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Abstract. Let X = A2 @G be a scale mixture of a multivariate normal dis-
tribution with X, G € R™, G is a multivariate normal vector, and A is a
positive random variable independent of the multivariate random vector G.
This study presents asymptotic results of the conditional variance-covariance,
Cov(X> | X3), Xi € R™, m < n, under some moment expressions. A new
representation form is also presented for conditional expectation of the scale
variable on the random vector X; € R™, m < n. Both the asymptotic expres-
sion and the representation are manageable and in computable form. Finally,
an example is presented to illustrate how the computations are carried out.

Key words and phrases: Heteroscedasticity, orthogonal polynomials, Laguerre
polynomials, Laplace transform.

1. Introduction

The problem of approximating the scale mixtures of normal distributions has
received a lot of interest the last decades. Keilson and Steutel (1974) established
moment measures of the distance of mixtures from its parent distribution and
showed that Pearson’s coefficient of kurtosis plays an important role as a metric.
Heyde (1975) and Heyde and Leslie (1976) studied the same properties in greater
detail and related the moment measures of distance to more familiar uniform mea-
sures. Using a more unified approach, Hall (1979) sharpened Heyde and Leslie’s
results by reducing a universal constant value. Shimizu (1987, 1995) generalized
these results by providing Hermite-type expansion of these mixtures. Within the
same framework Fujikoshi and Shimizu (1989) obtained a Hermite-type expansion
of multivariate mixture distribution when the scale is distributed in a neighbor-
hood of one.

This article considers expansions of conditional variances for scale mixtures of
normal distributions. We accomplish these expansions by adopting ideas found in
Shimizu (1987). To state the problem, we assume that X € R", n > 2 is a (non-
degenerate) random vector expressed by the stochastic representation X = Al2@q.
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It is assumed that A is a positive non-degenerate random variable independent of
the n-dimensional Gaussian random (column) vector G. The random vector G,
however, has mean 0 and a positive definite covariance matrix ¥. Cambanis et
al. (1997) have shown that Cov(X: | X; = 1) = E[A | X1 = x1] Zg);, where
Yo = Yoz — 22121‘11212 with ¢; and G; are m-dimensional (m < n) and £y
is m x m-dimensional. For example, ¥1; is the covariance matrix of G, etc. It
is clear that scale mixtures of normal distributions do not have degenerate condi-
tional variances, as in the normal theory, and so provide heteroscedastic examples.
Cambanis et al. (1997) and Fotopoulos and He (1997) have studied various prop-
erties of this conditional variance and obtained several expressions with respect to
the moments and/or Laplace transform of A. Their work provided a mathematical
development for the behavior of the scale mixtures of multivariate normal distri-
butions under conditioning. In the same spirit, we now continue to investigate the
possibility of expanding E[A | X1 = @] in terms of the moments of A and the
confluent hyper-geometric functions. We provide explicit ratio expansions and find
bounds for the error terms. Even though some of the intermediate calculations
become a little tedious, the new expressions derived here are manageable and in
a computable form.

Throughout this work we shall use vector notation. The z A1 = min(1,x)
and z V1 = max(1,z). The organization of the paper is as follows. The actual
expressions of the conditional expectation are introduced in Section 2, where the
main results are stated and various conclusions drawn. The proofs of the theorems
are deferred to Section 3. In Section 4 we present an example and illustrate how
the computations are carried out. Section 5 provides an overview of Laguerre and
Hermite polynomials, which are connected with the main results.

2. Background and results

2.1 Using Laplace expressions
Cambanis et al. (1997) have shown that if the Laplace transform of the scale

random variable A satisfies

(2.1) w™? 1Ele™*4)du < 00  and / u™? 1 E[Ae™*A)du < oo,
[0,00) [0,00)

then for m =1
(22) ElA| X, = 1]
=FE [A /Ooo e=t"A/2 cos(a;lt/al)dt] / E [/000 et A2 cos(:l:lt/al)dt} ,
and form > 1
(2.3) E[A]| X = z1]
=F [A /Ooo tm/2e—t"’A/2J(m_2)/2(||m1||21_11t)dt] /

*© 2
E |:/0 tm/Ze—t A/2J(m__2)/2(|12}1||21—11t)dt:| .
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Evaluating (2.2) and/or (2.3) can be a very difficult task. Thus, it is proposed
to provide an approximation expression in place of (2.2) and (2.3), which will, of
course, be both manageable and in a computable form.

