.

Vidoni, P. (1995). A simple predictive density based on the p*-formula, Biometrika, 82, 855-863.

White, H. (1982). Maximum likelihood estimation of misspecified models, Economeirica, 50, 1-25.



