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Abstract. For regular parametric models, estimators converge uniformly at
a rate n~ /2, and the limit distribution is normal with mean 0. The situation
is different if the best possible rate is n~%, with a € (0,1/2), as common
for nonparametric models. In this case, uniformly attainable normal limit
distributions with mean O are impossible.
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1. Introduction

Let (X,.A) be a measurable space, and B a family of probability measures
P | A. The problem is to estimate a functional s : 8 — R, based on a sample
of size n, distributed according to P™, with P € 8 unknown. For n € N let
x(™ : X" — R be an estimator.

For parametric models we are used to the existence of estimator sequences
with the following properties. (i) They converge with the rate n'/2 uniformly on
compact subsets of the parameter space, to a normal distribution, (ii) this normal
distribution is maximally concentrated among all limit distributions which can be
attained locally uniformly.

The situation is not so favourable in the nonparametric case. Checking the
literature, one finds rate bounds, say ¢,, n € N, for various models. That means:
If for some estimator sequence (™, n € N, the sequence of standardized errors,
én(k™ — k(P)), is under P™ asymptotically bounded, uniformly on P, then é,,
n € N, cannot converge to infinity quicker than c,, n € N. In other words: c¢p,
n € N, is the best possible rate for the convergence of k™ to k(P). A rate
bound is not necessarily attainable. To show that c,, n € N, is, in fact, a possible
rate, it would be necessary to find an estimator sequence, say fcg"), n € N, such
that cn(n(()") — k(P)), n € N, is under P" asymptotically bounded, uniformly on
3. More often than not, the authors are satisfied with something quite different,
namely: The existence of an estimator sequence converging with the rate c,,n € N,
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to a limit distribution pointwise. That means: The distribution of cn(n((,n) - k(P))
under P™ converges to a limit distribution for every P € 3.

Since (local) uniformity is a constitutive element in the definition of a rate
bound, convergence to a limit distribution does not establish that this rate is
attainable, unless the convergence to the limit distribution is (locally) uniform.

The reader should keep in mind that there may be several estimators attaining
the rate bound ¢,, n € N, differing by an amount which is stochastically of the
order O(c,). Hence limit distributions attained with the rate ¢,, n € N, —if
any—are not unique.

The careful distinction between the convergence rate of k(™ to &, and the rate
at which the distribution of k(™ — k(P) under P" converges to a limit distribution
is without much use in case of regular parametric models. Here, the distribution of
k(™ — k(P) converges with the rate n'/? uniformly to a limit, and this implies that
the rate nl/2 is attainable. In nonparametric models, the uniform rate bounds for
the convergence of k(™ to k(P) are usually of type ¢, = n® with a € (0,1/2). Even
if there is an estimator sequence converging to x at this rate, this does not imply
convergence at this rate to a limit distribution, let alone uniform convergence.

Rate bounds for the convergence to x can be obtained by different methods.
In the present paper, we make no assumptions about the origin of the rate bounds.
Within this restricted framework, one can show that limit distributions attained
with a convergence rate n*L(n) with o € (0,1/2) and L a slowly varying function
cannot be uniformly attained if they have expectation zero and a finite absolute
moment of order (1 — a)~!. Under more specific assumptions on the nature of
the rate bounds it will be shown elsewhere (see Pfanzagl (1998)) that uniformly
attainable limit distributions and confidence intervals with uniform covering prob-
abilities are impossible if a € (0,1/2).

As a side result we obtain that limit distributions are necessarily normal if
they are (i) locally uniformly attained with a rate n'/2L(n) and (ii) maximally
concentrated on arbitrary intervals containing 0.

Our method of proof is not suitable to deal with the case a > 1/2. It is,
however, clear that comparable results are not to be expected. For the purpose
of illustration we mention the family of uniform distributions over (0,9), say Py.
The sequence ¥ —max{zi,...,ZTn} converges with the rate n to a non-normal limit
distribution, namely the exponential distribution. According to Millar ((1983),
pp- 156-157) this distribution is maximally concentrated among all uniformly at-
tainable limit distributions.

Theorem 2.1 in Section 2 is the main result. Applications to the case o = 1/2
and « € (0,1/2) are given in Sections 3 and 4, respectively. Section 5 contains a
detailed discussion of the concept of a rate bound. Various technical lemmas and
the proof of Theorem 2.1 are given in Section 6.

2. The main result
We shall use the following notation. For any probability measure P | A and

a measurable function A : X — R, P o h denotes the induced distribution on B,
defined by P o h(B) := P(h~'B), B € B.
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The theorem in this section refers to estimator sequences (™, n € N, the
standardized distributions of which, P™ o ¢, (k™ — x(P)), n € N, converge weakly
to a limit distribution, say Qp | B.

Warning. We call ¢, the rate of convergence. This is in agreement with the
terminology used by some authors (see e.g. Bickel et al. ((1993), p. 176) or Akahira
and Takeuchi ((1995), p. 77)), whereas other authors would use the term “rate of
convergence” for 1/cy.

2.1 The definition of “uniform weak convergence”

It is not entirely clear how to define uniform weak convergence of a sequence
of distributions Qp, | B, n € N, to a distribution Qp | B. In view of later appli-
cations we restrict our considerations to the case of nonatomic limit distributions.
This enables the use of the Kolmogorov distance. (A straightforward extension is
to the case where the discontinuity points of Qp are the same for every P € B,
using the Lévy distance.)

Throughout the following, B,, C B is a nonincreasing sequence (including the
cases B, =P and P, | {P}).

For nonatomic limit distributions, a natural definition of “weak convergence,
uniformly on PB,,, n € N” is

(2.1) lim sup |Qpn(—o0,u] — Qp(—oo,ul| =0 for every u € R.
n—00 pep

For technical reasons, we need a stronger concept of “uniform weak con-
vergence”, based on a distance function for probability measures on B with the
following property.

(22)  D(P*R,QxR)<D(P,Q)
and
(2.2") D(Po(u— au),Qo(u— au)) =D(P,Q) for a>1.

