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Abstract. Consider the test problem about matrix normal mean M with the null
hypothesis M = O against the alternative that M is nonnegative definite. In our pre-
vious paper (Kuriki (1993, Ann. Statist., 21, 1379-1384)), the null distribution of the
likelihood ratio statistic has been given in the form of a finite mixture of x? distribu-
tions referred to as %2 distribution. In this paper, we investigate differential-geometric
structure such as second fundamental form and volume element of the boundary of
the cone formed by real nonnegative definite matrices, and give a geometric deriva-
tion of this null distribution by virtue of the general theory on the ¥* distribution for
piecewise smooth convex cone alternatives developed by Takemura and Kuriki (1997,
Ann, Statist., 25, 2368-2387).
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1. Introduction

Let A = (a;;) be a p x p symmetric random matrix whose components are indepen-
dently distributed according to the normal distributions @y ~ N{w, 1) and v2a;; ~
N{v2ui;,1) (i < j). The joint distribution of A is written as
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where M = (u;;) is the mean matrix.

Let S, be the set of p x p real symmetric matrices. Let S}‘," be the closed convex
cone formed by p % p real nonnegative definite matrices, that is,

S;' ={WeS& |W=>0},

where > denotes the Léumner order.

The statistical problems we consider here are one-sided tests about the matrix mean
M for testing
(L.1) Hy: M =0 against Hy :MES;,
and for testing

(1.2) Hi:Mc S;{ against Ha: M € &,

1
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The likelihood ratio test statistics for {1.1) and {1.2) are shown to be

(1.3) %1 = tr A% — max tr(4 - M) = PR
Mes] im0
and
(1.4) Mo = max tr(4— M7= 1%
MeSF i<
respectively, where I} > -+« > I, are the eigenvalues of the random matrix A. The

critical regions are given by X3, > ¢ and ¥, > ¢ for some critical values ¢ and ¢’. Note
that the marginal distributions of %2, and ¥%, under H, are identical because the null
distribution of — A is equivalent to that of A.

The testing problem (1.1} and the corresponding distribution of x&, (1.3) arise as
the limit of one-sided likelihood ratio tests for testing the equality of two covariance
matrices against that one covariance matrix is greater than the other covariance matrix
in the sense of Lowner order, when the degrees of freedom go to infinity. In this setting,
Sakata {1997) derived the distribution of xj, under Hq when p = 2. Moreover, Kuriki
(1993} proved that when Hy holds the distribution of ¥3, has a form of a finite mixture
of ¥? distributions referred to as ¥2 distribution (e.g. Shapiro (1988), Robertson et al.
(1988)):

p{p+1)/2

(1.5) P(RG <a)= Y Wppr1yo—iGopriy-i(a)
i=0

where G4(-) denotes the cumulative distribution function of x? distribution with d de-
grees of freedom. The weights {w4} in (1.5) are mixing probabilities satisfying wg > 0
and ) wy = 1. Actually the joint distribution of ¥2, and %%, under Hy is a mixture of
independent x? distributions with the same weights:

plp+1)/2

(1.6) P(RG < a5 <8 = Y. Wppinz iGppin)/z-i (@)Gi(h).
i=0

Kuriki (1993} gave an integral expression of the weights for a general p as well as a
method to evaluate them numerically.

Recently, Takemura and Kuriki (1997) have developed a general theory on ¥2 distri-
bution for any convex cone alternatives when the cone has a piecewise smooth boundary.
The weights of ¥? distribution have been shown to be expressed in terms of integrals
with respect to volume element measure involving the elementary symmetric function of
the eigenvalues of second fundamental form at the boundary of the cone. As we shall
show in the next section, S} is a typical example of the cone whose boundary is piece-
wise smooth. In this paper, we investigate the differential-geometric structure such as
second fundamental form and volume element at the boundary of the cone S;' , and give
a geometric derivation of the weights of ¥* distribution for ¥3; and xi, by virtue of the
general theory by Takemura and Kuriki {1997).

