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Abstract. DNA sequence data provide a good source of infarmation on the evalu-
tionary history of organisms. Among the proposed methods, the maximum likelihood
methods require an explicit probabilistic model of nucleotide substitution that makes
the assumption clear. However, procedures for testing hypotheses on topologies have
not been well developed. We propose a revised version of the maximum likelihood es-
timator of a tree and derive some of its properties. Then we present tests to compare
given trees and to derive the most likely candidates for the true topology, applying
to maximum likelihcods the notion of contrast, as defined in the framework of the
analysis of variance, and the procedures used in multiple comparison. Finally, an
example is presented.
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1. Introduction

Since the time of Darwin, biclogists have attempted to determine evolutionary rela-
tionships among various species. These relationships can be illustrated in a phylogenetic
tree that shows the course of evolution among a group of organisms. Originally, phy-
logenetic relationships were inferred from morphological data. Species were considered
closely related if they were physically similar, or if analogous parts of the organisms
functioned similarly. Methods based on morphological data tend to be limited to the
study of groups of organisms that are somewhat closely related. Tt is difficult to compare
the physical characteristics of a human being and a bacterium.

The advent of nucleic acid sequencing has revolutionized the field of phylogenetic
inference. Nucleotid acid sequences {(DNA and RNA) from any organisms can be aligned,
providing a basis for the construction of phylogenies for organisms over a wide range.
The problem of inferring phylogenetic relations among a group of organisms using nu-
cleotide sequence data is one of continuing interest to researchers in the field of molecular
evolution. There are a variety of approaches to the problem in current use, see Swofford
and Olsen (1990) for a review.

If the occurrence of evolutionary change is modelled with stochastic process, sta-
tistical methods can be used to infer a phylogeny. The oldest statistical techniques are
based on maximum likelihood. A review can be found in Felsenstein (1983).

* Now at Laboratoire de statistique et probabilites, Université de Lille I Bat. M2, 59655 Villeneuve
d’Ascq Cedex, France.
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Such models have been in use for some time now but interest in them heightened
following the revelation by Felsenstein (1978) that the popular parsimonious criterion
can cause serious biases when the rates of evolutionary change in the true phylogenetic
tree differ greatly from one branch to another.

To apply this method, one regards a tree topology as a statistical model containing
several unknown parameters, such as branch lengths and evolutionary rates. The max-
imum likelihood value of each possible topology is computed by altering the unknown
parameters in an optimum fashion. Then the fit of the tree topologies to the data is
compared by the criterion of maximum likelihood. The model with the highest likelihood
is chosen as the most likely candidate for the true topology. The use of statistical mod-
els fitted by maximum likelihood is currently considered as the best method of inferring
phylogenies (see, e.g. Felsenstein (1981), Barry and Hartigan (1987), and Navidi et al
(1993)).

Nevertheless, a crucial problem is the reliability of a proposed phylogenetic tree. By
considering the possible trees as different hypotheses, this problem is closely connected to
the problem of hypothesis testing. Since the statistical models expressing different tree
topologies are not nested, the usual theory of likelihood ratio test does not apply directly.
Cox {1961) studied testing separate families of hypothesis based on the distributions of
the likelihood ratio statistics under the hypothesis. Partly because this procedure is a
pairwise comparison procedure, and partly because there are lots of trees (hypothesis)
to be considered, it is difficult to answer satisfactorily to the requirement such as testing
the significance of a group of trees against others or testing if a set of organisms are in
a family.

Recent work showed the validity of the interior-branch test (IBT) in the framework
of distance methods (Sitnikova et al. (1995)). Distance methods estimate the branch
lengths from the converted distances between sequence pairs by least square procedure.
Therefore, once we can assume that the converted distances follow multivariate normal
distribution, the estimated branch lengths also follow normal distributions. IBT tests the
zero length of an interior-branch with the alternative hypothesis of positive length. In
the framework of maximum likelihood procedure, however, since the likelihood can only
be defined for non-negative branch lengths, the likelihood ratio test cannot be applied
in an ordinary way to the one sided test.