It is clear that f(A) = e™? *A/2 has absolutely continuous derivatives of any
order on any finite segment [a,b] C (0,00). Based on this information and the
assumption that E[AZI is close to one, (clarification of the closeness to one will be
displayed in Theorems 3 and 4) the conditional E[A | X; = x;] is approximated
as follows. Conveniently, throughout the results we shall write

a; = E[A(A/E|A] - 1)'], a; = E[(A/E[A] - 1),
for i>1, and ag =ag = 1.

Then the following theorem is in order.

THEOREM 1. If m > 1 and if the Laplace transform of the scale random
2—-3

variable A satisfies (2.1) and Ap i j = E[(A/E[A’]“A1)(,,,+1)/4 |A/E[A]V1—1]F] < 0o
for some k € N and j =1 or 2, then the following expansion is in order,

Yo LT TV (220 /2B1A]

_70.7

Y50 &L (12 1/2E[A1>

_ L (@, 4)
Lgl’n/2—1)(m1,A)

E[A I Xl = 1121] e 6(:31:14)

+e(m, A),  say,
where LEC) (z), 7 >0, ¢ is independent of j, and > 0, are the generalized Laguerre
or Sonine polynomials, and

Ie(wli A)] S C(k> &, A)Am,k,Zv

where C(k,x,, A) is a positive constant depending only on k, ||a:1||21—11, and some
moments of A. Specifically,

Ck,z, A)
3Im—2

(m—1)/4 (m-1)/4
a2 (P k) BA Tk

= Limm_l)(“’l’AP k:'F( ) ”w ”(m 1)/4 k
wexp(||z1 |3, /2E1A]).

The next theorem copes with the situation where m = 1.

THEOREM 2. Ifm = 1 and if the Laplace transform of the scale random
2-j3
variable A satisﬁes (21) and Ak’j e E[W};ﬁ“wlA/E[A] vi1-— llk] < o0 fOT




734 STERGIOS B. FOTOPOULOS AND LIJIAN HE
some k € N and j = 1 or 2, then the following expansion is in order,

Py SCVENCEITIED
+ €(z1, A)

S8 = Hay(ar /o1 (2B ) )

— Hk:("l;la A)
Hy(z1,A)

E[A'Xl =IE1] =

+ €(z1, A), say,

where Hi(z), i > 0, are the Hermite polynomials of degree i and T > 0, and
]6(:1:1, A)l S C(k7 x1, A)Ak,Q’

where C(k, 1, A) is a positive constant depending only on k, z1, and some mo-
ments of A. Specifically

H 1, A T 1 2k
C(k,z1,A) = llllkk(fi,A))? (2EE{4_])1/2 5% (k ) exp(z2/203 E[A]).

Remarks. 1. Note that if E—m becomes close to one, then A,, x2 (m > 1)
becomes small as k& € N increases. We may omit the error term presented in
Theorems 1 and 2 in calculating the conditional expectation.

2. Observe that, for z > 0,

(2.4) L (z) = ( J+J>M(—j,%;:c)

m,
= < 2] >1F1 (—],5-;:1:), and
L2 V() = Z (J ty ) (=z)* 115)z
J i!

i=0 j—t

where 1 Fy(a,b,z) is the confluent hyper-geometric function and M(a,b, x) is the
Kummer’s function (see e.g. Rainville (1960), p. 203). Thus, the expression in
Theorem 1 may be presented either with respect to the confluent hyper-geometric
function or in terms of the Kummer’s function.

3. Computing the expressions of the main terms and computing the bounds
of the error term of the conditional expectation, E[A | X; = 1], is now a routine
work. The example in the next section indicates various steps needed to compute
both @; and a;, for i > 1. Moreover, it can be found that both the Hermite and
Laguerre functions are part of most popular mathematical packages. In light of
this, we may now claim that these new results add more insight about the behavior
of the equations (2.2) and (2.3).

Based on the knowledge presented in Section 5, it is now clear why the quan-
tity F?KI needs to be close to one. Furthermore, with the background developed
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in the same section, we alternatively furnish a new representation formula for the
conditional expectation of A given X; = @, for both m > 2 and in Theorem 4 for
m = 1.