The main results are given in Sections 2 and 3. Differential-geometric structure of
the cone S;L of nonnegative definite matrices are discussed in Section 2. The general
procedure of Takemura and Kuriki (1997) consists of evaluation of three quantities at
each point of the boundary of the cone: i} the normal cone, ii) the second fundamental
form with respect to an arbitrary direction of the normal cone, and iii} the volume
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element. Corresponding quantities to i)-iii) for the cone S"' are given in Subsections
2.1, 2 2, and 2 3, respectively. Using these, we obtain the welghts of ¥2 distribution
for ¥2, and %7, in Section 3. Relevant definitions and results of Takemura and Kuriki
{1997) are summarized in the Appendix. Although we give geometric results on S;f as
far as required in applying the theory by Takemura and Kuriki (1997), we remark that
these results may be of independent interest and may be useful in other problems of
multivariate statistics and related fields.

2. Geometric structure of the boundary of S;,"

In this section we inspect and reveal the differential-geometric structure of the
boundary of §}. The normal cone at the boundary of S} is determined in Subsec-
tion 2.1. The second fundamental form of the boundary of SIT is given in Subsection
2.2. The volume element of the boundary of S;f is given in Subsection 2.3. These three
quantities shall be used in the succeeding Section 3 in order to derive the weights {wg}
of the ¥? distribution in (1.6) with the help of Theorem A.1 of the Appendix.

As related works with this section, Ohara et al. (1996) discussed geometric structure
of the cone of positive definite matrices (set of interior points of 8} in view of dualistic
geometry. Full treatment of the cone of positive definite matrices as a symmetric cone
is found in Faraut and Kordnyi (1994).

2.1 Normal cone at the boundary
We identify the space of real symmetric matrices 8, with the Euclidean space
RP(P+1/2 by the map
W= (le) € SP o (w].l: -+ Wpp, \/_2"11,?]_2, v 1\/§wp—1,’p) € Rp(]ﬂ‘i‘l)/z

and the corresponding inner product

(21) (W]_, W2> = tr W1W2
= thzw?n + Z \/_whj (\/_whj)
| 2]
for Wy = (wyi;), Wa = ('lﬂz-,,_,) € S,. The norm is ||W|| = /tr(W?2). Note that the

likelihood ratio statistics 5, (1.3) ancl X2 (1 4) are squared norms of the orthogonal
projection of A onto &} and its dual cone (S,7)*, respectively.
Define

Srp={WeS& |rankW =r},
and
St =8,n8f
={Wes, |W >0, rankW = r}.

Then we have a partition of the boundary 88 of &7

oS} = CUST, USE,

plp

Fix Wy € S,:*:p. The spectral decomposition of Wy is denoted by Wy = HipAoH1o',
where Ag = diag(lio,...,lw) With lyg > -+ > l,g > 0 and Hyp is a p x r matrix such
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that Hio'Hig = I,. Let Hay be a p x (p— 7) matrix such that Hp = {Hig, H20) is p X p
orthogonal. The normal cone of S;r at Wy, defined by

(2.2) N(ST Wo) ={Y € 8, | rY(Z - W) <0,VZ € S, },
is given in the following.
LEMMA 2.1.  The normal cone (2.2) of S7 at Wy € Sj:p is

N{S},Wo) = {—HaYoeHao' | Ya2 € 87, }

— o O +
Y = (O YZE) 1},22 ESp—r}

dim N(S;,Wo) = (p—r)(p— 1 + 1)/2.

= {—HQYHO'

with the dimension

Proor. Put

M(Wo) = { —H Y Hy

_(0 o ,
Y—(O },22),}/2265?_7.}.

From the definition of

N(SF, W) = { — HyY Hy'

Yn Y\ (Zn—-A Ziz\ +
tr(le, Yoo Z1'  Zn 20VZES, ¢,

it holds obviously that
N(S,‘,", Wa) > M(Wq).

The proof of the converse is as follows. Fix a point in &, as

Vi Vie [ Hio'
—HoVHy = —(Hio Ha) (V1121' VZ) (H;g’) €%
such that
(2.3) —HoVHy' ¢ M(Wy).

Case 1) If Vi, is not nonnegative definite, there exist — A < 0, a negative eigenvalue of
Vaa, and the corresponding eigenvector v. Putting

_{f O +
Z—(O WJE%,

alv(z- (% 9} =awoco

Case 2) If Vi1 # O, we can choose € > 0 such that

- AowEVn O +
o (Mg Q) es

we see that

and
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tr{V(Z— (%ﬂ g) )} = ctr¥;2 <0.