Churchill ef al. (1992) and Navidi et al. (1993) consider procedures likelihood ratio
test and linear invariant, to evaluate the topologies. As a likelihood approach, it considers
the ratio of the maximum log likelihood of a topology with wide classes of evolutionary
processes and the full model multinomial distribution. Goldman (1993) considered the
parametric bootstrap to get the distribution of the log likelihood ratio statistics under
the hypothesis, because of the large degree of freedom.

Because of the large degree of freedom again, the power may not be high. If several
topologies are not rejected in the hypothesis test, next step is to compare the topologies,
which is the aim of this article. Navidi et el (1993) also uses the above log likelihood
ratio statistics to get the confidence region of the parameters. The procedure is valid
only when the topology is correct. If we take account of the uncertainty with regard
to topologies, the threshold value of the log likelihood ratio is not the one from the x?
distribution with the specified degree of freedom.

Felsenstein (1985) proposed nonparametric bootstrap procedure to set the reliability
on the trees, calculating proportions of trees selected from analyses of pseudo samples.
Kishino and Hasegawa (1989} approximated the set of log likelihood ratios by (multi-
variate) normal distribution, estimating the variances and covariances from the values of
the sites. Although they are used by many researchers in molecular phylogeny, the sta-
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tistical property of the procedure has not been fully studied, and is still under argument
(Zharkikh and Li (1992¢, 1992b), Hillis and Bull (1993)). Felsenstein and Kishino (1993}
pointed out that the bootstrap proportions can be used as a conservative significance
level in the frame work of hypothesis testing, or as elements composing confidence sets.

In this paper, we provide an inferential scheme to decide about the reliability of
proposed trees, using the theory of multiple comparisons. We derive some of the prop-
erties of a revised version of the maximum likelihood and derive a test of homogeneity
for the likelihood of the tree. Then we derive tests to compare given trees and to derive
the most likely candidates for the true topology. Finally an example is presented.

2. Maximum likelihood of phylogenetic trees

Most frequently observed events of molecular evolution are nucleotide substitutions,
and the process is modelled as a Markov process. Table 1 includes six models of nu-
cleotide substitution that have often been used for phylogenetic inference. The simplest
model is Jukes-Cantor’s and the transition probability is expressed by

1 3 4
pu(t) =7 + 1P (-g)ﬂf) ;

pis(t) = 5 (1 ~ exp (—%At)) (i # 3).

Felsenstein's model takes account of unequal nucleotide composition, and the transition
prohability becomes

[1-N

(2.1)

piilt) = exp(—ut) + (1 — exp{—ut)) m;,
pij(t) = (1 —exp(—ut))m; (i #4).

where 7 is the equilibrium probability of the state k. Kimura's two-parameter model
notes the different rate between transition (substitution within purine or pyrimidine) and
{ransversion {substitution between purine or pyrimidine). The transition probability is
expressed by

prr{t) = pec(t) = paalt) = pee(t)
= i + i exp (—40t) + % exp (—2(a + B},
pre(t) = per(t) = pac(t) = pealt)
= £+ o (~400) - 3 exp (-2 + 1),
pra(t) = pra(t) = pealt) = poe(t) = par(t) = pac(t) = per(t) = pac(?)

1
— g oxp (—48t) .

I

!
4

Hasegawa et al. model] takes account of both unequal nucleotide composition and
the difference between transition and transversion.

Usually, the sequence data does not have information on the direction of the evolu-
tion, and time reversible processes are considered. Only an unrooted tree is identifiable.
To set the root of the tree, an outgroup is incorporated in the sequence.
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Table 1. Matrices of the instantaneous rates of nucleotide substitution.

