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Abstract. The present article focuses on the three topics related to the no-
tions of “conserved quantities” and “symmetries” in stochastic dynamical sys-
tems described by stochastic differential equations of Stratonovich type. The
first topic is concerned with the relation between conserved quantities and
symmetries in stochastic Hamilton dynamical systems, which is established in
a way analogous to that in the deterministic Hamilton dynamical theory. In
contrast with this, the second topic is devoted to investigate the procedures to
derive conserved quantities from symmetries of stochastic dynamical systems
without using either the Lagrangian or Hamiltonian structure. The results
in these topics indicate that the notion of symmetries is useful for finding
conserved quantities in various stochastic dynamical systems. As a further im-
portant application of symmetries, the third topic treats the similarity method
to stochastic dynamical systems. That is, it is shown that the order of a
stochastic system can be reduced, if the system admits symmetries. In each
topic, some illustrative examples for stochastic dynamical systems and their
conserved quantities and symmetries are given.

Key words and phrases: Stochastic dynamical systems, conserved quantities,
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1. Introduction

The theory of conserved quantities (the first integrals) and symmetry (invari-
ant under a transformation) for the dynamical systems described by ordinary dif-
ferential equations is one of the most important subjects. Indeed, these notions are
often useful for finding various conservation laws or solutions to the dynamical sys-
tems. Hence, it must be natural to formulate thus notions for stochastic dynamical
systems described by stochastic differential equations, since such stochastic sys-
tems arise in investigation of a number of problems concerning random-phenomena
treated in physics, engineering, economics, and so on. In consideration of these
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facts, the author has been proposed a formalism of conserved quantities and sym-
metries for stochastic systems described by stochastic differential equations of
Stratonovich type; the two notions are formulated in a way analogous to that
in the dynamical theory for the deterministic systems mentioned above (Misawa
(1994a, 1994b)). These works, however, mainly treat the basic formalisms and
several examples for the notions, and hence, they are not sufficient for the ad-
vanced studies on these notions, especially the notion of symmetry, as mentioned
in the above introductory part.

On account of this, the present article focuses on the following three top-
ics related to the usefulness of the notion of symmetry for analysis of stochastic
dynamical systems:

The first topic is concerned with the connection between conserved quantities
and symmetries, when the stochastic dynamical system have the “Hamiltonian
structure”. In the theory of deterministic Hamilton mechanics, the two notions
are closely related to each other, and thereby conserved quantities are obtained
from symmetries. Therefore, it may be important that such a relation is extended
to that in our stochastic dynamical systems with the Hamiltonian structure. We
examine it in Section 3 after a review together with a supplement of the author’s
preceding works which are given in Section 2 for consistency of this article.

In contrast with the first topic, the second topic is devoted to investigate
the methods to derive conserved quantities from symmetries in stochastic systems
without using either the Lagrangian or the Hamiltonian structure. In the case
of deterministic systems, most of conservation laws are derived from symmetries
together with either the Lagrangian or, as mentioned above, the Hamiltonian
structure. However, we often meet the general stochastic systems which do not
always have thus structures, so that it must be useful to formulate the procedure
mentioned above. From this point of view, the author formulated such a method
(Misawa (1994b)). As a continuation of this work, in Section 4, we propose the
new procedures which correspond to the modifications of the author’s previous
result.

The results in the above two topics indicate that the notion of symmetry is
useful for the conserved quantities in various stochastic dynamical systems. As a
further important application of it, the last topic treats the similarity method to
stochastic dynamical systems; it is shown that the order of a stochastic system
can be reduced, if the system admits symmetries. Through this procedure, it may
be easy to find the geometric structure or the solution to the stochastic dynamical
system under study. Section 5 is devoted to this topic.

In each topic, we touch upon some illustrative examples for stochastic dynami-
cal systems together with their conserved quantities and symmetries; for example,
a stochastic cyclic Lotka-Volterra system of competing 3-species, the stochastic
harmonic oscillator, Maruyama-Itoh’s stochastic model related to Fisher-Wright
model in population genetics, a stochastic version of the neo-classical optimal
growth model in economics suggested by Samuelson, and so on.

Finally, let us stress that one may formulate the notions of conserved quan-
tities and symmetries for stochastic systems in another way (e.g. Itoh (1993),
Thieullen and Zambrini (1997)). We also touch upon this together with the other
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concluding remarks on this article in Section 6. Moreover, we note that a wide
class of conservation law of completely integrable dynamical systems is given by
using their Lax representations; such a study for stochastic dynamical systems
includes in Nakamura (1994).

2. Conserved quantities and symmetries in stochastic dynamical systems

Let (Q, F, P) be a probability space, that is a triple where the sample space
Q is a set of all elementary events, F is the sigma algebra of the observable
random events and P is a probability measure on 2. In this article, we con-
sider stochastic dynamical systems described by the following n-dimensional vector
valued stochastic differential equations (e.g. Ikeda and Watanabe (1989), Arnold
(1973)) of Stratonovich type on (€2, 7, P), equipped with a non-decreasing family
of sigma-algebras F; C F, t > to:

(2.1) dz, = b(ay, t)dt + > gr(a,t) odw], @, =¢, t€ [to,T]

r=1

where b = (b")™, and g, = (g), are n-dimensional smooth functions, respec-
tively, w; = (w})™, is an m-dimensional standard Wiener process and ¢ is a
deterministic constant n-vector. In what follows, we assume that equation (2.1)
together with an initial condition @;, = ¢ and a time interval [to, T'] satisfy restric-
tions allowing the existence and uniqueness of solutions of stochastic differential
equation. Note that equation (2.1) is rewritten in the form of the stochastic dif-
ferential equation of Itd type as follows:

m n

1) dm= b0+ 5>

m
giajgr(wta t) dt + Z g‘r(wta t)dwza
r=1j=1 r=1

where 8; = 8/8z7. Hence, through the relation, the results obtained for the system
(2.1) in the followings may be applied to the corresponding system of It type.