It is straightforward to show that the Kolmogorov distance, defined by

(2.3) D(P,Q) := sup |P(—00,u] — Q(—00, ul|

has this property (as does the Lévy distance).

DEFINITION 2.1. A family  of distributions on B is equicontinuous if the
family of distribution functions Fg(u) := Q(—00,u|, @ € 1, is equicontinuous on
R, and if

lim inf Fo(u) =1, d i Fo(u) = 0.
Jim, fof o) =1, and - K Sup Falw)

Recall that a function h : R — R is uniformly integrable on Q if

(2.4) s sup [ ()L ()@ =
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LEMMA 2.1. If Qp is nonatomic for P € B, and {Qp : P € P} is equicon-
tinuous, then (2.1) implies

(2.5) lim sup D(Qpn,Qp) =0.
Pep,

n—oo

PROOF. The usual proof (see e.g. Petrov (1995), p. 17, Theorem 1.11) carries
over. There is just one point which requires some more attention: The selection of a
finite number of points u;, ¢ = 1,...,m, such that Q@p(—00,u1] < €, Qp(um, ) <
e, and Qp(u;,u;4+1] < € for every P € B. For this purpose, define

uir1 =sup{u € R: Qp(—o00,u} < Qp(—o00,u;] + € for P € PB}.

We have to show that the sequence u;, i = 1,2,... thus defined tends to infinity,
so that one can stop at un, for which Qp(—00,um] > 1 — ¢ for P € B. Assume
that, on the contrary, u; T v < oo. Since v > u;11, there exists P, such that
Qp,(—00,v] > Qp,(—00,u;] + ¢, i.e. Qp,(u;,v] > €. Since u; T v, this contradicts
the equicontinuity. 7

Remark 2.1. The relations considered. so far refer to arbitrary sequences
Qpn, n € N. Our interest is in sequences of a special type, namely

(2.6) Qpn = P™ o cn(k™ — v(P)).

For such sequences, uniformly attained limit distributions are necessarily contin-
uous functions of P. More precisely, assume that P — k(P) is continuous at P,
with respect to the sup-metric, and that P™ o ¢, (k™) — &(P)) = Qp uniformly
(in the sense of Definition 2.1) on some neighbourhood of Py which is open in the
sup-metric. Then P — Qp is continuous at Py (with respect to the sup-metric on
B and the topology of weak convergence on {Qp : P € PB}).

A result of this type occurs in Rao ((1963), p. 196, Lemma 2(i)) and Wolfowitz
((1965), p. 254, Lemma 2). For a proof of this general version see Pfanzagl and
Wefelmeyer ((1982), p. 163, Proposition 9.4.1).

Remark 2.2. To assume that the limit distributions Qp are nonatomic is
justified by the fact that this is the case in all examples from the literature. Under
natural conditions it is necessarily so: Uniformly attained limit distributions have
a Lebesgue-density. More precisely, assume there exists a parametric subfamily
Py € B, say ¥ € (—1,1), such that, with P, = P_-1_, the following relations are
true for every a € R.

P,:’ o cn(n(n) - K’(Pn)) = QPO’
en(K(Pr) — K(Po)) — aKo,
P}', n €N, is contiguous with respect to P§*, n € N.

Then Qp, << A
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This follows from Pfanzagl ((1994), p. 229, Proposition 7.1.11).

THEOREM 2.1. Assume that ™, n € N, is a sequence of estimators such
that P" o cn (k™ — k(P)), n € N, converges weakly to a limit distribution, say Qp,
uniformly on B,, n €N, e

(2.7) lim sup D(P"ocp(k™ — &k(P)),Qp) =0.
"0 PeB,

Assume that
(2.8) cn = n*L(n),

with o € (0, %], and L a slowly varying function.
Assume that the limit distributions Qp have expectation 0.
Then the following holds true.
(i) If o € (0,1/2) and |u|/(1~%) is uniformly integrable on {Qp : P € B},
then there exists an estimator sequence &™) n e N, such that

(2.9) lim Pinqg P {ca|#™ — k(P)| <u} =1 for every u> 0.
n—oo PEP,,

This implies in particular that (™, n € N, converges to «(P) at a rate better than

Cn, n € N.
(ii) If u? is uniformly integrable on {Qp : P € B}, and if

(2.10) o?(P) := /uzQp(du)

is bounded away from 0 on ‘B, then the following stronger assertion is true.
There exists an estimator sequence #™, n € N, and a rate é,, n € N, such
that

(2.11) lim sup D(P"oé (™ — k(P)), No.s2(p)) =0,

n—oo Pém"
with én = ¢, if a0 = 1/2, and with é,/c, — o0 if o € (0,1/2).

For virtually all estimator sequences occurring in the literature, the error of
the estimator, k(™ — x(P), can be standardized such that the limit distribution
is independent of P. More precisely, there exists a function K : P — (0,00),
such that P" o ¢, K(P)(k'™ — k(P)), n € N, converges to a limit distribution Q,
not depending on P. To say the same in a different way: P" o cn(k™ — k(P))
converges to the limit distribution

(2.12) Qp = Qo (u— u/K(P)).

For limit distributions of this special type, the conditions of the theorem on
the limit distributions, namely the equicontinuity of v — Qp(—00,u] (which is
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needed to derive (2.5) from the simpler uniform convergence condition (2.1)), and
the uniform integrability of |u|® on {Qp : P € P} become quite simple.

PROPOSITION 2.1. Assume that Qp is of the special type (2.12), with
{K(P) : P € P} bounded and bounded away from 0.
Then the following is true.
(i) The family {Qp : P € P} is equicontinuous (in the sense of Definition
2.1) if Q is nonatomic. :
(ii) |u|® is uniformly integrable on {Qp : P € B} if [ [u|*Q(du) < 0.
(iii) infpeyp [ |u|*Qp(du) > 0 if [ |ul*Q(du) > 0.