Mutant
Original A T C G
1. Jukes-Cantor model:
A cas A A b
T A A A
C A A v A
G A A A
2. Felsenstein model:
A e T A T TaA
T maA ToA oA
C TAA TTA mTGA
G TI'AA 'JTT)l ‘JTC'A
3. Kimura model:
A A 5 Jé) P
T B - a 8
C ﬁ x an ﬁ
e o 8 ees
4. Hasegawa et al. model:
A 8 o Too
T wal Toa  weB
C mal o L feye)
G mae Tl 7mof
5. Tamura-Nei model:
A e T 7wl weom
T wAf mooz  TGH
C TalB  Trog fersd
G maey wrf  wgpB -
6. Rzhetsky-Nei model:
A e B2 Ba aq
T B - g Ba
C B g x Ba
G o B2 B3 s

Note: In all matrices the ellipses on the diagonal replace the entry required to ensure
that row sums are zero. w4, 7y, %o, TG are the nuclectide compaositions in the equilibrium.

Let us consider & homologous nucleotide sequences that consist of n nucleotide sites.
The data can be represented in the following tabular form:

Species]l Xi1

+

Speciesp Xp1

Speciess  Xgn

Xiq
X g

X

Xln

Xen

XSTL

where X,,, is T, C, A or G and denotes the state of the ¢-th site in the species p. Let

X = (Xp,) be the matrix of data and

X},, = (th, .

'7Xsh.)'

be the value of the A-th site. The superscript ' denotes the transpose operator.
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Assuming a model of substitution, the log-likelihood of a given tree i is:

(2.2) L:(0: | X) = log (fi(Xn | 6:))

h=1

where fi(X), | 8;) is the probability that the species j has x,, at the homologous site .
Given the topology describing the branching order, it is expressed in terms of the transi-
tion probabilities. The vector #; denotes the unknown parameters such as the branching
lengths, the ratio of transition rate to transversion rate. As is seen from equations (2.1),
the transition probabilities are expressed in terms of the expected number of substitution
(the evolutionary time along lineages multiplied by the substitution rate), it is impossible
to estimate the rate and the branching dates separately without supplementary infor-
mation. We therefore adopt the expected numbers of substitutions as free parameters
and refer them as branch lengths, particularly when we do not assume constant rate of
evolution.

Figure 1 illustrates how the likelihood of a site is calculated. At this stage, there is
two conditional likelihoods L 41{X15 | 1), La2(Xan | k1) of the subtrees of the subsets
Xin and X3y connected to the internal node A, given that the state at the node is k.
Writing the branch length of the interior-branch connecting the nodes A and B by v, the
extended conditional likelihood of Xgp, = (X, Xj,) given that the state at the node B
is k9 is given by

(2.3) Lpi(Xon | k2) = > By ko (W)L a1 (X | k) Laz(Xon | n),
k1

where pr, &, (v) is the transition probability expressed as a function of branch length.
Combining the subsets step by step, finally we get at some node @ the all of the three
conditional likelihoods Lo (X{, | k), Lo2(Xy, | k), Lga(X3, | k) of the subtrees of
the subsets X|,, Xj,, and X, divided by the node. The likelihood of the h-th site is
obtained by

(2.4) FilXn 16:) = 3 meLon (X{y, | k) Lga( X}, | k) Los(X3, | k).
k

The unknown parameters @; of a given tree topology 4 is estimated by maximizing the
log likelihood. One may remark that the method for updating likelihood down a tree is
different from Felsenstein (1981), but only because the stopping places are different (at
the bottom of a branch rather than at its top).

A mathematical model of nucleotide substitution with many parameters may fit
various sets of sequence data, but the estimate of evolutionary distance has a larger
variance compared with that of a simpler model with fewer parameters when both models
arc applicable to the same data set. On the other hand, errors in estimating trees are
more often caused by models that are too simple than by models that are too complex.

If s species are under study, it is not difficult to see that there exists

(2s — 5)!

T TPy

distinct unrooted bifurcating trees. Therefore it is important to be able to compare the
different topologies. Since the models are not nested, the classical likelihood ratio test
does not apply (see e.g. Rao (1973)).
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Konl k)

Fig. 1. Likelihood of the A-th site.