Let I be a smooth function on R™ x R}, and &, a diffusion process governed
by equation (2.1). According to Misawa (1994a), a conserved quantity for (2.1) is
defined as follows:

DEFINITION 2.1. We call a function I a conserved quantity for a stochastic
dynamical system (2.1), if the function satisfies

(2.2) @+ Xo)[(z,t) =0, X I(z,)=0 (r=12,...,m),

where 8;, Xo and X, (r =1,2,...,m) are differential operators defined by

(2.3) 8, =8/0t, Xo=D bd, X,=) gd
=1 =1
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Through the change of variables formula for (2.1) (Ikeda and Watanabe (1989),
Arnold (1973)), we derive dI(a,t) = 0 from (2.2); this means that “I(z,t) =
constant” on the diffusion process @ satisfying equation (2.1), and hence the
above definition gives a stochastic version of that of conserved quantities in the
deterministic dynamical theory.

Remark 2.1. Conversely, using the following lemma together with the
change of variables formula mentioned above, we can verify that the equation
dI(x;,t) = 0 implies that the equations (2.2) hold almost surely under a mild con-
dition in the lemma (see equation (2.5)). We assume that the stochastic systems
treated in this paper satisfy the condition:

LEMMA 2.1. Suppose that x; is a solution of (2.1) for any initial value c.
If the R™-valued smooth functions fo = (f3)7-;, (@ =10,1,...,m) on R™ x [to, T
satisfy

(2.4) fo(a,t)dt + Y fr(me,t) o dw] =0

r=1
under the condition
T (m
(2.5) E [/ ( Ifr’(wt,t)l2> dt} <+o0 (j=1,...,n),
to r=1

where 0 is the n-dimensional null-vector and E[-] denotes the expectation with
respect to P, then fo(x,t) =0 (o =0,1,...,m) hold almost surely (a.s.).

PROOF. Rewriting equation (2.4) in the form of Itd’s stochastic integral
equation (cf. equation (2.1")), and using the uniqueness of Doob-Meyer’s canonical
decomposition of semi-martingales (Ikeda and Watanabe (1989)), we can prove
that for any ¢t € [to, T,

(2.6) / t (fo(xt,t) + % > ffakfr(wt,t)> dt =K,

r=1k=1

(2.7) / (Zf,»(zt,t)) du} = 0,

r=1

where K is an n-dimensional constant random variable. From (2.7), we get

[(Zw(mt,t)ﬁ) dt]zo (G=1,....m).

r=1

(2.8) E

Hence, f7(z:,t) = 0 holds for any j(=1,...,n) and r(=1,...,m) (a.s.). For one
may choose the values of ¢ and the initial value of x; arbitrarily, the equations
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prove that f.(z,t) = 0 (r = 1,...,m) (a.s.). Because of the same reasons, the
equation (2.6) together with this result indicate that fy(x,t) = 0 holds (a.s.).

Ezample 2.1. Let us consider the following stochastic dynamical systems:

x| zy (2} — 77) 3
(2.9) d :z:g = zg(azé - a:?) dt + Z g-(z) o dwy,
Z i (zi — ;) r=1

where g, = (¢2)3_; (r = 1,2,3) are arbitrary three-dimensional smooth functions.
This may be regarded as a cyclic Lotka-Volterra system of competing 3-species in
a chaotic environment; the complicated interaction between the system and the
external world is formally characterized by the random fluctuation Zizl gr(®:) 0
dw}. (Compare this with the equation treated in Itoh (1993).) Suppose that the
conserved quantity in the deterministic case, I; = ' + 2% +z% or I = 2! - 22 - 23,
is also conserved in our stochastic system. Then, Definition 2.1 asserts that g,
should satisfy the following conditions:

3
(2.10) I, : conserved quantity if and only if Z g-=0
i=1
(r=1,2,3),
3
(2.11) I, : conserved quantity if and only if Z gkztz™ =0
k,£,m=1;cyclic

(r=1,2,3).
For instance, we choose the function (g,)3_, = (g¢)7,_, as
(2% - 2?) 2l (2% —2?) 2l(2® - 2?)

(2.12) (¢8) = | 22(z! —2°%) 2%(z! —23) z%(z! —28)
23(z? —x') 23(2? —z') 23(2? - 2')

or
_ x! x! —2g!
(2.13) ()= =z*2 —222 22
223 28 z3

The facts (2.10) and (2.11) indicate that in the case of (2.12), I; and I are
conserved quantities and that in the case of (2.13), I, is a conserved quantity but
I is not.

Next, we proceed to the notion of symmetry for (2.1) (Misawa (1994a)). Let

(2.14) y =¢(x,1)
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be a transformation from R™ x R! to R"™. Through equation (2.14), an R™-valued
diffusion process ; is determined from a solution #; of equation (2.1) as y =
é(x;,t). Suppose that this transformation (2.14) satisfies

(2'15) b(¢(w7t)7t) = (at + X0)¢(:l:,t), gr(¢(wat)vt) = X,Jﬁ(:l:,t),

By the change of variables formula, we see that y; is governed by

(2.16) dy, = b(ye, t)dt + Y _ gr(w, t) 0 dw}.

r=1

This means that a stochastic system (2.1) is invariant under (2.14). Hence, as in
the case of deterministic systems, we formulate the notion of symmetry for (2.1)
as follows:

DEFINITION 2.2. We call a transformation (2.14) satisfying (2.15) a symme-
try transformation for a stochastic dynamical system (2.1).

Remark 2.2. Conversely, using Lemma 2.1 and the change of variables for-
mula, we can prove that equation (2.16) derived from (2.1) through (2.14) implies
that equations (2.15) hold almost surely.

On the basis of Definition 2.2, the notion of symmetry operators is formulated.
Let

@17) Y =3 Fla.00,
i=1

be a differential operator given by an R™-valued smooth function f = ( fi)?zl, and

(2.18) y = ¢(z,t;a)

be a local one-parameter transformation generated by Y (e.g. Eisenhert (1961)),
where a is a parameter on I = (—ag, ag) and ¢(x,t;0) = x. Suppose that ¢(z, ; a),
b(¢(x,t;a),t) and g-(#(z,t;a),t) (r =1,...,m) are analytic with respect to a on
I. Then, we get the following theorem and the definition of a symmetry operator
(Misawa (1994a)):

THEOREM 2.1. The one-parameter transformation (2.18) generated by
(2.17) is a symmetry transformation of a stochastic system (2.1), if and only if
the operator Y satisfies

(2.19) 0: + X0, Y] =0, [X,Y]=0 (r=12,...,m),

where [-,-] be the commutator.
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DEFINITION 2.3. We call a differential operator Y given by equation (2.17) a
symmetry operator for a stochastic dynamical system (2.1), if it satisfies equations
(2.19).