THEOREM 3. If m > 1 and if the Laplace transform of the scale random
variable A satisfies (2.1), and if the sequences {G, }5>, = {E[A(A/E(A)-1)"|}30
and {an}520 = {E((A/E[A] - 1)"|}3%0 satisfy

Ao = max {O, — limsup(2v/n) ~! max{log |a,|, log |an|}} < 00,

n—o0

then
E[A | X1 = :1:1]
=Y &L (- 2E(AD/ Y a; L (2130 /2ELA)),
7=0 3=0

on every compact subset A(Xo) of |]:1:1||§:_1/2E[A].
11
THEOREM 4. If m = 1 and if the Laplace transform of the scale random
variable A satisfies (2.1), and if the sequences {a,}32 o = {E[A(A/E(A)-1)"|}52,
and {an}720 = {E[(A/E[A] - 1)"[}3%o satisfy

To 1= max {0, —limsup(2n + 1)~Y2 max{log |(2n/e)™ %a,|, log |(2n/e)"/2&n|}}

< 00,
then
o0 — o0
a. a»
EA| Xy=m]=) jl_éjH%(wl/Ul(?E[A])m)/z j,—;jHM(xl/al(?E[A])l/z)
=07 i=0 7

on every compact subset S(7o) of z1/0 — 1(2E[A])Y/2.

Remark. In view of Theorem 2, the moments E[A(A/E[A] — 1)7], and
E[(A/E[A] — 1)7] for any j € N, are then uniquely determined by the expansions
presented in the numerator and the denominator, respectively, of both Theorems 3
and 4.

2.2 Using Moments Ezpression
Cambanis et al. (1997) have also shown that if m > 2, or if m = 1 and
E[AY?] < 00, then

(25) ElA| Xi =]
= B[4 exp(— || % /24))/ E[A™™? exp(~ | [, /24)]
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Here again, we are concerned with an asymptotic expansion of this conditional
expectation, under the assumption that the unconditional moments of the scale
variable exist. Conveniently, for the remaining results we shall write

Bi = E|A(A-E[A))Y], Bi=E[(A-E[A])Y, for i>1, and fo=pf =1.
The proposed result is then formulated as follows:

THEOREM 5. Ifm > 1, or if m = 1 and E[A1/2] < 00, and if the scale

i ; | — E[AW/EAVHT
random variable A satisfies Ay rm,; = E[(ﬁ(/’;‘a/[ﬁ]’:l\)/,lnﬂ -|A — E[A]|F] < oo for
somekeN, r=1,...,k, and j =1 or 2, then the following ratio expansion is in
order,
“m B;
+ (i3 /272 2500 Aimpa (il 4)
E[AlX]Z:Bl] o 1,6 +€($1,A)
+ (i1 /2) 7™/ 5, -J)‘]’m/2(“z1”2 1, 4)
m/z(ml,A)
= ————= 4 ¢z, A), say,
Am/2($1,A) ( ' ) v
where, for (s); =T(s+1)/T(s),
& (i-1 y
. = - _1VitlaT Yy i1
Ajs(y,a) ; ( ; )( 17 4L 6 (Za) a , and
i g ‘
L) =3 (D) 17, v>o
1=0

Moreover, the error term may be bounded by

k—1k—s s m t2 -m/2—-r+1
le(z1, A)| < C(k, 21, A ZZ( ) ( . )(5)(5> Akrim,2

§=0r=0
with a2
Lillg o |Am/2(1, 4)]
C(k A) = 11 E[A m/2-114m/ ’
( , Xy, ) eXp( 2E[A] ) [ ] m/2(.'131,A)2

In obtaining Theorem 5, we introduce the polynomials L; ;(y), y > 0. These
polynomials are Laguerre-type. However, if the discussed polynomial is expressed
with respect to the Laguerre polynomial (L.P.), then it will be noticed that the
corresponding L.P. has an upper index depending on the lower one. It is well
known that for the L.P. we insist that the upper index be independent of the
lower one because many properties which are valid for the independent case, fail
to be valid for the dependent one.

Note that for sufficiently large k € N, the conditional expectation presented
in Theorem 5, when the scale variable is concentrated to its expected value, may
be simplified by just omitting the error term in the same way as for Theorems 1
and 2.
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3. Example

In this section, we present a specific example. We illustrate in an algorithmic
procedure how to evaluate the performance of the approximations given in Theo-
rem 2. The algorithm consists of three major steps. The steps provide an outline
of the order in which the quantities involve may be computed.