PrOOF. (i) Let F denote the distribution function of Q. Let A be a com-
pact subset of (0,00). We shall show that the family of distribution functions
u — F(Qu), X € A, is equicontinuous in the sense of Definition 2.1. Since
inf pegy K(P) > 0, this implies the equicontinuity of {Qp : P € B}

Assume that lim, oo U = ug. If imsup,,_, o supyea |[F(Aun) — F(Aug)| > 0,
there exists an infinite subsequence A, € A, n € N, such that

(2.13) lim [F(Awun) ~ F(Anuo)| > 0.
neENg

Let A, n € N7 C Ny be a convergent subsequence, say lim,en, An = Ag. Since

lim Au, = lim A, ug = Aguo,
neNy neN;

we have
lim |F(Apun) — F(Anuo)| =0,
neN;

in contradiction to (2.13). The relations

lim inf F(Au)=1 and lim sup F(Au) =0

u—00 A€EA U——00 N\ A

are proved similarly.
(ii) If f :[0,00) — R is nondecreasing and K(P) > Ao > 0, we have

[ e = [ 1 (T{%,—)) Qs [ 1 (%) Q(du).

The assertion follows for f(u) = |u|*1[y, 00)(w).
(iii) Obvious. O

Remark 2.3. Some authors consider approximations by distributions includ-
ing a bias-term. If we restrict ourselves to approximations by a normal distribution,
that means the approximation of P" o ¢, (k{™ ~ k(P)) by Ny,.(p).-2(p)) (in the
sense of (2.7)). To be suitable for the computation of confidence bounds, u,(P)
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has to be estimable in the sense that there is an estimator sequence u(™, n € N,
such that

(2.14) lim sup P*{|u™ — pun(P)| >u}=0 for every u > 0.
"0 PeB,

If this is the case, one may introduce the estimator sequence M = g —c 1),
for which P™ o ¢, (k™ — k(P)), n € N, converges uniformly in the sense of (2.7)
to Nioo2(p))- If cn = n*L(n) with a € (0, 1/2) is a PB,,-uniform rate bound, this
is impossible according to Theorem 2.1 (ii). Hence i, (P) cannot be estimable in
the sense of (2.14) in this case. See Example 4.6 for an application.

2.2 Why uniform convergence?

Limit distributions are an instrument for selecting estimators if the sample
size is large. The second—and more important—use of limit distributions is for the
construction of approximate confidence intervals, and this is the point where uni-
formity on 8 becomes operationally significant. It is needed to obtain confidence
intervals with a covering probability which is uniform on ‘B.

Let tps € R be defined by

Qp(—o0,tpp] =B
If there exists an estimator sequence t(ﬂ") which converges to tp g, uniformly
on B, i.e.

(2.15) lim sup P"{lt(ﬁn) —tppg|>u} =0 forevery u>0
n—o0 Pem

we obtain from the uniform convergence of P" o c,(k(™ — k(P)), n € N, to Qp in
the sense of (2.7) by a uniform version of Slutsky’s Theorem that

lim sup |P"{x™ — CT—th(ﬁn) <k(P)} - Bl =0.

3. Thecase o =1/2

Roughly speaking, Theorem 2.1 (ii) says the following: If there is an estimator
sequence converging at the rate n'/2L(n) uniformly on 9B, to some limit distribu-
tion with finite variance, then there also exists an estimator sequence converging
at the same rate uniformly on ‘B,, to a normal distribution with the same variance.
This implies the following:

PROPOSITION 3.1. Assume the conditions specified in Theorem 2.1 (ii).

If for some P € P the limit distribution Qp is mazimally concentrated (on
all intervals containing 0) among all limit distributions attained uniformly on P
with a rate nl/zL(n), then Qp = N(o,s2(P))-
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PROOF. According to Theorem 2.1 (ii), N ,2¢p)) is a limit distribution,
uniformly attainable on B,,. Since Ng o2(py)[—u',u"] < Qp[—u',u"] for v/, u" > 0,
we have for u > 0

(3.1) N(O,az(p))(o,u] <Qp(0,u] and
(3.1") No,02(pPy)[—,0) < Qp[—u,0), hence
00 )
(3.2') / U2N(0’02(p))(du) S/ uzQp(du) and
0 0
0 0
(3.2") / UQN(O,az(p))(d’u,) S/ U2Qp(du).
Since
+o0 oo
/ u®No,o2(py)du = 0*(P) = / u?Qp(du),

this implies equality in (3.2") and (3.2”), hence also equality in (3.1’) and (3.1”).0

That maximally concentrated limit distributions are normal follows from the
convolution theorem for families fulfilling an LAN-condition. Proposition 3.1 ar-
rives at a similar conclusion by a different approach. (For parametric families and
¢, = n1/2, this result occurs in Pfanzagl (1994), p. 294, Proposition 8.5.10.)

For regular parametric families, the rate bound is n'/2, and asymptotically
optimal estimator sequences are easy to obtain. In spite of this, one occasionally
meets with estimator sequences converging at the optimal rate n'/2 to a non-
normal limit distribution. As an example we mention estimators of the center of
symmetry of a distribution on B: The Bickel-Hodges estimator ((1967), Section 3)
and the estimator based on the Kolmogorov-distance (see Rao et al. (1975), The-
orem 4, p. 866). One does not need the theorem to learn that these estimator
sequences are asymptotically inefficient. To establish the existence of an estimator
sequence which is (pointwise) asymptotically optimal in the family of all symmet-
ric distributions on B was one of the outstanding tasks set to asymptotic theory.
(See Beran (1974) and Stone (1975) for the best results now available.)

A rate bound n!/2(logn)'/? occurs for location parameter families p(x — 9),
¥ € R, if p(z) = 0 for z < 0 and limg o p’'(z) € (0,00). Woodroofe ((1972), The-
orem 2.1, p. 115) shows that the maximum likelihood estimator for the location
parameter converges at this rate to a normal limit distribution. Weifl and Wol-
fowitz ((1973), Theorem, p. 945) show that this limit distribution is maximally
concentrated (see also Akahira and Takeuchi ((1981), Sections 2.4 and 2.5) and
Smith (1985)).