The equations (2.2) and (2.19) prove that the notion of symmetry opera-
tors generates new conserved quantities for stochastic dynamical systems (Misawa
(1994a)):

THEOREM 2.2. Suppose that I = I(x,t) is a conserved quantity and Y is a
symmetry operator for equation (2.1). Then, YI(z,t) is also a conserved quantity
for the system.

Ezample 2.2. We give an illustrative example with respect to the symmetry
for stochastic systems. Consider the following non-linear stochastic dynamical
systems:

(2.20) dlz? | =|2l-2? |dt+ | (z7) o dws.
z ;- 7} ;- o}

In this case, the operators (2.3), Xo and X}, are given by

(2.21) Xo = (x%)231 + xi .x?82 + x% '1’?83,
Xy =z; - 2}01 + (:1:?)282 + 2 2}0s,

respectively. Then, we see that the operator ¥ = 2203 is a symmetry operator for
equation (2.20). Moreover, Y generates the one-parameter transformation (2.18)
as follows:

(2.22) gl (zsa) = 2!,  ¢Hwse) =2,  ¢%(z;0) = a2’ + 2%

Theorem 2.1 asserts that equation (2.22) gives an example of symmetry transfor-
mations. Moreover, we find out a conserved quantity I = x' /2% for the system

(2.20). Then, Theorem 2.2 proves that YI = —z! - 2/ (z3)? is also a conserved
quantity.

3. Conserved quantities and symmetries in stochastic Hamilton systems

In this section, we are concerned with conserved quantities and symmetries
defined in Section 2, when stochastic systems have such a “Hamiltonian structure”
as that in Bismut (1981). Let us consider the following 2¢-dimensional stochastic
system:

31 d (m?i> - (a—%gg((:::D “

m 8€+iHr(:l:t,t) . o
" ; ( ~8,H,(x3,t) ) ° dw; (i=12,...,9),
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where Ho(z,t) (@ = 0,1,...,m) are smooth scalar functions on R"™ x R!, and
0; =90/0z7 (j =1,2,...,2¢), respectively. Formally, this is rewritten in the form
of a Hamilton dynamical system

a( z\_ 3£+iﬁ($t,t) C_
dt (wf“) B (—&-H(mt,t), (i=1....6)

with a “randomized” Hamiltonian H given by H=H,+ S Hevf, where v =
(¥f)™, is an m-dimensional Gaussian white noise (Arnold (1973)). One may
regard this as an open Hamilton system within the external world; the random
part in (3.1) characterizes the complicated interaction between the “deterministic”
Hamilton system with the Hamiltonian Hy and the chaotic environment. Hence,
we call (3.1) and H, (o = 0,1,...,m) an (¢-dimensional) stochastic Hamilton
dynamical system and the Hamiltonians.

We now investigate the conditions that conserved quantities and symmetry
operators for (3.1) should satisfy. First, by applying equation (2.2) to the system
(3.1) and through a straightforwardly calculation, we obtain the conditions for
conserved quantities as follows:

THEOREM 3.1. A smooth function I = I(x,t) is a conserved quantity for
(3.1), if and only if

(3.2) &I+ {Ho, I} =0, {H, I}=0, (r=1,2,...,m)
where {-,-} is the Poisson bracket defined by {I,J} = Ele(apr,vla,«] —~0;18p4;J).

For simplicity, in what follows, we work with the system with the Hamiltonians
H, = Hyo(z) (@ = 0,1,...,m). Then, we look into the symmetry operators for
(3.1). Let us consider the following differential operator generated by a smooth
function I = I(z):

14

£
(3.3) Y7 = (Beqid)0i = Y _(8il)Bei.

=1 i=1

We see that the operators Xy and X, in (2.3) are rewritten for the system (3.1)
in terms of (3.3) as Xo = Yu, and X, = Yy, (r = 1,...,m). Then, applying
Definition 2.3 to the system (3.1) and the operator (3.3), we find the following
theorem:

THEOREM 3.2. The operator Y; is a symmetry operator for (3.1), if and
only if

(3.4) Y1, Yu ]=0 (a=0,1,...,m).
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Next, we go into the relations of conserved quantities and symmetry operators.
Note here the following relations between the Poisson bracket and the operator
(3.3) in ordinary dynamical theory (Abraham and Marsden (1978)):

(3.5) Y1, Ys] =Yu.n
(3.6) YiJ ={1,J},

where J = J(z) is also a smooth function. Then, the equation (3.5) indicates that
the left-hand side of equation (3.4) is put into

(37) [Y],YHQ]ZY{I’HQ} (a:O,l,...,m),
and thereby, Theorem 3.1 and Theorem 3.2 prove the next theorem:

THEOREM 3.3. Suppose that I = I(x) is a smooth function and Y} is the
differential operator generated by I through (3.3). Then Y7 is the symmetry oper-
ator for the system (3.1) with Hy = Ho(z) (¢ = 0,1,...,m), if I is a conserved
quantity for the system.

Moreover, in terms of equation (3.6), Theorem 2.2 for our stochastic Hamilton
dynamical systems (3.1) and the operator (3.3) is rewritten in the following form:

THEOREM 3.4. Suppose that Y7 is a symmetry operator for (3.1) generated
by a smooth function I = I(x). If a smooth function J = J(x) is a conserved
quantity for (3.1), Y;J = {I,J} is so.

Therefore, if I and J are conserved quantities, {I, J} is so, because of Theorem
3.3 and Theorem 3.4. These assertions are just corresponding to those in classical
Hamilton mechanics (e.g. Abraham and Marsden (1978)). Thus, in the stochastic
Hamilton system, we can connect conserved quantities with symmetries in a way
similar to that in classical mechanics.

Ezample 3.1. We give an illustrative example of the stochastic Hamilton
system with the conserved quantities and a symmetry operator. Let us consider

xé mz
(3.8) dl % = *, | (@t +codw)
’ 2] T | -zl 2
1)\

Ty — Ty

where ¢ is a constant. This corresponds to the system (3.1) having the Hamilto-
nians of the harmonic oscillator type, Ho(x) = Hi(zx)/c = [{(z®)% + (z*)?}/2] +
[{(z1)2 + (22)?}/2]. Hence, we call the system (3.8) the (two-dimensional) stochas-
tic harmonic oscillator system.