Without loss of generality, we assume that G is a bivariate normal distribution
with mean zero and a fixed variance-covariance matrix ¥. The scalar random
variable A is assumed to be a functional of a chi-square variate with n degree of

freedom.
Set A1/2 = /;{’w‘; and X = A'/2@G. Thus, the joint density function of X is

2
given by f.(z) = }:g:};)l\)/%(l + ”x”;f_l )=(#/2=1) " which is the bivariate student
t-density. We demonstrate how easy the approximation in Theorem 2 may be
achieved and we determine the rate of convergence when the scalar A is specified.
In view of Theorem 2, it is easy to see the expression of the c-th moment of A.

This is accomplished by first noticing that x2/2 has a probability density given
by

(3.1) Iz pe(x) = 2 e/ (n/2), for > 0.

Step 1: For any ¢ < n/2,

(32)  ElAY = F—(nl/_z) /O " (52) "> e de = (n/2)c%2~

Since the expressions in Theorem 2 are in terms of @; and a;, fori =1,...,k — 1,
it is necessary to relate them in terms of (3.2).
Step 2: If i is an integer, then the following formulae can be used

0 e Fr () aeFo() ]

p=0
to identify the main term in the theorem.

This completes the computation of the main term.

To determine the error term, we proceed as follows:

Step 3: It is clear that, |E[A | X; = z1] — Hi(z1, E[A])/Hi (21, E[A])| <
C(k,z1,E[A])Ak2. Hence, the expression that judges the quality of the rate of
convergence in the above inequality is Ay 2. To evaluate A o, we argue as follows:

As in (3.3), the following equality is in order,

1
(34) B =& [(A/E[A] AT
= Bl(A/BlA] - V¥1(4 > BiAD)

o (k\ E[API(A > E[A)])]
‘Z( bt () BAF

5|A/E[A]V1 -1}
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Lastly, to obtain a manageable expression of E[API(A > E[A])], for p =

1,...,k, we argue as in (3.2) and derive the following:
1 o
3.5 E[API(A > E[A))] = =—= =) 2?2 le%dx
(3.5) 414 > BAD) = oo L (5)
n
r (% -p El4)
= (n/2)P

r(z)

where I'(a, z) is the incomplete gamma function.

Upon completing Steps 1-3, one may now substitute equations (3.2)—(3.5)
into Theorem 2 and find an expression for the approximation of the conditional
expectation and an expression of the bound of the error term. The approximation
and the bound of the error term are in computable form and are very easy to be
implemented.

4. Proofs

PROOF OF THEOREM 1. In solving Theorem 1, we express the approxima-
tions in terms of the Kummer’s function instead of Laguerre polynomials. This
was chosen for uniformity purposes. It is, however, clear from (2.4) that we may
interchange these functions without causing any difficulty.

By the Taylor expansion formula, for any A > 0, we have that if A is fixed,
then

k-1 t21(A — E[A])

et 2A/2 _ —t°E[A]/2
(4.1) e~ ElAl/ ZO( 1) 2
+ o~ (ElA+0(A- E(ap)/2 (-DFE*(A - E[A])*

k12k
= Gk(t, A) + Ag(t,A), for @€ (0,1).

In view of Fubini’s theorem of successive integration, Lemma 3, and the fact

that M(a,b,z) = e*M(b— a,b, —z) (see e.g. Abramowitz and Stegun (1970), Eq.
13.1.27), it follows that,

4D [ B A Tyl )

22y |kt (T .
= 1 2 E[A(A/E[A] - 1Y
T ‘;( ; ) [A(A/E[4] - 1)]

M (G +3. 5l 2E(4)
2 [y ””exp( |2, /2E(A])
E[A]m/2
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k! ﬁ+j . m
> ( z ) BIA(A/B(A] - 0PIM (5, 2 a3 /2E(4))

§=0
= 22y |72 B A Py (i, ), say.

Similarly, for 6 € (0,1),

@3) [ B A ayalla g i
[¢]

2722|5772 exp(~ || ]I% /2(BLA] + 6(A — E[A)))
- E[A]m/2

_(%;k)

5 1 A/E[A]-1 \F
{1+6(A/E[A] - 1)}/ (1 +0(A/E[A] - 1))

and

M (=, T o2 /2(ETA] + 6(A - E[Am)}

= 22| B LA e (21, 4),  say.