We conclude this section with two nonparametric examples where the rate
bound is n'/2L(n).

Ezxample 3.1. Wicksell’s problem. For a general discussion of this problem
see Stoyan et al. ((1987), Section 11.4). Groeneboom and Jongbloed (1995) ob-
tained the rate bound n'/2(logn)~'/2, based on the loss function |u|, and they
prove it to be attainable. Golubev and Levit (1998) obtain not only the rate
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bound, but also the best possible uniformly attainable limit distribution (The-
orem 2, p. 2411). This is a normal distribution with mean 0. They also show
(Theorem 1, p. 2411) that this best possible limit distribution is, in fact, locally
uniformly attained by certain kernel-type estimators. These results are obtained
for a large class of symmetric loss functions. They yield, in particular, asser-
tions about the concentration in symmetric intervals and fit, therefore, into the
framework of the present paper. Presumably, the local uniformity obtained in
Theorem 1 of Golubev and Levit could be strenghtened to global uniformity (in
the sense of (2.1)), thus confirming the result of Theorem 2.1 (ii) according to
which maximally concentrated limit distributions which are uniformly attainable
at a rate n!/2L(n) are necessarily normal.

The following example is taken from Golubev and Levit (1996).

Ezample 3.2. Let B, denote the set of all distributions on B, the density
p of which admits an analytic continuation to S, := {z + iy : |y| < 7} fulfill-
ing certain regularity conditions. Let x(P) = p{™(z¢), where p{™) is the m-th
derivative of p, and z¢ is fixed. Golubev and Levit show that, with the rate
Cn = nl/Z(IOg n)—(2m+1)/2’

liminf sup ¢ /(n(") - k(P))%dP" > o*(R),
n—oo Pem_y

with
Po(Zo)
w(2m + 1)(27)2m+1

o*(Po) =

for every estimator sequence (™), n € N; and that there is an estimator sequence
#(") such that

P™ o ¢, (k™ — k(P)) = Nig,02(py))

uniformly on a sequence of neighbourhoods B,, shrinking to Py, with

lim sup 2 /(k(") — k(P))%dP" = 0*(R,).

n—00 Pespn

(See Theorem 1, p. 359 and Theorem 3, p. 360.)
4. Thecase a € (0,1/2)

The results available in the literature differ in various respects, such as the
neighbourhoods used in the definition of local uniformity, and the loss functions
used to measure the quality of estimators. Moreover, not all authors take the
uniformity serious if it comes to the question whether a rate bound is attainable
or not. This will be illustrated by the following examples.
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Ezample 4.1. Estimating the value of a smooth density at a point.

In Section 3 we mentioned a model, considered by Golubev and Levit (1996a),
where the uniform rate bound is of the type n'/2L(n). There are numerous papers
establishing uniform rate bounds of the type n®L(n), with & € (0,1/2) depending
on the kind of smoothness condition.

Of particular interest are results of Ibragimov and Has’minskii insofar as they
give uniform rate bounds for the convergence of k(™ to k(P) which are uniformly
attained. Let %B,, . denote the family of all distributions on R, the Lebesgue-
density of which admits m derivatives, m = 0,1,... and for which the m-th
derivative fulfills the condition

™ (@) - p™ ()| < clz—yl  for zyeR

The problem is to estimate p(zo).
According to Ibragimov and Has'minskii ((1981), p. 237, Theorem 5.1) the
following relation holds for every estimator sequence p(™ of p(zo)

(4.1) liminf sup /E(n(m+1)/(2m+3) [p™ — p(z0)|)dP™ > 0.
noe PeP,, .

Moreover (see p. 236, Theorem 4.2), there are estimator sequences pg”), n € N,
such that

(4.2) lim sup P:};p /Z(n(m+1)/(2m+3) IpS") — p(x0)|)dP™ < 0.

These theorems hold for a rather large class of loss functions £.

Applied with £(y) = Ljy,c0)(|y]), relation (4.1) yields that p(m+1)/(2m+3) jg g
rate bound for uniform convergence on B,, ., for every ¢ > 0. (More precisely,
(5.2) holds for every u > 0.) From relation (4.2), applied with £(y) = |y|, one
obtains with the help of Lemma 5.1 (i) that this rate bound is attained, uniformly

on ‘Bm’c.

Ezxample 4.2. Estimating the mode.

Let B be the family of all distributions on R with unimodal density, and let
k(P) denote the mode of P. Has'minskii ((1979), p. 94, Corollary) shows that
nl/5 is a rate bound for uniform convergence on a certain subfamily of ‘8. The
best result now available is Theorem 5.5 in Donoho and Liu ((1991), pp. 653-654)
which establishes n!/5 as an attainable rate bound for uniform convergence of r(™)
to (P) on the subfamily fulfilling the conditions

plz) <M for z€R and
Ip(z) — p(s(P))| < C(z — &(P))* for |z —K(P)| <6

(with M, C and 6 fixed).
Eddy ((1980), p. 873, Corollary 2.2) gives asymptotically normal estimator
sequences with rates better than n!/5. As an example we mention the following: If
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the density has a 4th bounded derivative, then there exists an estimator sequence
which converges at the rate n?7 to a normal distribution (with mean # 0).

Of particular interest are three models with the following features in common:
The uniform rate bound is nl/ 3, and there exists an estimator sequence k™M neN,
such that

(4.3) P on!BK(P)(x™ — k(P)) = Q, for PeP.

Q. | B is defined as the distribution of the last time where the process W (u) —u?,
u € R, reaches its maximum. (W denotes the symmetric Brownian motion on
R with W(0) = 0.) Q. is symmetric about 0 and has moments of all orders
(see Groeneboom (1989), Corollary 3.4, p. 94). From Proposition 2.1 it is clear
that such a limit distribution cannot be uniformly attained if {K(P) : P € B} is
bounded and bounded away from 0.

Now we consider the three cases in more detail.

Ezample 4.3. Estimating the value of a decreasing density at a point.