An alternative way to handle the problem is to use the Kullback-Leibler information
between the true (but unknown) distribution g(-) and a candidate model f;(- | €;) defined
as (Kullback (1959)):

I(g(-); fi(-18:)) = Eg {log 9(2) ]

fi{Z]6:)
where Ez represents expectation with regard to Z. Since it is the difference between
Ezlogg(Z)] and I' (¢{-); fi(- | 8;)) = Ez {log f;{Z | 8,)], and the former does not depend
on the parameter values or the type of models, we compare the latter for statistical
model comparison and estimation of the parameters in the models.

If éi is the maximum likelihood estimator of #;, then 9.,- is a consistent estimator

of #;, the unique parameter that minimizes the Kullback-Leibler information quantity
under weak condition on the identifiability (see e.g. White (1982)).

PROPOSITION 2.1. Under the clussical hypotheses for the expansion of the mari-
mum likelihood, we have asymptotically:

= 1 - rf.?
(25) L1 ) = 2161 )~ (4 %)
with
i =I' (900 (197,

o = Varz [log fi(Z | 6])].

PROOF. A first order Taylor expansion of [;(8; | X) at the neighbourhood of 8,
gives:

26) L@ | X) =16 | X) - %n(?),- — 87)'J:(8,)(B; — 6%) + Remainder
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where J;,(@,;) represents the Fisher information matrix and the Remainder tends to zero
when the number of observations (i.e., the length of the sequences) tends to infinity.
Since /n(f; — 87) = Op(1), ie. bounded the second term of RHS of equation (2.6)
is negligible compa.red with the first term.
Using equation (2.2), we have:

(2.7) LB | X) = ZIOg(fz-(Xh | 6:)).

h=1

Since a classical hypothesis is the independence of sites (Felsenstein (1983)), the
RHS of equation (2.7) is the sum of independent and identically distributed random
variable. The result is obtained by applying the central limit theorem.

It has to be noted that different rates of evolution at different sites do not affect the
assumption of independence if the rates are assigned independently to sites.

As noted by Kishino and Hasegawa (1989), the mean and the variance of the likeli-
hood estimator tend to infinity as n tends to infinity. Therefore the use of z}(é,- | X}, as
defined in equation (2.5) is preferable. Various authors have studied its properties (see
e.g. Steiger et al. {1985), White (1981, 1982)).

PROPOSITION 2.2.

n 2
\7;;( ( |X) Z{logfi(xhlgt)zlogft Xhla)}
h:l h=1
and
Cov(is(B: | X).1;(6; | X)) Z{logft(xhw,)-—zlogfl Xi |8, }
h:l h=1

{logft(Xh | 8;) — —Zlﬂgfz(xh |9 )}

h=1

Proor. Using the hypothesis that the sites are independently and identically dis-
tributed, the variance within sites can be estimated by the variance between site. The
result is direct. Linhart (1988) and Vuong (1989) proved this result in a general setting.

One may note that 8; cannot be the maximum likelihood estimator if f; (X | 8,) = 0.

Kishino et al. (1990) have also proposed a procedure to estimate the variance and
the covariance of the likelihood estimates with the help of bootstrap techniques. It is
direct to adapt it to the revised version of the maximum likelihood estimates.

3. Significance of information on phylogenetic relation

The first step of the analysis is to determine if there exists enough information to
reconstruct the evolutionary tree. If it is not true, the tree will not have intermediate
branch. In molecular biclogy, this hypothesis is commonly called the star hypothesis.
Let us consider at first the four species cases. We have three possible unrooted trees.
Let us call Iy (6, | X), {2(@2 | X) and I3(8; | X) the revised version of the likelihood
associated with each tree.
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Let us consider the vector

(B | X) - 5(0: | X)
(3.1) L= LB | X} —1a(05 | X)
l2(82 | X} —i3(f3 | X)

Let us first derive a test to conclude if the data have enough information to dis-
criminate between the topologies. We consider the hypothesis that the three topologies
are equi-distant from the true topology, measured by the Kullback-Leibler information

quantity.
PROPOSITION 3.1. Under
Ho : I'(g(); 1u(- 1 67)) = I'(g(-); fa(- 1 83)) = I'(g(-); fa{- | 63))
the test statistic
VE= ([0 | X) - b | X)? + (1@ | X) - I35 | X))2 + (la(fz | X) - 13(83 | X))?

is approzimately distributed as:
Ul=ax?
with
_ (A7)
T otr{A)’
s (x(4))?
tr{ A%)

where A is the variance-covariance of L.