Remark 3.1. As in (3.1), we formally regard this as a stochastic system
obtained by such a randomization of the deterministic Hamilton system with the
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Hamiltonian Hy as Ho(l + ¢y:), where «; is a Gaussian white noise. On the other
hand, Theorem 3.1 verifies that the Hamiltonian Hy is also a conserved quantity
for this stochastic system; this fact means that a solution of the above stochastic
Hamilton system “randomly” moves on the orbit determined by a solution of the
ordinary Hamilton system with Ho. Hence, we may regard the perturbation for
Hj by a white noise mentioned above as a randomized procedure which leaves the
orbits of the original Hamilton system with Hj invariant.

We will come back to our example. For the system (3.8), Theorem 3.1 indi-
cates that I(z) = (z'z* — 2223) is a conserved quantity, and hence Theorem 3.3
asserts the operator generated by this function, Y7 = —228; + 218, — x40 + 230y,
is a symmetry operator for the system (3.8). Moreover, by Theorem 3.4 with the
operator, we find out the conserved quantities for the system,

1) = hia) = 5(z'a* ~2%%),  Dla) = ~(@) - () + @9 - "))
I3(z) = —%(:10337:‘1 + z'2?),

which satisfy SO(3) algebraic relations {I1,Io} = —I3, {l2,Is3} = —I1 and
{I3, I} = —I, (Eisenhert (1961)).

4. Derivation of conserved quantities from symmetries in stochastic dynamical sys-
tems

In this section, we focus on the procedure to derive conserved quantities
from symmetries in stochastic dynamical systems. As mentioned in Section 1,
we present two methods to derive conserved quantities from the symmetries of
stochastic dynamical systems, without referring either Lagrangians or Hamiltoni-
ans. The first method corresponds to a stochastic version of Hojman'’s procedure to
the second-order differential dynamical systems (Hojman (1992), Misawa (1994b));
through the method, we obtain a conserved quantity from symmetry, which is es-
sentially of divergence type. The second method corresponds to a modification of
the first procedure; it gives a conserved quantity of a non-divergence type from
symmetry.

We start with the main result and the examples related to the first method.
Note that the part of this presentation corresponds to a review of Misawa (1994b)
with a supplement, but we need it for consistency of this section.

THEOREM 4.1. For given stochastic dynamical system (2.1), assume that
there exists a function ¢ = p(x,t) satisfying

(4.1) divb+ (0 + Xo)p =0, divg-+X,p=0 (r=12,...,m),

where Xy and X, are given by equation (2.3). Then, the function f = ('), in
a symmetry operator Y =31 | fi(x,t)0; for (2.1) yields the following conserved
quantity:

(4.2) I'=divf+Yop.
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COROLLARY 4.1.1. Ifb and g, (r =1,2,...,m) in equation (2.1) satisfy
(4.3) divb=0, divg.=0 (r=1,2,...,m).
Then, the function
(4.4) I=divf
becomes a conserved quantity for (2.1).

The proofs of this theorem and the corollary are given in Misawa (1994b). In
addition, Albeverio and Fei (1995) proposed a more general version of Theorem
4.1 by extending a class of symmetry operators for stochastic systems. Note that
the conserved quantity given by (4.2) or (4.4) is essentially of “divergence type”.

We here give two illustrative examples of conserved quantities obtainable by
applying Theorem 4.1 and the corollary to stochastic dynamical systems.

Ezample 4.1. Let us consider again the stochastic system treated in Example
2.2:

2 1.2
T (x}) Ty - ‘T2t
(4.5) dlz? | =zt 22 |dt+ | (2})° | odwe
= T H A
This admits ¥ = (z22%/2')0; as a symmetry operator. Moreover, one may

choose the function ¢(z,t) satisfying equation (4.1) in Theorem 4.1 as oz, t) =
—2log |z!| — 2log |z%|. Then, applying Theorem 4.1 to the system, we get a con-
served quantity J; = z!/z%. In the same manner, if we choose the function
o(z,t) as z!/z3, then Theorem 4.1 together with Y yield a conserved quantity
I, = —(22/2%) + =t /2%

Ezample 4.2. Next we work with the stochastic Hamilton dynamical systems
given by

1 2
e\ _ | Tt

with the Hamiltonians Ho(z) = 0, Hy (x) = 3{(z!)? + (2®)?}. Note that Theorem
3.1 indicates this system (4.4) has a conserved quantity I(z) = (2')? + (z%)*. On
the other hand, this system satisfies the conditions (4.3) and admits as symmetry
operators Y; = z18; + 220, and Yz = 228, — £'0,. Therefore, Corollary 4.1.1
is applicable. However, it yields only trivial conserved quantities 0 and 2 from
the above operators, respectively. We remark that for this example, the equations
(4.1) are put into (d; + Xo)p(z,t) = 0 and X, p(x,t) =0 (r=1,...,n),and I
given by (4.2) becomes Y ¢ + constant; as a result, for the above system and the
operators, Theorem 4.1 only reduces to Theorem 2.2.
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Thus, for Example 4.2, Theorem 4.1 and the corollary do not play an essential
role in finding a non-trivial conserved quantity. Hence we need to formulate the
another procedure to derive conserved quantities from symmetry for stochastic
systems. For this purpose, we further remark the following fact with respect to the
system (4.6): The system satisfies not only equation (4.1) i.e. divb = tr(Vb) =0
and divg, = tr(Vg,) = 0 (r = 1,...,m), where tr and V denote trace and
gradient, respectively, but also (Vb)+(Vb)T = O and (Vg,)+ (Vg)T = QO (r =
1,2,...,m), where T denotes transpose. Then, on the basis of this observation,
we may establish the following proposition:

PROPOSITION 4.1. Suppose that the n-vector valued functions b and g, (r =
1,2,...,m) in a stochastic dynamical system (2.1) satisfy

(4.7) (Vb) = —(Vb)T, (Vg,)=-(Vg)" (r=12,...,m),
respectively. Then, any pairs of symmetry operators for (2.1),Y =31 | fi(x,t)0;
and Z =Y - | hi(x,t);, yield the following conserved quantity:

(4.8) I=f-h=2n:f"hi.

i=1

PROOF. First, we assume that Y is a symmetric operator. Then, I = f - h
is a conserved quantity of (2.1), if and only if the following equations hold:

(4.9) @+ Xo)h' = =Y WO, X.h'=-> hid;g]
Jj=1 ij=1
(t=1,...,m;r=1,...,m).