Using the same arguments for the numerator, we can reveal an expression of the
form:

(44)  BlA| X = @]
exp(—llmil3_ 2B1A) S350 35 ( 70 M (=5 5 2o /2B1A]) + €1 (@, 4)
exp(= el /2B1A4) S50 a; (5;7) M (=3, 25 1122 /2B(A]) + ea (e, A)

After some manipulation and (2.4) the expression of the approximation in
Theorem 1 is in order.

To understand the usefulness and powerfulness of Theorem 1, we also need
to know how small the quantities €; (-, -), for ¢ = 1,2, are. To answer this, two
preliminary results are required.

Note that
m
r{— oo
(45) M (_j,ﬂ,z) = __(_ZLezz—m/2+1/ e‘ttm/2+j—1Jm/2_1(2\/E)dt
) i)
2

(see, e.g. Gradshteyn and Ryzhik (1980), Eq. 9.211.3) and

LI el
(4.6) Ju(z) < , for v> —3

I(v+1)
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Combining (4.5) and (4.6), it follows that for Im(z) =0 and z > 0

(4.7) lM( _7, )l F( 1+ e% 2~/ 2H1 (5)(m—2)/4

0

I 3m—2 N j)
= ;,11 ezz—(m—'l)/‘l.
r(3+9)
Thus, substituting z with ||:1:1||§:_1/2(E[A] + 0(A — E[A4])) in (4.7), the two error
terms in (4.4) can be bounded as follows

8w|3

(4.8)  leap(z1, 4)|

m om-/ap (3M =2 | ) prajem-v/e
gy 4
<| 2
k

m (m—-1)/4
O (G +k) ol

1

E[ A/E[A] -
{1+ 0(A/E[A] - 1)}m+07%

1+ 0(A/E[A] - 1)

]
and
(4.9) e k(zi, A)|

m o\ 2T <3m4_ 2 k) E[A)m-1/4
< | 2
k r(5+k) i

A
Elarea/Ea —nyen

A/E[A] -1
11 6(A/E[A] - 1)

|

Note that for 6 € (0,1)

A for —4——
E[A] E[A]
A

v

1
(4.10) 1+ 6(A/E[A]—1) >
1 for ——>1.
E[4]
Elaborating (4.10) the proof of Theorem 1 is completed.

PROOF OF THEOREM 2. From (4.1) and Eq. 3.952.9 in Gradshteyn and
Ryzhik (1980), it follows that for m =1

(4.11) /O ~ E[Gi(t, 4)) cos (%t) dt
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:kz_:l (—1)! E[(A '2[;3[1‘1] ]/ 427 OS( )e—tzE[A]/Zdt

Jj=

VT  E[(A/E[A] - 1)’
" B4 1/22 712

‘ exp(—x1/201E[A])sz($1/01(QE[A])W),

where H;(-) is the Hermite polynomial. Similarly, it can be seen that

(4.12) /0 ” BlAk(t, A)] cos (i—it) dt

VA
~ GEA)

k
E|1/{1+6(A/E[A] — 1)}'/2 (Hé(/f/[’;][;]1_1)> /k!2’°

exp(~a3/203 (E[A] + 6(A — E[A)))Ha

-(z1/(207 (E[A] + 6(A - E[A])))1/2)]
= egsx(z1,A), say.

Since f0°° 2k o~p?1% gy — 5,%,; %, then eg(x1, A) can be easily bounded as

follows

(413)  lea (e, 4)| < /O B[ A(, A) e
T (2%
B <2E[A]>1/227(k) .

A/E[A] -
1+ 6(A/E[A] - 1)

k]
Finally, substituting relation (4.10) into (4.13) the proof of Theorem 2 is now
completed.

1
E [{1 + 6(A/E[A] — 1)}1/2

PRrROOF OF THEOREM 5. Note that if «, #, and 7y are continuous maps from
(0,00) to any real subset and, 8 and « are differentiable with respect to a and 3
respectively of order &k, k € N, then by the Leibnitz’ rule for the k-th derivative of
product, we have that

Dy _DdB g kl(‘l)d'“"”d’ﬂ for k> 1
=0

1) =i da’“ i ) aFT dad

J
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Similarly, by the Leibnitz’ rule, it can be also seen that for n € N and a > 0

l

wis) . Z( otk

=0

l
=e® Z (’lc) (=1)!*(n + a)pzmtoF

k=0
=" % "L pia(z), for LEN,

where D is the differential operator -%.