PROOF. Since topologies are separate families of hypotheses, using the central limit
theorem, asymptotically (Kishino and Hasegawa {1989)):

L~ N(pa A)
with
B =E((I (6] | X)—L(6 | X), 00| X) - 1583 1 X),1(0 | X) - 563 | X)).

Under Hy : E(l1(81 | X) = E(l2(8; | X)) = E(ia(f2 | X) then p = 0. Therefore, using
classical theory of quadratic forms,

(3.2) Uiy Ml

where A; are the eigenvalues of A, the variance-covariance of Tand uj ~ N (0,1) inde-
pendent.

There exist many ways of computing the tail probabilities of (3.2}, the first one is
to use a mathematical package that can perform this kind of integral. An easier way is
to approximate this weighted sum of central chi-square by a pondered chi-square. This
approximation is known to give correct result even for the tail of the distribution (Grad
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and Sclomon (1955)). If we may notice that ), A; = tr(A) and Y, A? = tr(A4?), the
proposition is obtained by equalizing the two first moments.

The degrees of freedom of the chi-square can be non integer. With most of the
statistical packages, this is not a restriction. In other case it is always possible to use
approximation as Wilson-Hilferty’s one (Johnson and Kotz (1970)).

Let us go to the next step that is the problem of s (s > 4) species. Therefore there
exists ¢ distinct unrooted trees. As a generalisation of equation (3.1), one may write:

L0 | X) - 1(8, | X)
J— L6 | X) —13(0: | X}

[ii(Bs | X) - 10, | X)
l is a vector of dimension ﬂ%—l}_ and asymptotically
L~ Nu, A).
Under .

Ho: I'(g{); A(- 187)) = T'(9(-); f2( |1 03)) = - = T'(g(}: £ 6}))

wu=0.
Thus with the same arguments as before we also end up on a weighted chi-square
and the degree of freedom and the weighted term are of the same form than in the

Proposition 3.1.
4. Tests for more specific aims

If Hy cannot be rejected it means that the data does not permit to discriminate
between the topologies. In other word, it means that the data does not have enough
information on the phylogenetic relations. One may expect that we do not end to this
case and thus the hypothesis that all the likelihoods are equal has to be rejected. In this
case, the practionner wants to be able to compare the different topologies. The aim of
the two next sections is to answer to some of the most classical questions. In the first
section, we derive the distribution of linear combinations of the likelihood estimates. It
is especially useful when a specific comparison is wanted or if a specific regroupment is
under consideration. In the second section, we derived a test to determine if a candidate
tree can be the best tree.

It is well known in the context of analysis of variance that a global test can be
significant even if the multiple comparisons procedures cannot permit to discriminate
between the various hypothesis. Since the same problem can arise with the proposed
method, it is better to conduct at first the test derived in Section 3.

4.1 Linear combinations of the likelihood estimates

In many applications, some inference had been made about the candidate for the
true topologies among the taxa. Since different methods can lead to different results, it
is important to be able to test predetermined hypothesis. This question is very close to
the notion of contrasts in the framework of the analysis of variance (see e.g. Hochberg
and Tamhane (1987)). One application is when a given tree has to be compared to
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alternative trees. Another case is when a particular association is under interest. In this
case, the practionner wants to compare the trees with the given association to the tree
without this association.

PROPOSITION 4.1.. Under the hypothesis Hi, : 3, ity = 00,6 = 0) the test
statistic

(3, csli® | X))* -
>, 2 Var(li(8: | X)) 4 3, eic; Cov(li(B; | X),1;(8; | X))

(4.1)

follows asymptotically a chi-square distribuiion with one degree of freedom.