Case 3) If V}1 = O and Vip # O, we can choose a sufficiently small number € > 0 such
that

_ AO + IT -5V12 +
7= ( Vi Wi'Via) €%

tr{V(Z - (f(\jo 8) )} = —2etr ViaVi2' + e tr ViaVao Vi’ < 0.

The three cases 1}-3) above cover (2.3} and we obtain
N(8F,Wo) C M(Wo).
This completes the proof. O

Remark 2.1. S;r_],p is a smooth surface of the boundary 8S; of 87 in the sense
that the normal cone at any point on S;-l,p is one dimensional. S,ffp, r=0,...,p- 2,
form singularities of &S} in the sense that the dimensions of the corresponding normal
cones are greater than one. S is a typical example of piecewise smooth cone defined in

the Appendix.

2.2 Second fundamental form
We proceed to derive the second fundamental form at Wy € S:f » With respect to the

direction of the normal cone (2.2). In order to do this we introduce a local coordinate
system X = (z) = (X2 ¥22) of S, in the neighborhood of W as

Sp SW=W,+ HQXHOf
Ao +X11 X2 Hyp'
=(H H .
(Hio 2) ( X2 Xz Hao'

In this coordinate system Wy is represented as X = (0. We note here that for a p x p
orthogonal matrix H, the transform W — HW H’ is orthogonal and preserves the inner
product (2.1), because

(2.4) tr (HWlH’)(HWQH,) = tr Wi Ws.
Hence, the new coordinate system X, that is, (z11,..., Tpp, V2212, . .., V28, 1), I8 also
orthonormal.

Here we can take 8/dzy; (r+1 < i < p), 8/8(V2z;) (r+1 <4 < j < p)as
an orthonormal basis of N(S;,Wu), and therefore, 8/8z;; (1 < i < 1), 8/ (v2zi;)
(1 <4< i<j<p)asan orthonormal basis of N(S}, Wo)' = Tw,(8;},), which is
the tangent space of S, at Wy,

In the neighborhood of Wy, W ¢ S.,fp is equivalent to

Xpo = X13'(Ag + X11) 7 Xy,
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because Ag+ X1 is positive definite in the neighborhood of Wy. Fix a particular direction

of the normal cone W = — HagY Hao' € N(S, Wy), where ¥ = (;5) € S;’_,.. Then, the
second fundamental form with respect to the normal direction W becomes
N (Y X
(2.5) H(Wo, W) = r(¥ X52) |
B(zihr<icr (V2T )i<icrici<p)? Iw,
The (k,)-th element of Xgs is
(26)  Zhiraer = (X2(Ao + X11) ™ Xiz)u
T1,l4r
= (wl,k+Tl"'7$T,k+T)(AD +Xll)_1 ' 3 1 S k1l S p—rr
Ty l+r

Differentiating (2.6) twice with respect to (Zi;)1<i<r, (V2%i;)1<i<r, i<j<p, and putting
X11 = O and X2 = O, we see that the nonvanishing terms of (2.5) are only

61'3' 6km5ln + t51:1'1.51."rna

W{) - le ) 2 ’

2
o $m+r,n+?‘

a(ﬂmi,k+r)a(\/§wj,l+r)

1<4,7<r 1<klmn < p—r, where §;; denotes the Kronecker delta. Hence,

32 tI‘(Yng)
V22 kr YO(V2L 4or)

and other contributions are zero. Now we have established the following.

5.
= L .y,
Lo

Wa

LEMMA 2.2. The nonvanishing part of the second fundamental form at Wy =
HigAoHy' € &, with respect to the direction W = —HpY Hyo' € N(SF, W) is

N i
H(Wy, W) = ([—”‘ : ykl) =A@V
i0
Here Hy = (Hyo, Hao) i3 p x p orthogonal, and ® denotes the Kronecker product.
We now proceed to evaluate the elementary symmetric functions of the eigenvalues
of second fundamental form H(Wy, W). Let A = diag(ly,...,I, ) be the eigenvalues of

Y and let : i
trnH (Wo, W) = trn(Ao 1 @ Y) = tr (A" @ A)

denote the the m-th trace of H(Wy, W). (For the definition of m-th trace, see the
Appendix, or Appendix A.7 of Muirhead (1982).)