Let P be the family of all distributions on [0, c0) with decreasing density with
one bounded derivative. The problem is to estimate p(zo), for zo fixed. According
to Kiefer ((1982), Section 2) the rate bound for estimator sequences of p(zo) uni-
formly on §p is n!/3 provided p(zo) < 0. According to Prakasa Rao ((1969), p. 35,
Theorem 6.3) the maximum likelihood estimator p™ attains this rate pointwise.
More precisely, relation (4.3) holds with K(P) = (4p(zo)|p’ (zo))~V/3.

Using the loss function #(u) = |u|, Birgé (1987) shows that nl/3 is an attain-
able rate bound (even for finite n) for families of unimodal densities with bounded
support.

Ezample 4.4. The interval censoring problem.
Assume that (z,8) € [0,00) x {0,1} is distributed with density

Prg(z) = F(z)’(1 - F(z))' g(),

where F,G are unknown distribution functions, and f, g the respective densities.
The problem is to estimate F(zg) for zo fixed.

According to Groeneboom ((1987), pp. 5-6) or Groeneboom and Wellner
((1992), p. 89, Theorem 5.1) there exists an estimator sequence such that relation
(4.3) holds with

K(Pr.c) = (4F (z0)(1 — F(20))f (z0)g(z0)) ™"*.

That n!/3 is a rate bound in the sense of (5.2) could be shown as in Groeneboom
and Wellner ((1992), pp. 20-21). (They show, in fact, that

limsup inf n!/3 / |F® — F(zo)|dPRg > 0,

n—oo FEFn
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where §, is a certain nonparametric neighbourhood of a given distribution function
E.)

Example 4.5. The deconvolution problem.

The problem is to estimate the distribution function F' of a probability mea-
sure P | B at a given point based on n i.i.d. observations from P x Q, with Q
known. The rate bounds occurring in this problem depend on the regularity con-
ditions imposed on P and . We restrict ourselves to the case where the most
- complete results are available, that is: @ is the uniform distribution on (0, 1), the
support of P is a subset of (0,1), and P has a positive density f at zo. According
to van Es ((1991), p. 104, Theorem 4.1) there exists an estimator sequence such
that relation (4.3) holds with

K(P) = (4F (z0)(1 — F(x0))f(z0))~'/.

(In van Es and van Zuijlen ((1996), p. 88, Theorem 1.5) this is proved under the
assumption that the support of P is bounded, but not necessarily a subset of
(0,1).)

That n'/3 is a rate bound follows from van Es, p. 112, Example 4.1, based on
the loss function |u].

Example 4.6. Estimation of the extreme value index.

For the sake of simplicity, we consider the following special case. Let 2B denote
the class of all functions b : (0,00) — R fulfilling b(z) < z7¢ for z > 1, where
¢ > 0 is a known constant. For v > 0 and b € B let P, ; denote the probability
measure on B, , the distribution function of which is determined by

¢
F;g (1 — 1) =t" exp [/ Mdac} for t>1.
? t 1 xT

Given a closed and bounded interval I C (0,00), let P := {P,, : v € I,b € B}.
The problem is to estimate -y, the extreme value index. (Notice that both, v and
b, are identifiable.)

According to a result of Hall and Welsh ((1984), p. 1080, Theorem 1), the
sequence ¢, = n¢/(2¢+1) jg 3 P-uniform rate bound for estimator sequences of
7. (See Drees (1998), Theorem 2.1 and Lemma 2.1 for a presentation which fits
better into the framework outlined above.) According to Theorem 3 in Hall and
Welsh ((1984), p. 1083) this bound is uniformly attained by the Hill estimator,
say 7™, based on the order statistics Zi.,, i = 1,...,kn, with k, = [n2¢/(2e+1)],
A more precise assertion about the asymptotic performance of this estimator can
be obtained from Csorgd et al. (1985). Theorem 1, p. 1053, applied with A, =
n~1/(2e*1) and K(u) = 1(g,1)(u), implies

(4.4) Py o (n®/CetDay=1 (M) _ ) (7,b)) = N,y

with p,(v,b) = y~1ne/(2e+1) fol b(%ﬂ)dm. Because of |b(z)| < 79, we have

ln (7, 0)] < m
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According to a remark of Drees in the proof of his Theorem 2.2, the convergence
in (4.4) is uniform on B. This implies that 7™ n € N, attains the $B-uniform rate
bound ne/(2¢+1) " Since this rate bound is of the type n* with a = ¢/(20 + 1) €
(0, %), we obtain from Remark 2.3 that there is no estimator sequence u(™ such
that u(™ — u,(v,b), n € N, converges to 0, uniformly on 8. Hence, in spite of
its B-uniformity, relation (4.4) cannot be used for the computation of confidence
intervals with B-uniform covering probabilities.

5. The concept of a “rate bound”

As outlined in Section 2, a limit distribution can be utilized for the compu-
tation of confidence intervals with uniform covering probability on B only if it is
uniformly attained on B. In contrast to this, bounds for the asymptotic perfor-
mance of estimator sequences (be it the rate of convergence or the concentration of
the limit distibution) depend on local properties of the family 8 and the functional
k. This is the reason for admitting sequences ‘B,,, n € N of probability measures
in the following considerations, including sequences B,, = B, as well as sequences
B,, shrinking to a given P, € B.

Searching the literature for concepts of an optimal rate (for the convergence of
an estimator sequence to a limit distribution) leaves us without a definite answer.
It appears that the definitions usually reflect features specific for the model under
investigation, that is: The definition is adjusted to what can be proved.

The definition that a rate ¢,, n € N, is attainable seems to be generally
accepted.

DEFINITION 5.1. ¢,,n € N, is an attainable rate if there exists an estimator

sequence n(()n) , n € N, such that for every sequence u, — oo,

(5.1) Jim inf P{cp|6l™ — k(P)| < un} = 1.