Proor.

gci | X) = kZ(ct— Y8 | X) = 1;08; | X))

'r.>-_;

Since I follows a multivariate normal law, any linear combination of I follows a normal
law.

From a practical point of view, the sequence is generally long enough to replace the
variance and the covariance by their estimate and therefore, it is direct to obtain that
the equation (4.1) follows a x? under the hypothesis Hi,.

To preserve the level of the tests the contrasts have to be independent and it is easy
to see that the comparison of ¢ likelihoods permits ¢ — 1 independent contrasts.

4.2 Candidate for the best tree
In some applications, the candidate for the true tree cannot be inferred from previous

studies. In this case the parameter of interest is (see Edwards and Hsu (1983); Hsu
(1984); Hochberg and Tamhane (1987)):

E(i(8: | X)) — max B(5(6; | X))
These are nonlinear functions of [;(#; | X)’s and therefore the problem is slightly different
from the contrasts.

PROPOSITION 4.2. Let’s consider the case of s species, a simultaneous confidence
interval at the (1 — a}% level for I'(g(); fi(- | 67)) — I'(g(-); f;(- | €})) (i fized and
Je{l,...,t\{i}) is given by:

(42)  [@ | X) =56 | X)—d L@ | X)-5;0; | Xy+d)  jefl,..., 03}

where d 1s the eritical value of o standardized normal distribution at the (1 — ﬁ}%

level, multiplied by u = max;: / Var(;(8: | X) - L.(8; | X)).
ProOF. At first, we note that:
(1,06 | X) = 5,8, 1 X)) - (BEG. | X) =@, | X))
VVar(i(: | X) - 5,0, | X))

~ N{0,1).
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Generally n, the length of the sequence, is large enough to ensure the validity of the
normal approximation. The pairwise comparisons are not independent. To take this
fact into account a correction factor has to be used. The easiest way of doing is to apply
the (conservative) Bonferroni correction.

COROLLARY 4.1. A simultaneous confidence interval at the (1 — a)% level for

(E(l_i(é,- | X)) - I}lg:{E(Z-:,(éj I X))) (¢ fized and j € {1,...,t}\{i})

s given by:

(43) [(&(&- | X) ~ maxiyb; | X) - d) , (z:-(a,- | X0 - maxi(8; | X) +d)+]

with ™ = min(z,0), 27 = max(z,0} and d defined as in equation (4.2).
It is a direct application of a result of Hochberg and Tamhane ({1987), p. 150).

5. Example

Horai et al. (1995) determined the entire mitochondrial DNA (mtDNA) sequences

(16.5 Kb) from the following five species:

Human;

Common Chimpanzee (Pan troglodytes);
Pygmy Chimpanzee (bonobo; Pan paniscus);
Gorilla (Gorilla gorilla);

5. Orangutan {Pongo pygmaeus).

Codons are translated to amino acids of proteins. If the translation into an amino acid
does not depend on the base at the third position of a particular codon, this codon is
called four-fold degenerate. One may expect that the evolution of these sites is neutral
(Kimura {1983)), and the substitution pattern in evolution reflects that of mutation.
In this set of data, there is 1669 four-fold degenerate homologeous sites that are not
ambiguous and not overlapping. We focus our attention on these sites.

Since 5 species are under study, it is possible to construct 15 unrooted bifurcating
trees.

Table 2 shows, for each tree, [;(; | X) and \/ﬁr(fi(éi | X)—[;(8; | X)) for i =
1,...,15. Hasegawa et al model of Table 1 was used. The trees are highly correlated.
Therefore the variance of the difference is very small. .

A test of homogeneity was performed for the 15 unrooted trees. Under Ho : E(;(8; |
X)) =-=Elis015 | X))

Ll e

1341 ~ X%.'Tﬁ .

Therefore the null hypothesis is rejected even at the 0.1% level of confidence. From many
previous studies, the generally accepted tree is Tree 1 (Hasegawa and Yano (1984}, Sibley
and Ahlquist (1984})) and the classical other candidates are Tree 2 {Templeton (1983),
Martin (1985)) and Trees 3 (Ueda et al. (1985)).