LEMMA 2.3, For A = diag(l;)1<i<r and A= diag(f,-)lg,;gp_,p, it holds

_ 1z det(1,%)1<i j<r det(l,¥)1<i j<p-r
det(A)P "trp (A"t @ A) = <ig<r i J1gijgp-r
" (qzj:) H1$i<j5'r(l'i —1;) HlSi«:jSp—r(li -1;)

1

where the summation E( a.) ¥ over the set of integers

(QI’- vy ey Gty --sq—pfr) € Qr,p(_m+ T(p— T) +'r('r - 1)/2)
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with
T
Q?“,p(n): {(?h---a@mq—la---,épr} € ﬂ-p g1 > "'>QT‘aQI > "'>qp—r12qj =n}
=1

and 7, denotes the set of all permutations of {p — 1,p-2,...,0}.

ProoOF. Define the generating function by

r{p-r}
D(z) = Z (=1 """ det(A)P Ttrm (AT @ A).
m=0
Then
(2.7) ®(z) = det(A)’ " det(zl, ® I, — A1 @A)
r r p-r 7
= (Hlf_r) HH(I - i—:)
=1 i=1j=1
r p=r -
= H H(LI - l;)
i=1 J:l
{(.’El})p_t .’L'I]_ 1
. (xj,r-)?""l . ai‘lr i_
= det l]_p_l L ll 1
S
/ H (.’Elz - SCEJ) H (Z; - fj) .
1<i<j<r 1<i<j<p—7r

By the Laplace expansion of the determinant in (2.7), we have

det(l,")1<ij<pr
L — 1)

B(x) = 3 (~1yr DT -0 I_‘;et((wli)q(gll.q,jgr _
(9.9} lgigfar it — al;) ngi<j£?—r(
= Z(_l)r(r+1)/2+2}51(p—-?j)mE;[ qi—r{r—1)/2
(g.4)
N det(liq"hsi,jgr ) det(zfj)lﬁ,{gp—r .
hcicierli =4) heiejepr (b — 1)

Comparing the coefficients of (—1)™z"P=")=™ we prove the lemma. O

Remark 2.2. The polynomial det(5;%)/[1(% — I;) is called Schur function, which
is symmetric and homogeneous in {; (Macdonald (1995)).
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2.3 Volume element

In addition to the normal cone and the second fundamental form, in order to apply
Theorem A.1 of the Appendix for the cone of nonnegative matrices S;f , we have to know
the concrete form of the volume element measure of S”" . As a matter of fact, this
volume element has been introduced by Theorem 2 of Uhhg (1994) as a carrier measure
of the singular Wishart distribution. However, the expression he obtained is insufficient
for our purpose, because he did not determine the multiplicative constant of the volume
element, which is essential for our derivation. Therefore we give our derivation of the
volume element including the multiplicative constant.

Before proceeding we prepare several facts on Stiefel manifolds. Let V., = {H; :
pxr | H'Hy = I} be the Stiefel manifold. Let H, be p x (p — 7) such that H =
(Hy,Hy) = (h1,-.., Ay, Brg1, .., By) 8 p X p orthogonal. Then the differential form for
the invariant measure on V, , at H; is

T r
AH,p = dH,p(Hi)= \ \ hj'dhs.

i=1j=1i+1

The integral over V,, is

ropr/2 _
/V dH, (H,) = ?7{:/2) Fr(2)= orir— 1)/4HF( z+1)

Let
W = (wij) = H]AH}I € Sr,p,
where A = diag{ly,...,1,;), {1 =2 --- = I, and Hy € V,.,. Then, the volume element of
Sy can be written as follows.

LEMMA 2.4.  The volume element of S, at W is

dWr»p = dWT:p (W)

= grr=0/erle=n 2 TT (1 — 1) T2 ]| dls dHr o (H1 ).

1<i<j<r

PrOOF. Proof is similar to the derivation of the second fundamental form in Sub-
section 2.2. Fix an arbitrary point Wy € &, , and write Wy = HighoHry', Ao =
diag(ly,...,l), {1 = -+ 2 .. We want to obtain the volume element at ;. Fix
some Hjg such that Hy = (Hio, Hao) = (h,...,hr Bry1,..., hp) is p x p orthogonal.
As in Subsection 2.2 we take the elements of X = Hy (W — Wy)Hp, W € S,, as a local
coordinate system.