This is proved by (2.2) and the following equations which are derived from (2.19):

n n

(4.10) @+ Xo)f' =) f10;b', X, f'=Y f19;4:
i=1 j=1
(t=1,...,mr=1,...,m).

The equations (4.9) are rewritten by the operator Z = Y .., hi(z,t)d; in the
following form:

n n

(4.11) 0+ Xo0,Z] = = > WL, [X,,Z]=-> hd,L5
j=1 j=1
(T = 1’ ’m)’
where & = (<I>;) and &, = (<I>T;-) (r =1,2,...,m) are the n X n matrix-valued

functions given by

(412) @ =(®)) = (Vb)) +(VD)T, & =(2,5)=(Vg)+(Vg)"
(r=1,...,m),
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respectively. Hence, if b and g, satisfy the condition (4.7) and Z is a symmetric
operator, then equations (4.11) are satisfied, and thereby completing the proof of
Proposition 4.1.

Note that the conserved quantity obtainable from the above proposition is
obviously not of divergence type. Moreover, if b and g, (r = 1,...,m) satisfy the
condition (4.7), the conditions (4.3) in Theorem 4.1 are automatically satisfied.
Hence we can also apply Theorem 4.1 to the stochastic system to which Proposition
4.1 is applicable.

Remark 4.1. By using Proposition 4.1, we easily see that if ¥ =
S fi(=,t)0; is a symmetric operator, I = f - f is a conserved quantity un-
der the condition (4.7).

Ezample 4.3. The previous Example 4.2 satisfies the conditions (4.5). More-
over, as stated, Y1 = 218, + 220, and Y, = 128, — x'0, are symmetry operators
of the system. Hence, Remark 4.1 indicates that each operator yields a conserved
quantity I = f - f = (z!)? + (2?)?, and this is just a result we want.

Example 4.4. Consider the stochastic harmonic oscillator treated in Exam-
ple 3.1:

Ty z}
(4.13) al %= % (dt + ¢ o dw,)
. 3 _— 1 t .
Ty —
x} —x?

It is easy to examine that this system satisfies equation (4.7) (and hence equation
(4.3)). Moreover, we see that the system has as symmetry operators

Yi —11:281 + 1‘132 — 1‘433 + 17384, Y, = z361 + $432 - :L‘lag — 2:284,
Y; = (1,‘381 — .’L‘482 —_ IL‘163 + IL'284, Y, = .’13461 + .’13382 - x263 —_ (1:184.

Thereby, Proposition 4.1 asserts that (z')? + (22)% + (%)% + (z4)2, (z')? — (z?)* +
(23)2 - (z*)?, 2(z'x* — x22%), and 2(z'z? + z32*), which are obtained through the
scalar products of any pairs from among the coefficient vector-valued functions of
the above operators, are conserved quantities of the system (4.13). In contrast
with this, Corollary 4.1.1 indicates that each of these operators generates only 0.

Remark 4.2. In general, a stochastic Hamilton dynamical system (3.1) sat-
isfies the conditions (4.3) in Corollary 4.1.1. Suppose that the system (3.1) has
the Hamiltonians H,(z) (o =0,1,...,m) and that the operator Y; generated by
the function I through (3.3) is a symmetry operator. For example, as stated in
Theorem 3.3, if I is a conserved quantity for the system, Y; becomes a symmetry
operator of the system. Then, we apply (4.4) to the system with the symmetry
operator. However, it only yields the trivial conservation “zero” through the oper-
ator because of (3.3). On the other hand, as shown in Example 4.2 and Example
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4.3, if the system satisfies the conditions (4.7), Proposition 4.1 brings to us the
essential conservations from such a operator. Thus, it appears that for stochastic
Hamilton systems, Proposition 4.1 is more useful than Corollary 4.1.1 in finding
conserved quantities from symmetry operators of equation (3.3) type.

Through the equations (4.11) and (4.12), we further find the following proce-
dure to obtain the conserved quantities of non-divergence type from symmetries
for (2.1); It is corresponds to a generalization of Proposition 4.1.

THEOREM 4.2. Let Y = Yo, fi(z,t)0; be a symmetric operator of a
stochastic dynamical system (2.1). Assume that there is some operator Z =
Yo", hi(x,t)d; satisfying equation (4.11) together with equation (4.12). Then, the
following function is a conserved quantity of the stochastic system under study:

(4.14) I=f h

PROOF. The operators Y and Z in Theorem 4.2 indicates that the equation
(4.10) (and hence (4.9)) holds for I given by (4.14), and thereby I becomes a
conserved quantity for (2.1).

Note that the above theorem corresponds to a stochastic version of Theorem 2
in Mimura and Néno (1995). In general, however, it may not be easy to find out
the operators Z dealt with in Theorem 4.2. The following proposition gives a way
to obtain such an operator.

~ PROPOSITION 4.2. Suppose that a coefficient vector-valued function, h =
(R)2_,, of a differential operator Z =Y, h*(x,t)0; satisfies

=1
(415) roth=0, &h+V(h-b)=0, V(h-g)=0 (r=1,...,m).
Then, the equations (4.11) together with (4.12), hold for the operator Z.

PROOF. We see that the equations (4.9) are rewritten in the following form:

Bihi + 0i(h - b) + > _ b (9;h* — 8;l7) =0,
j=1
i(h - gr) +Zgﬂ(8jhi —gh)=0 (i=1,....,m;7r=1,...,m).

=1

These equations turn out that the equations (4.7) hold for the function b = (h*);
satisfying the conditions (4.15), and thereby the above proposition is proved.