From the Table 2, it is obvious that the hypothesis of equality of the revised likeli-
hood of the Tree 2 and the Tree 3 will not be rejected, even at the 5% level. Under the
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Table 2. Sample statistics of the likelihood of the 1669 sites for each of the possible unrooted trees.

No of the Tree Topology L8 | X) \/\7;}(5,-(31 [ X)-L@: | X))
Tree 1 (((Chimp, Bonob), Human), Goril, Orang} —3.39341 0
Tree 2 {{Chimp, Bonob), Geril, (Orang, Human}} —3.40198 0.003686
Tree 3 ({Chimp, Bonob}, {Goril, Human), Orang) -—3.40198 0.003684
Tree 4 {({Chimp, Human), Bonob}, Goril, Orang} -3.40851 0.005642
Tree 5 {{Chimp, (Boncb, Human)}, Goril, Orang) —3.40851 0.005642
Tree 6 (Chimp, ((Goril, Human), Bonob), Orang) -3.41342 0.005679
Tree 7 {Chimp, (Goril, Bonob), (Orang, Human)) —3.42025 0.007343
Tree 8 {Chimp, Goril, ({Orang, Human), Bonob)} -3.42049 0.007280
Tree 9 {Chimp, (Goril, Human}, (Orang, Bonob)) -3.41372 0.005603
Tree 10 {(Chimp, Human), (Goril, Bonob), Orang) -3.42379 0.008717
Tree 11 (Chimp, ({Georil, Bonob), Human), Orang) —3.42361 0.008768
Tree 12 (Chimp, (Goril, {Bonob, Human)), Orang) —3.42385 0.008697
Tree 13 {Chimp, Goril, (Orang, (Bonob, Human})) -—3.42403 0.008653
Tree 14 (Chimp, Goril, ((Orang, Bonob), Human}) —3.42403 (1.008653
Tree 15 ((Chimp, Human), Goril, (Orang, Bonob)) —3.42409 0.008628

hypothesis that the pseudo-likelihood of the Tree 1 is equal to the mean of the revised
likelihood of the Trees 2 and 3, we have:

5.41 ~ x2.

Therefore, the Tree 1 is significantly different from the Trees 2 and 3 at the 5% level.

For the three first trees, the closest species are the two species of chimpanzees.
Therefore, it is possible to test this particular association by making a contrast between
trees 1, 2, 3 and the others. The coefficients for the three first trees are —4, —4, —4
and the coefficients for the 12 last threes are —1,..., —1. After some computations we
obtain:

9.15 ~ x1

which is significantly different at the 5% level.

Even if there are many studies that tried to infer the true tree, we apply, by sake
of curiosity, the techniques of the Subsection 4.2 to determine the trees that can be
candidate for the best tree. -

and the critical value of a standardized normal law at the (1 — 2:95)% is 2.914.
Therefore, we have, at the 5% level of confidence,

d = 0.00877 x 2.914 = 0.0256.

Not only Tree 1 is selected but also Tree 2 to Tree 9 are selected at the 5% level.
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6. Conclusions

Many methods have been proposed to recover the structure of the evolutionary trees.
One of the main argument for the maximum likelihood techniques is that the hypothesis
have to be clearly stated even if the same hypothesis are often implied by the other
method. Although a lot of attention has been paid to the hypothesis, little attention
has been paid to the statistical properties of the maximum likelihood estimates. In this
article we developed some useful procedure to test the pertinence of the recomstructed
trees but for specific case, other tests can be derived such as the multiple comparison
procedure or the Dunnett test (see e.g. Hochberg and Tamhane {1987)). We might
consider the normalized statistics to increase the power. This is left for further study.

Since the amount of available data and the capacity of the computer is increasing
very quickly, the need of this kind of procedure is very important to understand the
evolutionary process of the species. In this article we focus our interest on branching
order but the problem of the precision of the branch length is also an important question
and work is currently be done on this subject.
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