Now we consider the exterior derivative dX = (dzy;) of the matrix X = Ho' (W —
Wo)Hp at Wy where W (and hence Hy'W Hg) is restricted in S, ,. Let W = Hy AHY
be the spectral decomposition of W. As a function of H; we choose Hy such that
H = (Hy, Hz) is p x p orthogonal. Write the exterior derivatives of H and A as dH =
(dHy,dH3) = (dhy,...,dh.,dh 4y, .., dhy) and dA = diag(dl,, ..., dl,;). Then

(2.8)  dX = d(Hy' (W — Wo)Hy)
= Hy'dW Hy
= Hy (dH diag(Ao, O)Hy' + Ho diag(dA, O)Hy' + Ho diag(Ao, O)dH') o

_ Hlo’dHIAo 0 + dA O + AgdHlme AOdHIIHQQ
T\ Hy'dH Ay O o 0 0 0 :
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It is seen that the (p—7) x (p—r) lower-right block of dX = (dz;;) consists of zeros, that
is, dz;; = 0 (r +1 < ¢, j). Therefore as already remarked at the beginning of Subsection
2.2, we can take 9/0z; (1 <i < r), 5/8(\/5&53') (1<i<r i<j<p)asanorthonormal
basis for the tangent space Tw, (S, ). Taking the exterior product, we can evaluate the
volume element of S, at Wy as

dW,,p_/\da:”/\ /\ d(V2a;5).

i=1j=i+1

Now it follows form (2.8) that

d?‘.,ﬁ = dli, l1<i<r,

dzij = (I = L)hy'dhy,  1<i<j<r,

dil’i;‘j :lihj’dh’ia 1<i<r, r+l<i<p.
Therefore

) | R )| Uad | (Y W
1<i<g<r i=1 i=1 j=itl

and this proves the lemma. 0O
CoroLLary 2.1. Let 8U be the surface of the unit ball
U={Wes,|trW? <1}

The volume element of Sy, NOU at W = HIAH trA> =1, is

AUy p = dU, p(W) = 2r Dtz T g ) T 1P dpee (D dH 5 (1),

1<i<j<r =1
where dp, (1) is the volume element of the surface

{I=(,.... )| 2+ -+ 12 =1})
of the unit ball.

Proor. Each element of Sy, is uniquely written as tW with ¢t > 0Oand W € 5,0
oU. We consider the pair (¢, W) as a coordinate system of S, ,. Then the tangent space
Tiw (Srp) is the direct sum of span{8/8t} and Tw (Sy, N 8T). In addition span{8/dt}
and Tw (S, MAU) are orthogonal because of tr W2 = 1. Therefore, the volume element
of &, p at tW is written as

(2.9) AW, p(tW) = dt x ¢3{SreNO gy (W,

where .
dim(S8, , NoU) =pr — gr(r -1 -1
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Let I = {l,....L.) € {{ |, + .-+ 1,% = 1}. The Lebesgue measure of R at t/ is
decomposed as

(2.10) ﬂd(tli) =dt x " dp, ().

=1
Putting £ = 1, the claim follows immediately from Lemma 2.4, (2.9) and (2.10). O

Remark 2.3. As mentioned in Muirhead (1982) and Uhlig (1994), we have to be
careful because the sign of each h; is not uniquely determined. If we integrate with
respect to dH, , over the whole V. ;,, we have to divide by 2".

Remark 2.4. In Uhlig (1994), the inner product of S, is not defined explicitly. If
we adopt (2.1) as the inner product of S, and regard S, , as a submanifold of Sp, the
constant 2r(r—1)/4+7(r—1)/2 i3 necessary in the expression of the volume element which
does not appear in Theorem 2 of Uhlig (1994).

3. Weights of x* distribution for S

Now we can evaluate the weights {wg} of the ¥? distribution in (1.6) by virtue of
Theorem A.1 of the Appendix. What we want to do here is to evaluate the expression
{A.1) in the case where the cone is Sf. First of all, note that p in {A.1) should be
replaced by p(p + 1)/2.