Ezample 4.5. Consider the non-linear stochastic system in Example 4.1 (and
hence Example 2.2). The operator Y = (z%z®/2')03 was a symmetry one of this
- system. On the other hand, let Z be a differential operator with the coefficient
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vector-valued function h = (h*)?_; = (1/!,0,-1/2*)T (T: transpose). Then,
the function h satisfies equation (4.15), so that Theorem 4.2 is applicable for the
operators Y and Z by virtue of Proposition 4.2. As a result, through the theorem,
we obtain a conserved quantity I = —z2%/z!.

5. The similarity method in stochastic dynamical systems

The notion of symmetries for dynamical systems plays an important role in
the “similarity method” which is a powerful tool for solving differential equations
(e.g. Bluman and Cole(1974); Bluman and Kumei (1989)) and difference equations
(Maeda (1987)); the existence of symmetries for differential equations leads to a
reduction in order in ordinary differential equations or difference equations and to
a particular solution in partial differential equations. Hence, it must be relevant
and important to formulate the similarity method for stochastic dynamical systems
in the framework of the theory of symmetries mentioned in the preceding sections;
this is the main theme of this section. For this purpose, we first prove a lemma
with respect to the symmetry operators satisfying (2.19).

LEMMA 5.1. The equations (2.19) are coordinate-free almost surely.

PROOF. It proves this lemma that equations (2.19) are also satisfied
by a symmetry operator for the stochastic system (2.1) under another coordi-
nate system. Let (y)", be another local coordinate system in U C R", and
suppose that equation (2.1) and the symmetry operator of the equation, ¥ =
Sr , fi(=,1)0/0x", are expressed in terms of these coordinates as

(5.1) dy, = b(y, t)dt + Z - (yt, 1) o dwy,
r=1
(5.2) Y = Xn: h*(y t)i.
k=1 oyt

Then, it is to be noted that the operators Xoand X; (r=1,... ,m) given by
equations (2.3) are expressed in terms of the local coordinates (y*) as follows:

LA 0 Ly 0
(53) onzbk(y’t)—]g? XT :ng(yﬂ")_k‘a
k=1 ay k=1 8y

since equation (5.1) holds. It is easily examined that
(5.4) w0 =3 Pl (b=1....n)
¥ ]=1 ? ax] y b ]

and further that the process y; given by (5.1) is connected with the original process
x; satisfying (2.1) as follows:

(5.5) Y = y(x)-
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Hence, by applying the change of variables formula to equations (5.5) and (2.1)
(e.g. Ikeda and Watanabe (1989)), we can verify that y; also satisfies

(5.6) dytzzg—g;odzf—z:bkay dt+ZZgrakodwt
k=1

k=1 k=1r=1

Rewriting equations (5.1) and (5.6) in the form of It type, we compare the mar-
tingale differential and the non-martingale differential of equation (5.1) with those
of equation (5.6), respectively. Then, by virtue of the uniqueness of Doob-Meyer’s
canonical decomposition of semi-martingales (exactly, by Lemma 2.1; cf. Remark
2.1), we find

N O RSP T
61 B0 = PE0gh, 0 =D a@0gh )

(i=1,...,m;r=1,...,m).

We are to show that equations (2.19) hold for the symmetry operator ¥ under the
new coordinate system (y*); especially, we are concerned with the first equation of
(2.19). After a calculation by using (5.3) and (5.7) together with the chain rule, we
obtain the following two equations for the operators Y and X given by equations
(5.2) and (5.3), respectively:

65 (5+%0)Ww.0 - (-(% + Zbk(y,w;y—,;) W(y,)

En: (axf) {(’a(zt + eaif) fj}

~ (t=1,...,n), (as.),

n

(5.9)  Yhi(y,t) = (
= E (gi‘:) { (Z fl_ai€> b]} (Z = ]_, e ,'n,), (a:.S.).
- -

=1

o ~
hk y’t)a_yk> bz(yvt)

Since Y is a symmetry operator for equation (2.1), the first equation in equations
(2.19) (i-e. equations (4.8)) with respect to the original coordinates (z°)

(505 2) - (50 8)e 6ot

holds, and thereby the right-hand side of equation (5.8) is equal to that of equa-
tion (5.9) almost surely. Therefore, we finally see that the symmetry operator Y
satisfies

(5.10) (881? + Xo> hi(y,t) = Ybi(y,t) (i=1,...,n),
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and hence, the first equation in equations (2.19) for the symmetry operator
(5.10') O + X0, Y] =0

also holds under the new coordinate system (y*) almost surely. The remainder of
equations in equations (2.19) under the coordinate system (y') can be proved in
a similar manner to that of the proof on the first equation mentioned above, and
thereby Lemma 5.1 is proved.

We proceed to the main theorem. In what follows, we assume that the new
coordinate system introduced below covers a sufficiently large domain for a given
system (2.1).

THEOREM 5.1. Suppose that a stochastic dynamical system (2.1) admits s
symmetry operators Yy, such that,

for any integer £ (1 < £ < s —1), [Ya,Ys] = 0 mod(Y1,...,Ys) holds for
arbitrary integers a and 8 (1 < o, < £+ 1), and rank(Y3,...,Ys) = s.

Then there is a local coordinate system (y') in which the stochastic system is
expressed almost surely as

m
(Ga1a) i = Bl S G ) o du]
r=1

m
(5.11b)  dyg =b(yt, . up t)dt+ ) ar (et yt) o duy
r=1

(a=s+1,...,n).

PrOOF. In a way analogous to that in ordinary differential equations (e.g.
Bluman and Kumei (1989)) or difference equations (Maeda (1987)), we may prove
this theorem. That is, it follows by induction with respect to o that the symmetry
operator Y, are expressed as the following forms:

F) s = E)
Y, = - E 8 —_— =2,... .
1 8y1 3 Ya 8ya + — ha(ya t) 8yg (a 2a ,8)

Then from the previous lemma, we see that the symmetry conditions (2.19) (i.e.
(4.8)) for the new coordinate system (y*) implies that the equation (5.1) must take
the form (5.11a,b) under the coordinate.

The coordinates (y*) are obtained by solving the differential equations

(5.12) Yo' =6, (a=1,...,min(i,s);i=1,...,n).
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The equations (5.11a,b) indicate that the original stochastic dynamical system
(2.1) is composed of an (n — s)-dimensional stochastic system (5.11b) and s re-
maining system (5.11a) in which each variable y; is contained as a stochastic dif-
ferential. Hence, if a solution of (5.11b) is obtained in some way, we can construct
the whole solution step by step by the way of a stochastic integral procedure (e.g.
Ikeda and Watanabe (1989)).

