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Abstract. Let n > 3 and let X1,..., X, be positive i.i.d. random variables
whose common distribution function f has a continuous p.d.f. Using earlier
work of the present authors and a method due to Anosov for solving certain
integro-functional equations, it is shown that the independence of the sample
mean and the sample coefficient of variation is equivalent to that f is a gamma
function. While the proof is of methodological interest, this conclusion can also
be arrived at without any assumptions by appealing to the Laplace-Stieltjes
transform, as in the Concluding Remark (Section 3).
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1. Introduction and main result

Two of the statistics most often used in both theory and applied work are
the sample mean X,, and the sample standard deviation S,. It is also well-known
that the independence of X,, and S, (based on a random sample) characterizes the
normal population. Various results characterizing the parent distribution through
various properties of statistics can be found in Kagan et al. (1973)—abbreviated
in what follows as Kagan et al. (1973), Johnson and Kotz (1970), Lukacs and
Laha (1964) and the references therein. However, it seems that characterization
problems based on the properties of the coefficient of variation V,, = S,,/X,, have
seldom been studied. This may be the reason why V,, is not used often.

In this context, we establish

THEOREM. Letn > 3 and let X,,..., X, be n positive i.i.d. random vari-
ables with their common distribution function having a probability density function
f(z). Then the independence of the sample mean X, and the sample coefficient
of variation V,, = S,/ X, is equivalent to that f is a gamma density.
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The above could possibly be misunderstood as an immediate consequence
of a known theorem such as Theorem 6.2.9, p. 202, Section 6.2 of Kagan et al.
(1973). As a matter of fact, their theorem needs the condition of the constancy of
regression of V,, on X, which is weaker than that of the independence of V,, and
X.,., but, on the other hand, presupposes the existence of some moments of the
X;’s. Our theorem holds without any conditions on the moments of the X;’s.

Three lemmas used to prove the main theorem will be presented in Section 2;
the proofs for those lemmas are partially based on that of Anosov’s theorem (1964)
and the recent result of Hwang and Hu (1994). Section 3 gives the proof of the
main theorem.

The conclusion of the theorem can be arrived at without any assumptions, by
appealing to the Laplace-Stieltjes transform, as pointed out by a referee—see the
Concluding Remark at the end of Seciton 3. Our proof is given here, for the less
general situation, as of methodological interest.

2. Three lemmas

For convenience of citation in the proof of the three lemmas used for proving
the main theorem, we cite certain recent results obtained by Hwang and Hu (1994)
as follows:

Define a non-linear transformation (21, ..., Zx) — (t1,-..,tn—2, Tn,Vn), Wwhere
n—i+1 12 T — Tp, 1 i—lxk—:T:n
2.1 ti=|————x . - s
21) [(n—l)(n—z)} Sn +n—z+1; Sn
1<i<n—-2

n

_ 1 _

In = E § T, Un = Sn/xna
i=1

the summation in (2.1) is taken as zero for i = 1, and sy, is the standard deviation
of z1,...,Zn. Then, Theorem 2.2 of Hwang and Hu (1994) gives

Ailt) = [(’TE;—Z—)ETL;—U] " - i [(n— k:)Tz;—lk + 1)]1/2‘“"

k=1

1<i<n—-2

(22)  Ana(t) = Fﬁlﬂ—ﬁLﬂ Sf[m k;;1k+lJU2¢h

1

k=
/2 n-2 _ 1/2
szv ;h2] [ o 1]-%
— kY(n—k+1)
where A\;i(t) = (z; — F5)/$n and fn2 =1—1t2 — .- —t2_,. Thus, we have
(2.3) S =0, Y N@H)=n-1
i=1 i=1

(24) x; = H_In[’Un . /\z(t) + 1], 1< <n.
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We have then:
LEMMA 2.1. Letn > 3 and let Xy,...,X, ben positive i.i.d. random vari-

ables having a p.d.f. f(z), and let X,, and V,, be the sample mean and the sample
coefficient of variation. Then, the joint p.d.f. f(z,v) of (Xn,Vn) is

(2.5) en -z g2 / /B 7 F(@(h(t) + 1))du(t)

for z > 0 and 0 < v < \/n, and zero otherwise, where ¢, = nly/n(n — 1)(*~1/2,
the functions \;(t) are defined as in (2.2), du(t) = f,:_léthl, «v.,dty_o and the set
B, depends on v, for 0 < v < /n, as follows:

— -1
max{———\/j—— —1} <t £ ——

(n—1)’ n—1
/2 1/2
(26) Byn,=<(t: n—k+2\"' 1/2 k=1 (>
) - b — <t < —
max — -1, —fi 1 p St < —
2<k<n-2,
and fi=1—t} —---—t?,1<i<n-2.