By Lemma 2.1, we see that D,,,(35,}) which appears in (A.1} is nonempty only if
m is of the form m = (p — r)(p — 7 + 1)/2. Therefore, the double integral in (A.1} for
m=(p—r)(p— 7+ 1)/2 is written as

ey o= |f
Si.neu LIN(SE winau
i~ (pr) (prt 1) 2 (W, W)AV (W W)] dU; (W),

where dV (W; W) is the volume element of N (8F,W)naU at W, and the summation

Y orne; in (A1) can be replaced by the summation over 7 such that 1 < (p —7){(p -7 +
1)/2 < 4.

Let W = HHAH, € S, be the spectral decomposition, where A = diag(ly,...,0),
i 2+ 21 >0, and H, € V,,. Lemma 2.1 states that W € N(S;,W)N8U holds if
and only if W = —H,YH,' for Y € §& N dU, where Hy is a p x (p — 7) matrix such
that (Hy, Ha) is orthogonal. Here, by the same argument of orthogonal transformation
as in Subsection 2.3, the volume element of N(Sf,W)NaU at W = —HyY Hy' is easily
shown to be dUp_, 5 (Y). Then, by Lemma 2.2, (3.1) reduces to

3.2 I p(i =[ [/
(32) Tp() Stonav LV _neu

tri—(p—r}(P—r+1)/2(A_1 @ Y)dUp—np—r(Y) dUr,P(W)'
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Let Y = HAH’ be the spectral decomposition, where A = diag(ly,... ), 1 = -+
lpor >0, H € Vy_ypy. Let

Li={l=0,....l.) | L >--->1.>0}

v

and
act ={l=(,. . )| h>2L>04L%+ +L2 =1}

From Lernma 2.3, Corollary 2.1, and Remark 2.3, the integral (3.2) is separated into two
parts as

dEtakq‘i )ISk,jSTdJU'r (l) : f det(i;jj )lgk,jgp—rdf-’fp‘-r(i')a
act acy

where the summation Z(q g) is over

(3'3) (QI:- Y 7 q"'pfr) € Qr.’p(_i —r+ 'p(P + 1)/2)7
and the constant is

1
(3.4) & = FQr(r—l)f4+p(p—v~)/2 dH, ,(Hy)

Vo
e f dHpr p—r (1)
vpfr,pfr
op(p-1}/4-p(p+1)/4

bo1 T(k/2)

Note that (3.4) does not depend on r.
Then, the mixed volume defined by i) of Theorem A.1 is

plp+1)/2 1 ,
(P Yoroncss = gy e

where the summation Y, is over
(3.5) reR)={r|0<i-{p-r)lp-r+1/2<r(p-7)},

since tr (A1 ®Y) = tr,y (A" ® A) = 0 for m’ > r(p — r). Now, by ii) of Theorem
A'l, we obtain the following theorem.

THEOREM 3.1.  The weight wypi1y/2—i of (1.8) is given by

(3.6} wpptry/a-i
=( p+1)/2) plp+1)/2—4,i

i Wildp(p+1)/2—1

_ 1 plp+1)/2—i op(p—1)/4
- %(p(p+1)/2—z)r( +1) P( 2 +1) T, (k/2)

X Z 2 det(le? )1 <k, j<rdpr(l)

+
RCT M

x/ det(lk%)1gk,j5pfrdﬂpmr(f)1
ack

p-r
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where the summations ) and 3, o are over (3.5) and (3.3), respectively.

It is easy to verify that {3.6) coincides with the previous result in Kuriki (1993).
Corresponding formula in Kuriki (1993) is

— 2 e 2 3 .
(3.7) Wp(p1)/2-i = dy Z E /ﬂ+ e (L )2 det(lkq’hgk,jsr H diy,

T (g.4) =

p—r
=g - 2 o 7
% / e—(h ok, 02 det(lkqj)lfk‘jﬁp_r H dl.

L:ﬁr k=1

where
1
dp

T 27 T(k/2)’

and the ranges of the summations }7 and 3°,, . are the same as in (3.6). Letting
Wt + L =R?and )2 + -+ +1,_,* = R? we have [[;_, dix = R"~'dRdy,(I) and
P _1dix = R*~""YdRdp,_,(I). By integrating with respect to R and R using

/m Ree~®/2qp = p(e=/2p (2 s 1)
2 i
0

we see that (3.7) coincides with (3.6).
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Appendix : ¥? distribution for piecewise smooth cone alternatives

Let = be a random vector distributed according to the p dimensional normal dis-
tribution Np(,Ip). Let K be a convex cone in RP. The dual cone of K is denoted
by

K* = {y|{y,z) <0,Vz € K},

where (, ) is the inner product. Then, for the problems of testing
Hy:p=0 against Ay :pe K

and of testing
Hy:pe K against Hy: p € RP,

the likelihood ratic test statistics based on the observation z are given by |lzx||2 and
|z 5~ ||?, respectively, where zx and xg. are the orthogonal projections onto K and K*.
We summarize here the results on the distributions for |zx||2 and |z~ ||? under Hy as
well as relevant definitions from Section 2.3 of Takemura and Kuriki (1997).