(See Farrell (1972), p. 172, relation (1.4); Stone (1980), p. 1348, relation
(1.3); Kiefer (1982), p. 420; Hall and Welsh (1984), Section 3, pp. 1083-1084.)
An exception is Stone (1982) who requires (5.1) with u, = uo, for some ug > 0.
Akahira and Takeuchi ((1995), p. 77, Definition 3.5.1) use for ¢, (in a relation
equivalent to (5.1)) the term “consistency with order ¢,, n € N”. With ¢, = n!/2,
relation (5.1) occurs as uniform y/n-consistency in Bickel et al. ((1993), p. 18,
Definition 2).

That P™ o cn(n((,") — k(P)), n € N, converges to a limit distribution Qp,
uniformly on B,,, does not automatically imply that the rate c,, n € N, is attained
in the sense of Definition 5.1. It follows, if @ p(—un, un) — 1 for u, — 0o uniformly
on ‘P,

The following concept of a rate bound serves a distinct purpose: To show that
a certain estimator sequence converges to k(P) at the best possible rate.

DEFINITION 5.2. ¢,, n € N, is a rate bound if for every estimator sequence
k(™ n € N, there exists ug > 0 such that
(5.2) lim sup ian} P {ca 6™ — k(P)| < up} < L.
€

n—o0 P n
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If the definition of attainability is almost unequivocally accepted, the situation
is different with respect to the concept of a rate bound. Here are a few examples,
rewritten with our notations.

Stone ((1980), p. 1348) requires (5.2) for every u > 0 and, in addition, his
condition (1.2) which is equivalent to the following.

For every estimator sequence k(™ n e N, and every sequence u, — 0,

(5.3) lim iné P {ca|c™ — k(P)| < un} = 0.

n—oo Pe

n

The same condition occurs in Kiefer ((1982), p. 420). Stone ((1982), p. 393)
has changed his mind. Now he requires (5.3) for u, = ug for some ug > 0.

Remark 5.1. That condition (5.3) is, in fact, stronger than (5.2) can be
easily seen as follows: Let «(™ n € N, be an estimator sequence such that P™ o
cn(k(™ — £(P)) = Qp, a nonatomic distribution. Let kn, n € N, tend to infinity
slowly enough so that k,/n — 0, and define

(n—kn

. 1 1
n(")(zl, ciyIp) = §n(k")(a;1, ey Tk, F oK )(man,.. 1 Tn)-

2

Let &, := ck,. Then é,(A™ — k(P)) fulfills (5.2), but not (5.3) (if kn/n — 0
implies ¢k, /¢n—k, — 0).

The concept of a rate bound as defined by (5.2) is comparatively weak and,
above all, it is exactly what one needs to establish the optimality of an attainable
rate.

PROPOSITION 5.1. If cn, n € N, is a rate bound, and c,, n € N, an attain-
able rate, then limsup,,_, . Cp/cn < 00.

Remark 5.2. Let é,, n € N, be an attainable rate bound. By Proposi-
tion 5.1 we have limsup,,_, ¢é,/c, < oo for any rate bound cj,, n € N, and
limsup,,_, ., ¢ /é, < oo for any attainable rate c,. Hence, if ¢, and ¢, n € N,
are two attainable rate bounds, we have 0 < liminf &,/c,, and limsup &,/c, < oc.
That means: An attainable rate bound is unique in an asymptotic sense.

PROOF. By definition (5.1) we have

: : n [/ (")_ — :
nan;o Plgqfx P™{c |k k(P)| <up}=1 if wu,— oo.

n

If ¢, is a rate bound in the sense of (5.2), there exists ug > 0 such that

lim sup léqu; P"{cnlng") - k(P)| <wuo} <L

n—+00 n
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This implies

lim sup pié‘sﬁ P"{c’n|n(()") — &(P)| < uocp/cn}

n—0o0 n

= limsup inf P {ca|6l™ = k(P)| < uo} < 1,

n—00 (SU

hence limsup,,_,, ¢, /cn < 00. O

Now we discuss a weaker version of (5.2), namely:
For every estimator sequence k™, n €N, there exists ug > 0 such that

(5.4) liminf inf P™{ca|&™ — k(P)| < uo} < 1.

n—oo PeP

If we consider asymptotic concepts as approximate descriptions of properties
for large samples, then it would be enough to have a certain favourable property
for an infinite subsequence from which the sample size can be chosen. Hence it
would hardly be justifiable to call a rate “optimal” if it can possibly be improved
for infinitely many sample sizes. If ¢, is a rate bound in the sense of (5.2), i.e.
with limsup, then, according to Proposition 5.1, there is no estimator sequence
attaining a rate ¢/, such that limsup, . c,/cn = 00, i.e. there is no estimator
sequence which converges at the better rate ¢}, for infinitely many sample sizes.
If ¢, is a rate bound in the weaker sense of (5.4), then an analogous version of
Proposition 5.1 implies that there is no estimator sequence with a rate c;, such
that lim, o c},/cn = 00, i.e. no estimator sequence which converges at the better
rate for every sample size. If condition (5.4) does not exclude the possibility of an
improvement along an infinite subsequence, this does, of course, not imply that
such an improvement is feasible. With the stronger condition (5.2) we know for
sure that this is impossible.

The problems with “limsup” versus “liminf” result from the fact that our
general considerations refer to arbitrary rate-sequences (say a sequence ¢, = nl/?
for n = 2m and ¢,, = n!/4 for n = 2m+1). We have no natural example for which
an improved rate along an infinite subsequence of sample sizes is possible, whereas
an improved rate for all sample sizes is not. To demonstrate that the distinction
between “limsup” and “liminf” is not totally vacuous, we consider the following
artificial:

Ezample 5.1. Assume B,, | Fy. Let /cé") be an estimator sequence which is
asymptotically optimal in the sense that for every estimator sequence k™ neN,

(5.5) lim sup ian3 P {n/?|x™ — k(P)| < u}

n—0o0 S

< Jlim inf P {n'?|s{” - K(P)| < u} = Qr,(~u,v)

for every u > 0.
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Let ¢, = n'/2 for n = 2m, and ¢, = n'/% for n = 2m + 1. From (5.6), we
have for every estimator sequence (™

lim inf ian3 P {ca|k™ — k(P)| < u} < Qpy(—u,u) < 1

n—oo Pe

for every u > 0. Hence c,, n € N, is a rate bound in the sense of definition (5.4).
As against that,

lim sup inqg P”{cn|n(()") - k(P)<u}=1
€

n—oo n

for every u > 0, so that c,, n € N, is not a rate bound in the sense of definition
(5.2). The rate bound ¢, can be improved at the subsequence n = 2m + 1, from
cn =nl/% to ¢, = nl/?