Remark 5.1. The condition in the above theorem means that the operators
{Y,} satisfy

[Yo,Ys] = Z ClgYy (a<p;Cy 4 constant),
y=a+l

that is, {Y,} forms a completely integrable system (Kobayashi and Nomizu
(1969)). Hence we may choose a specific local coordinate system with respect
to the foliation. The condition does not require that {Y,} spans a Lie algebra; it
contains the case that they form a solvable or nilpotent Lie algebra. In particular,
if s symmetry operators form a commutative Lie algebra, that is, they commute
with one another, the equation (2.1) is expressed in a simpler form as follows:

m
(511a))  dyi = Byt up, 0dt+ Y gty t) 0 du]
r=1

m
(B.11b)  dyg = byt .y dt+ Y oty t) o du)
r=1
(a=s+1,...,n).
The coordinates are also given by solving the equations (5.12).

Now, by means of the similarity method, we give several examples of reduction
and an analytic expression for solutions in stochastic dynamical systems.

Ezample 5.1. Let us consider again the stochastic system treated in Example

2.2:
T (z})? z) - z?
5.13 dl o2 | = {2t a2 )at 22 d
(6.13) Ty ) = | T - + | (=) © awy.
H ;- T} 7 - 13

This system admits the following two symmetric operators:

0 0
+(1‘2)2w+$21‘3— YQ-:.’E -

. |
(514) Y1 =X 81’37

2
2
oz!

Then, it is easy to examine that these operators commute with one another and
rank(Y},Y>) = 2, and hence Theorem 5.1 with Remark 5.1 indicate that the above
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system is reduced to an one—dimensional system. Indeed, we may choose the
following new coordinate (y*) by solving (5.12) for Y; and Yo;

1 1
(5.15) y! = —5 y? =logz® —logz®, = z.

By the change of variables formula, equation (5.13) reduces to

Y. y; 1
(5.16) dly? ]| =0 |dt+| 0] odw.
e 0 0

In the right-hand side of equation (5.16), y® is solely contained as the variables.
Thus, the system (5.13) essentially becomes a one-dimensional system (5.16) under
the new coordinates. Moreover, by a stochastic integral procedure, we find a
solution of equation (5.16):

yt; ve + y82t + wy
(5-17) yg = yg ’
Yi Yo

where (y,y2,43) are initial values of (y;,y7,u7), respectively. From equation
(5.17), an explicit form of the solution of equation (5.13) are derived through
(5.15) as follows:

o5 g/(1 — gt — zgwe)
(5.18) z2 | = | 23/(1 — z{t — xdwy) |,
i z3/(1 — x5t — zgwe)

where (z},z2,23) are initial values of (z},x7,z}) which are connected with
(46,3, ¥5) through (5.15).

Ezample 5.2. Next, we investigate a stochastic Fisher-Wright model of 3-
species type in population genetics, which is given by Maruyama and Itoh (1991,
1997). That is, we consider the following stochastic dynamical systems:

1,2 _ /21,8 1
xy 0 VI T} VT Ty w;

(5.19) d| 22 | = Vziz?  —\/ziz? 0 od| w? |,

3 3
Ty —/ziz} 0 T T} wy

where z?’s denote the frequencies of alleles; they are non-negative, and Z?=1 Tt #0
(in fact, = 1). Then, we find out a symmetry operator for this system as Y =
(221 /r)d; + (222 /r)2 + (22°/r)B3, where r = Val + 22 + 23 and §; = a/0zt.
Therefore, Theorem 5.1 indicates that this system is reduced to a two-dimensional
system. Indeed, one may introduce the “polar coordinate” (r,8,¢) for (z%) as

-

(5.20) 2! =r2cos?psin®f, gz =risin’psin®f, 2= 2 cos® 9,
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where 0 < @ §;7r/ 2,0 < ¢ < 7/2 and 0 < 7, because the new coordinate satisfies
(5.12) for Y. In terms of (r,6,¢), we can rewrite the equation (5.19) in the
following form:

T4 1 0 0 0 w}

(5.21) di g | == sin ¢ 0 —cosg |od|w?],
0 2 cosfcosp 1] Cos 6sin wa
t sin 0 sin 8 t

and this means that the system is a diffusion process on the sphere with the radius
r(=1). Thus, the system (5.19) is expressed as the 2-dimensional system (5.21).
In addition, the Fokker-Planck’s equation (e.g. Arnold (1973)) for (5.21) is given
by

ap 0 [ cosf 1/ 0% 0? P
5.22 @__Z (=2 (o (L)),
(5.22) 5~ 96 <8sin9p> *3 (ae2”+ 9% \ sin? 0
It is easy to verify that p = (2sin8/x) is the stationary solution to (5.22), that
is, stationary probability density function for the stochastic process (5.22) on the

sphere with the radius » = 1. This result just corresponds to that in Maruyama-
Itoh’s works.

Ezample 5.3. As the final example, we work with a stochastic Hamilton dy-
namical system related to “the neoclassical optimal growth model” suggested by
Samuelson (1972). In theoretical economics, Lagrangian and Hamiltonian dynam-
ical formalisms are often treated in a way analogous to that in classical mechanics.
The study on the neoclassical optimal growth models, of which various versions
are proposed by many authors, may be the most popular example for such a topic
(Saté and Ramachandran (1990)); in a typical formalism of such models, it is
assumed that the economical growth is described by the maximization of the func-
tional of the discount present value for “welfare function” which corresponds to
the Lagrangian. Then, we note that “conservation law” for the dynamical model
is also investigated with great interest in theoretical economics as well as classical
mechanics. In particular, Samuelson (1972) formulated such an optimal problem
near the stationary point, and further obtained the conserved quantity for the
dynamical model, which was called the local income-wealth conservation law. In
what follows, we first touch upon the model and its conservation law, and treat a
stochastic version of it.