For each point s on the boundary 8K of the convex cone K, the normal cone N (K, 5)
is defined as

NK,s)={y|{y,z—5) <0,Vz€ K}



CONE OF NONNEGATIVE DEFINITE MATRICES 13

(Section 2.2 of Schneider (1993)). According to the dimension of the normal cone, we
have a partition of the boundary

OK = Dy(8K) U --- U D, (IK),
where
D, (0K) = {s € 8K |dim N(K,s) =m}, m=1,...,p.
We make the following assumption on the convex cone K. We call such K piecewise

smooth cone. As a special case, when D, (0K) =0 form =2,...,p— 1, we call such K
smooth cone.

AssuMPTION A.1. D,,(0K) is a p - m dimensional C2%manifold consisting of a
finite number of relatively open connected components. Furthermore N{K, s) is contin-
uous in s on D,,,(8K) in the sense of Lemma 1.2 of Takemura and Kuriki (1997).

Let s € D, (0K). In a neighborhood of s we take an orthonormal system of vec-
tors ey, ...,ep.m, Np—m+41,...,Np where e1,...,€,_,, constitute an orthonormal basis
for the tangent space T,(D(8K)} and Np_pmq1, ..., Np constitute an orthonormal ba-
sis for the orthogonal complement T {D,, (8K ))}* of T,(D,,(8K)). Clearly N(K,s) C
T (Dm(OK))*.

Let

Hija(s)! iaj=1)"'ap_m: 0f=P—m+1a---,P,
be the elements of the second fundamental form of D,,{8k) at s with respect to the
chosen coordinate system. The second fundamental form with respect to the normal

direction
r

v= Y "N, € T(Dm@K)*, |lvl|l=1,
a=p—m+1

is

P

Hij(s, 'U) == Z U“Hija{s).
a=p—mn+1

Let H(s,v} = (H;(s,v)} be (p—m) x (p—m), and let tr; H(s,v) be the j-th elementary
symmetric function of eigenvalues of H(s,v).

THEOREM A.l. Let K be a closed conver cone satisfying Assumption A.1l. For
m=1,...,p— 1, let dup_,—1 denote the (p — m — 1 dimensional) volume element of
D (K)NOU, where U is the unit ball in RP. Let dv,,—1 denote the (m —1 dimensional)
volume element of N(K, 4p_rm—1) NOU with up_m-1 € D, (BK) N 8U.

i} Put Kyy = KNU and Ky = K*NU. Let V(') denote the p dimensional
volume in R, Then, forv, A >0,
r

- P —iyE *

Va(vKqy + ’\K(l)) = Z(i)"p A Vpuisi(K(lﬁK(l)}’
1=0

where

) (P miali, K

__ 1 - /
i(p— 1) £ Jp.or)n0U

[/ trz’—mH(up—m—lavmfl)dUmvl dupﬁ-mfl-
N(K tp— a1 YOU
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(The coefficient VPAQ-,?;(KU),KE“I)) is colled mized volume (Webster (1994}).)

it} Let z be a p dimensional random vector distributed as Np(0, I}, Then,

Pllox | < a, |-

2<h) = iwp_,;(;p_i(a)&;(b),
=0

(p> Vo—ii(Kq), K7y)
Wp—i = )

) Witdp—;

where

Y

“= Ty

is the volumme of the unit ball in R®.

Remark A.l. Independently of Takemura and Kuriki (1997), Lin and Lindsay
(1997) obtained the weights of 2 distribution when the cone K is a smocth cone by
using the Weyl’s formula for volume of tubes (Weyl (1939)). Their results reduce to our
Theorem A.1 when D,,(0K) = @ except for m = 1.
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