(13 n M

So far, we have justified our favourite definition (5.2) by its usefulness for
establishing the optimality of a certain attainable rate. We conclude this section
by the following proposition which helps to better understand the meaning of
condition (5.2) from the intuitive point of view.

PROPOSITION 5.2. c¢p, n € N, is a rate bound in the sense of definition (5.2)
if and only if the following holds true:
There is no estimator sequence k™ such that for some subsequence Ng C N

lim inf P"{c,|c(™ — k(P)| <u}=1 > 0.
Jim Plélmn {cnlk Kk(P)| < u} for every u

ProoOF. Let F, : (0,00) — [0, 1] be a sequence of nondecreasing functions.
Then

(5.6) limsup F,(u) =1 for every u >0

n—oo

is equivalent to the following:
There exists an infinite subset Ng C N such that

(5.7) lim F,(u) =1 for every u > 0.
neNg

Since lim,en, Fr(u) < limsup,,_, o, Fn(u) for every u > 0, (5.7) implies (5.6).
By (5.6), for every m € N there exists nm € N, ny > nm_1, such that F, (L) >
1 — 1/m. Since F, is nondecreasing, (5.7) holds with Ny = {n,, : m € N}.

Applied with F,(u) = infpeg, P"{ca|™ — &(P)| < u}, this yields the as-
sertion. O

Remark 5.3. Some authors characterize rate bounds in a slightly different
way. Farrell ((1972), p. 173) and Hall and Welsh ((1984), p. 1080) define c,, n € N,
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as a rate bound if for every estimator sequence x(™, n € N, and every sequence
an,n €N,

. . nfl(n) _ _
(5.8) nll’rgo Px&f3 P™{|x k(P) <an}=1

n

implies lim,,—, o0 Cra, = 0.

It is easy to see that this definition is equivalent to a slightly stronger version
of (5.2), the one with “for every u > 0” in place of “for some ug > 0”. The original
version of (5.2) is equivalent to (5.8) with liminf,_, chan, > 0, the weaker version
(5.4) is equivalent to limsup,,_,., ¢na, > 0. (Hint: It is convenient to prove such
relations for arbitrary sequences of nondecreasing functions G, : (0,00) — [0, 1]
and to apply them for G, (u) := infpegp, P™{cn|6™ — k(P)| < u}.)

In Section 4, Theorem 2.1 has been used to show that certain limit distri-
butions are not uniformly attainable. This impossibility result depends on the
definition of a uniform rate bound given by (5.2), i.e. one expressed in terms of
probabilities. Many results on rates available in literature are useless for our pur-
poses since they are based on loss functions. As an example we mention Ibragimov
and Has’minskii ((1981), Sections iv 4 and 5), where £ : [0,00) — [0,00) is sym-
metric about 0 and nondecreasing on (0,00). Based on a given loss function, the
common definitions are

¢n, n €N, is a rate bound, if for every estimator sequence k™ neN,

(5.9) liminf sup / ten (5™ — K(P)))dP™ > 0

n—oo Pemn

cn, n € N, is an attainable rate if there exists an estimator sequene K‘,én), n €N,

such that

(5.10) limsup sup /é(cn(né") — k(P)))dP" < oo.

n—oo PeP,,

With an arbitrary loss function it is not even clear that rates ¢}, with ¢, /¢, — oo
are not attainable if ¢, is a rate bound. Hence we restrict ourselves to mentioning
the following relations which might be useful in connection with our definitions
(5.1) and (5.2).

LEMMA 5.1. For £(u) = |u| the following is true:
(i) (5.10) implies (5.1),
(i) (5.2) implies (5.9).

PROOF. The assertions follow easily from

sup cn/|n(") — k(P)|dP™ = sup /P”{cn|n(") — k(P)| > u}du
Pep,, PeB,

> up sup P"{cnln(") — k(P)| > uo}
Pcp,

for every n € N and uo > 0.0
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6. Lemmas and proofs
PROOF OF THEOREM 2.1. With Qp defined by (2.6), let

(6.1) 6k := sup D(Qpk,Qp).
Pe®y

With a distance function D fulfilling (2.2") and (2.2") we have

(6.2) sup D(Qp},Qp") <mé, for m,keN.
PePy

Since limg_,o0 8x = 0 by assumption, there exists k1(m) € N, m € N, such that
méy < 1/m for k > ki(m). Since L is slowly varying, the “Uniform Convergence
Theorem” for slowly varying functions (see e.g. Seneta (1976), p. 2, Theorem 1.1)

implies that l}f('\k’“)) — 1 as k — oo, uniformly for A € [m,2m]. Hence there exists

ka(m) such that

(6.3) ’——— - ’ <1/m for A€ [m,2m] and k > ko(m).

Let now k(m) := max{k; (m), k2(m)}. W.L.g. we may choose k(m+1) > k(m)
for m € N.

For n € N let m,, be defined as the largest m € N such that mk(m) < n,
and let 7, € {0,1,...} be the largest r such that my(k(m,) + r) < n. Let
kn := k(my,) + r,. We have

(6.4) Mupkn < n < my(k, +1).