Samuelson’s original model is represented by the maximization-problem for
the following local Lagrangian L,

. 1. . 1
(523) L(k, k, t) = e—pt (—Ekz —akk - "2-k2> s
with the Euler-Lagrange equation

(5.24) kE—pk—(1+ap)k =0,

where k is the capital-labor ratio, p > 0 the fixed discount rate and a the constant
satisfying —1 < a < 1. For simplicity, we here treat one-dimensional system.
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By introducing momentum p = L/8k and Hamiltonian H = k(OL/0k) — L (e.g.
Abraham and Marsden (1978)), we here rewrite equation (5.24) in the Hamiltonian
formalism as follows:

(5.25) d (kO _(O0H/Op. \ _( —ep—aki
' dt\p,)  \-0H/0k;) \ap:—e P (1—a?)ks)
Moreover, we define the new variables z! and 22 by 2! = e™#%/2k and 22 = e?*/?p,

respectively. In terms of these variables, equation (5.25) is transformed to an
autonomous Hamilton equation:

(5.26) i(z} _ [ 0H/dz} > B —22 — (a+ £)z} )
' dt\22)  \-0H/9z}) \(a+8)zt—(1-a®z})’

where the new Hamiltonian is given by

(5.27) H(z',22) = -;-(1 ~a)( (a4 5) 214 - %(z2)2.

Note that the Hamiltonian H is a conserved quantity for this system, and this fact
just represents the local income-wealth conservation law derived by Samuelson
(1972).

We are now to a stochastic version for the Hamilton system (5.26) with (5.27):
we first randomize the above system in a way similar to that in Example 3.1; that
is, we consider a stochastic Hamilton dynamical system (3.1) with Ho = H and
H; = cH, where H is given by (5.27) and c is a constant. Then, the following
stochastic equation describes it:

(5.28) d(i‘;) _ (( -2 — (a+ &)z} )dt+c( —22—(a+8)z )odwt.

t a+§)zf — (1-a%)z (a+ 422 - (1—a*)z

As mentioned in Remark 3.1 in Example 3.1, the system is formally the Hamil-
ton system of which Hamiltonian is randomized as H(1 + ¢v;), and the original
Hamiltonian (5.27) is still a conserved quantity for this stochastic system. These
facts assert that the stochastic Hamilton system we treat here is regarded as a
randomized Hamilton system which leaves the above income-wealth conservation
law invariant; a solution of the system “randomly” moves on a solution orbit of
the original Hamilton system (5.26) with (5.27).

For equation (5.28), we find out two symmetric operators Y; and Y3, which
commute with one another and satisfy rank(Y;,Y2) = 2, as follows:

Y= (—z2 - (a + B) zl) o + ((a + B) 22 —-(1- az)zl) o

(5.29) 2 2
Y; = 2181 + 2262,

where 0; = 8/8z'. Thereby the system (5.28) is reduced to a system which does
not contain any variables in terms of new coordinate system. In fact, we choose
the following new coordinate (y*) by solving (5.12) for ¥; and Y5:

22+(g+a—7’)z1

2 _ 1 .2
9 p 17 y—H(z,z)
z°+ §+a+r z

1
5.30 L= —
(5.30) v =5 log
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where r = {(a+(p/2))?+ (1 —a)?}/2. Then the stochastic equation (5.28) reduces
to

(5.31) d(z:;) = (?)dw ((C)) o dws.

Thus, the right-hand side of equation (5.31) contains only constants. Therefore,
we easily get a solution of the system:

1 1
Y Y,
Yy Yy +t+ cwy

where (y,y2) are initial values of (y},y?), respectively.
6. Concluding remarks

In the preceding sections, we investigate conserved quantities and symmetries
in stochastic dynamical systems, and particularly, examine the relations between
the two notions and the application of symmetries to the reduction of stochastic
systems in detail. Finally, we give some concluding remarks for the related studies
and the further topics.

In the present article, we formulate the notions of conserved quantities and
symmetries for stochastic system in a way analogous to those in the deterministic
dynamical systems; since the stochastic systems are treated, one may formulate
thus notions for the system in another way. For example, Itoh (1993) and Thieullen
and Zambrini (1997) are dealt with in the conserved quantities in the sense of
“martingale”. According to the context of their works, the conserved quantity is
defined by a function I(z,t) satisfying that the stochastic process I; = I(x:,t)
generated by the function I and a solution of (2.1), becomes a “martingale” with
respect to P (it does not need to be a constant!); that is, E[I; | Fs] = I, (s < )
holds, where E[- | ] denotes the conditional expectation under P. Apparently,
our conserved quantity formulated in this paper satisfies this condition; it is also
a conserved quantity in martingale sense. Therefore, in general, the conserved
quantities in martingale sense are more easily found out than our ones. However,
such a conserved quantity in martingale sense seems to be not similar to that in
the usual deterministic dynamical systems, and hence we should investigate in
detail how to use the quantity for analysis of stochastic dynamical systems in a
future work.

As to the connection between conserved quantities in martingale sense and
symmetries, Thieullen and Zambrini (1997) formulated the stochastic Noether’s
theorem in their framework of stochastic variational principle. They give the
method to derive the conserved quantities in martingale sense from “symmetries
of the functional” for the stochastic dynamical system under study. Therefore, it
may be an interesting problem to formulate a procedure to derive conserved quan-
tities in martingale sense from “symmetries of the stochastic differential equation”
defined in our work. Conversely, it is also important to investigate both notions
of conserved quantities and symmetries defined in this paper from viewpoint of
variational principle.
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Apart from the stochastic dynamical theory, it will be of certain interest to
work with conserved quantities from viewpoint of stochastic numerical analysis.
Recently, there has been increasing interest in stochastic numerical analysis to
stochastic differential equations, and many important works have been proposed
(e.g. Kloeden and Platen (1992)). Most of them treat the accuracy and stability
of numerical solutions obtained through various numerical schemes for stochastic
differential equations. On the other hand, it is well-known that studies focused
on the numerical preservation of characters of dynamical systems, which are often
given by the several conserved quantities, are very important in performing reliable
numerical calculations to deterministic dynamical systems describing by ordinary
differential equations (e.g. Greenspan (1984)). Despite this fact, however, the
attempts related to such a topic in stochastic numerical analysis are very rare,
and hence, it seems quite natural to investigate stochastic numerical schemes which
leave the conserved quantities of stochastic systems numerically invariant. We will
come back to the problem in future.
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