LEMMA 2.2. Under the condit_ion of Lemma 2.1, assume that X,, and V,, are
independent. Then, the p.d.f.’s of X,, and V,, are respectively given by

(2.7) fx, (@) =an 2"t [f(@)]", >0

and zero otherwise, where a, is a normalizing constant;
(2.8)  fu.(v) =b, -0 2. / . / i fodi(8) + 1)du(t), O0<v<+/n
Bv,n

and zero otherwise, where b, is a normalizing constant, and the A\;(t) and B,
are defined as in (2.2) and (2.6) respectively.

PROOF. Let fx (z) and fv,(v) be the p.d.f’s of X, and V,, respectively; it
follows from Lemma 2.1 and the independence of X, and V,, that the joint p.d.f.
of (X,,V,) must be equal to the product of their densities,

(@) fra@) = e -zt 2 / - /B 7 F(@(oA(t) + 1)dp(t)

for all z > 0 and 0 < v < y/n. We see that fx (1) # 0, since otherwise the right
side of the equation would vanish for all 0 < v < 4/, which is impossible. Set
z = 1 in the equation. Then, we obtain the expression for fy, (v) as given in (2.8).
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Now substituting (2.8) in the equation, and dividing both sides of the equation by

V"2, we get

Fra@) b [ [ A0 + Ddutt)
mensn e [ [ mL ) £ 1)du).

Note that if the variable v is in the neighborhood of origin, say 0 < v < v/n/(n—1),
then the domain of integration B, , is independent of v; first by using this fact,
and then letting v — 0% in the new equation, we obtain the expression for f¢ ()
as given in (2.7). Thus, we have established Lemma 2.2. O

LEMMA 2.3. (An integro-functional equation) Under the conditions of
Lemma 2.2, the following integro-functional equation holds:

(2.9) [ mimatte A0 + 1)dutt)

= en- [f(@)"- / wi s F(oAe(t) + 1)du(t)

v,n

for all z > 0 and 0 < v < /n; where ¢, > 0, depending on n, is a constant, the
Xi(t) and B, ,, are defined as in (2.2) and (2.6) respectively, and t = (t1, ... ytn—2)
is a point on the (n—2)-dimensional set B, 5. In particular, if v is in the neighbor-
hood of the origin, then the domain of integration B, is independent of the vari-
able v, that is, By n, is replaceable by By in (2.9) for 0 < z and 0 <v < /n/(n—1),
where

-1
-1<t <
n—1 12 1/2
(210) Bp=qt: n-k+2 : 2Ly < TR 0
max — -1, —fil1¢ St < n—k
2<k<n-2
and fi=1—-t3 — - —t2,1<i<n-2.

PROOF. This lemma follows immediately from Lemmas 2.1 and 2.2 and the
independence of X,, and V,,. O

3. Proof of the Theorem

It is easy to show that the sample mean X, and the sample coefficient of
variation V,, = S,/X, are independent if the parent population is gamma. This
fact follows immediately from Lemma 2.1 by taking the first relation in (2.3) into
account.

Conversely, it follows from Lemma 2.3 that f(z) satisfies the integro-functional
equation (2.9) for allz > 0 and 0 < v < \/n if X, and V,, are independent, thus it
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is of the same form as considered by Anosov (1964), as reproduced in Kagan et al.
(1973), pp. 143-148, Section 4.9. The roles of ¢, s, ¢ used there are played here by
Z, Z-v and ¢; and, instead of the range of integration [0, 27| for ¢, we have B, for t,
this set not depending on v if 0 < v < /n/(n—1). If u := log f on a fixed maximal
open interval I C (0,00) where f > 0, then defining L, ;u(z) and proceeding es-
sentially as in proving Anosov’s theorem, we conclude that u(z) = A+ Blogz+Cx
for z € I, then that I = (0,00), and finally that f is a gamma density.

Concluding Remark. A referee has pointed out that, while our proof is of
methodological interest, the conclusion of the main result can be arrived at, un-
der no assumptions whatever, by appealing to Laplace-Stieltjes transform. For
simplicity, write (respectively) S, V for S,, V,, and let

T=Y X,=nX and $?=) (X;-X)% V=5/X

Let F' be the common d.f. of the X; and ¢ their LST: ¢(t) = [;° e *XdF(z),
t > 0. If X and V are independent v.r.’s, then, for every t > 0, the r.v.’s T2e~tT
and V? are bounded, positive, independent r.v.’s and so

E(T?e™*T . V%) = E(T?tT) . EV?(< x)

easily leading to

B (Y X3e™T) = const.E | 30 X;Xpe™T' |,
J#k

whence
9" (t) - ¢(t) = (¢’ (t))?

on (0,00). The only (non-trivial probabilistic) solutions are given by ¢(t) = (1 —
at)~? for some a,b > 0. Hence F has gamma p.d.f. by inversion formula for LST.
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