Notice that m., as well as k,, n € N, tend to infinity. Since k, > k(m,) we
have m, 8, < 1/m,. Using B,, C Py, we obtain from (6.2) that

(6.5) lim sup D(Qpy,Qp ") =0.
n-—o0 PG‘B,, yvn
For each n, we partition z,. .., T, into m, groups of size k,, and define
Mn
(6.6) R (zy, ..., 20) = my? Z KE) (L0 1)k 415 -« - Tikn)-
R i=1
In the definition of #{™), only the variables (x1,...,Zm,k,) are used. Observe
that the number of variables neglected, i.e. Zm k,+1;---,Zn, is smaller than m,

(since n < my(kn+1)), hence a vanishing fraction of n: We have m,/n < 1/k(mx).
The following relations hold for any 8 € (0,1/2]. Below they will be applied
for 3 =« and B =1/2. From (6.6),

67) 2@ (z1,...,2n) — K(P))

= m;(l_ﬂ) chn (K(k")($(i—1)kn+1, s Tik,) — K(P)),

=1
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with &, := mBk2L(ky). Hence

(68) Cn/én = 0nmg_ﬁ7
with
(6.9) On = n®m; “k;*L(n)L(k,) "

Relation (6.4) implies
(6.10) 1< nom; %k < (L+k;h)°.

Since ky, > k(my,), relation (6.3) implies

1L(>\kn)

L) — 1‘ <1/m, for Xé€ [mp,2my).

Applied with A = n/k, we obtain

(6.11) ‘Li(% - 1‘ < 1/mn.
From (6.9)—(6.11),
(6.12) Tim 9, = 1.

Let ™
Hp(uy,y .oy Um) == m~1-9 Zui.
i=1
From (6.5) we obtain

lim sup D(Qp% o Hm,,Qp" o Hp,) =0.
n—0 Pep,, s

Together with (6.7) this implies

(6.13) lim sup D(P" o0& (k™ — K(P)),Qp" o Hp,) = 0.
nTC PER,

Ad (i). Assume now that a € (0,1/2) and that |u[*/(!~®) is Qp-integrable,
uniformly on B. From Lemma 6.2, applied with @ = Qp, Q = {Qp : P € P}
and r = 1/(1 — a), we obtain from (6.20) that

m—(l_a) i U;
i=1

lim sup QF {

m—o0 PE‘IS

>u} =0 for every u > 0.
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For 3 = o we therefore obtain from (6.13) that

(6.14) lim sup P™{é¢,|&™ — k(P)|>u} =0 for every u > 0.
T Pep,

Since 8 = « implies ¢, /én, = ¥, — 1, this relation holds with ¢, replaced by cy,
which is (2.9).

Ad (ii). Assume now that u? is Q p-integrable, uniformly on B. From Lemma
6.1, applied with Q = Qp and Q := {Qp : P € P}, we obtain from (6.18) and
(6.13) for 8 =1 that

(6.15) lim sup D(P"oé, (k™ — k(P)), No,02(py)) = 0.
n—o0o0 Pefpn

Since (see (6.8) and (6.12)) m~/*"%c,/én — 1, this proves (2.11). O

LEMMA 6.1. Let Q be a family of distributions Q | B with the following
properties.

(6.16) /uQ(du) =0 for Qen,
u? is uniformly integrable on Q, and
(6.17) inf 02(Q) > 0.

Qe

Then the distribution of m™Y/23"" wu; under Q™ converges to N ,2(Q)),
uniformly on Q € 9, i.e.

m
(618) "}i_r'noo cs;)lé%D (Qm ((ul, - ,um) — m_1/2 ZUz) ’N(O,O’Z(Q))> = 0.
=1

PROOF. From Theorem 5.6 in Petrov ((1995), p. 151), applied with

g(u) = Tml[Tm,OO)(|u|) + [ull(O,Tm)(lul)

we obtain that, with a universal constant A,

sup
teR

Q™ {m_1/2 Zuz < t} - N(O,az(Q))(_Oo7t]
i=1

1
<A (;2—@—) / Py, o0 ([u))Q(du)

—1/2
iy RN

m

< 4 (525 [ Wt o) + ).
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The assertion follows for 7,, = m!/4, say. O

The following is a uniform version of (the easier part of) the Lemma of
Marcinkiewicz and Zygmund (see Chow and Teicher (1978), p. 122, Theorem 2).

LEMMA 6.2. Let Q be a family of distributions Q | B with the following
properties.

(6.19) /uQ(du) =0 for Qe€L,
and |u|" is uniformly integrable on Q for some r € (1,2).

; ;Fhen gz_.l/ Ty Ui, m € N, converges under Q™ stochastically to 0, uni-
ormly on 9, i.e.

(6.20) lim sup @™ { > u} =0  for every u > 0.

m
m~r E U
i=1

PROOF. Since

tim_ 509 =™ [ 0l L e o) (1) Q(ck) = 0

for every ¢ > 0, there exists &, | 0 such that

lim sup e;’/Iulrl(ml/remm)(|u|)Q(du) = 0.

Let
hom () i= ulip mi/re,,  ([u])-
We have
(@ 5= [ B (@) = = [ 61t 7y 0y (D QL)
hence

i Q)] < / Lt/ oy () @ (lt)
< m(r=V/re (D / il Lt /e oy ([ Q).

This implies
lim m /" sup |um(Q)| = 0.
0

Hence
(6.21) lim sup |m™/" Z (i) = m™ T Z(hm(ui) — um(Q))] = 0.
m—0 QeN i=1 i=1
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Moreover,

Qn {i £y hmw)} < mQ{ul > m"/"em}
=1 i=1

<exr / ™ Lt 0y (1) Q)

Hence

(6.22) lim sup Q™ {i u; # i hm(ui)} =0.
i=1 i=1

The assertion follows from (6.21) and (6.22) if we show that
m YT (hm(u:) — pm(Q)), m € N, converges under Q™ stochastically to 0,
uniformly on ). We have

=20 [ (h0) = (@) Q)
< mir-2/ / (R (1)) 2Q(du)
— m=Ir / W?1ig e,y () Q(d)
<em [ lur Quaw,

hence

m—00

lim m!~2/" sup / (o () = 1 (@))?Q(ds) = 0.
QeN

Therefore, m™ Y7 57 | (hm(ui) — pm(Q)), m € N, converges to 0 in quadratic

i=1
mean, hence also stochastically, uniformly on 9.0
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