Note that L; n44(2) is a polynomial of order ! of z~!. However, if a = 0, then

d
(4.15") D!'(z"e %) = z"e™" Z (;) (D" )z ™F = z"e "L A (2),
k=0
for 1eN,

where d = nmin(1, —) leN, ie., if l > n then L, n+a(a:) is just a polynomial of

order nn of 1. Set y(a,t) = a ™%t */2a and B(a,t) = L. Note that Tt may be
written either as v + 1 or v, for v € N. Thus, combining (4.14) and (4 15), the
following result is in order

—-m/2+41 1-1 1—
/2= /20y _ 2\ " -1 d'=7
(410) a2 ) = <5> Z( i) e

€ t2
Jj=0 -
(%)
( m/2 e—t2/2a> ] ( _])
da’

/241
_ <t_) - a—m/2e—t2/2a
T\ 2

-1
I-1 i+1 2 i

£2 —-m/2+1 .
= (5) a"m/ze_t /20/\l,m/2(t2,&)-

By Taylor’s expansion series around E[A], it follows that for fixed A > 0

k—1 _ j )
(4.17) A—m/2,~t2/24 _ Z (A_f_[’_(lLDJ(E[A]—m/%%z/Z’E[A]) + Ag(A%,1)
Jj=0 '

= Sk(4,t) + Ax(A4%, 1),

where A* = E[A] + 0(A — E[A]) and 6 € (0,1), and t = ||&[|-1.
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In connection with (4.16), we now present an explicit form of the E[Sk(4,t)]
as follows.

(4.18)  E[Sk(A,1)]
— E[A]—m/Qe—t2/2E[A]

For the residual term, we proceed as follows. Observe that A* > A for A < E[A4],
A* > E[A] for A > E[A]. Thus, E[Ag(A*,t)] can be bounded as

(4.19)  E[A4(A*,1)]
(SR @)

(AV E[A]"
[(A A E[A])m/271

4~ ELAIF].

This completes the proof of Theorem 5.
5. Laguerre and Hermite polynomials and series

In this section we borrow a few standard ideas and definitions from the theory
of the classical orthogonal polynomials in order to make our results more revealing
and easy to be extrapolated. Rusev (1984) is considered a standard reference book.

5.1 Definitions

It is known that every system of orthogonal polynomials { P,,(2)}52, is linearly
independent. In particular, for every integer v > 0, {P,(2)}22, its basis is in the
space of all polynomials with degree not greater than v. This property, together
with the orthogonality, leads to the important statement that every system of
orthogonal polynomials is the solution of a linear recurrence equation of the kind

(5.1) nynt1 + (2 = Br)yn + YnYn-1 =0,
where a,,, and v, > 0 for n € N — {0}.

In other words, for every z € C and n € N — {0}
(5.2) onPri1(2) + (2 = Br) Pn(2) + YnPn-1(2) = 0.

Now,ifa, =n+1, 8, =2n+a+1, v, =n+a,anda € R—{-1,-2,...}, then
P,(z) = Lﬁla)(z), i.e., they are the Laguerre polynomials.

Let {P,(2)}32, be a system of polynomials orthogonal in the interval [a, ]
with respect to the weight function w(-). This system is a solution of the recurrence
equation of the kind (4.1). However, it can be shown that the system of functions

(5.3) On(z) = —/ @dt nenN,
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holomorphic in the open set C — [a, b], is also a solution of (4.1). The functions
Qn(2), n € N, are called functions of second kind. In fact, it can be shown that
the system {Qn(2)}32, is a second solution of the equation (4.10) in the open set
C —[a,b], i-e., Vz € C— [a,b] the systems {Pp(2)}52 and {Qn(2)}7%, are linearly
independent.

Therefore, the Laguerre functions of second kind are given by

o0 s . (a)
(5.4) M®(z) = — / t exPi t)zL" Og  nen,
A —

where a > —1, and z € C — [a,b].

5.2 Asymptotic formulas
If o € R—{-1,-2,...}, the asymptotic behavior of the Laguerre polynomials

Ls,a) 2)}%2_, on the ray (0,00) is given by Fejer’s formulas
n=0

(5.5) L (z) = n7Y/2 exp(z/2)z =/ 2"/ 4ne/2-1/4
: 2 2T TN @)
{cos ((27rx) 5 4) + 1§ (a:)} ,

where I{(z) = O(n=1/2) on z € (e,w), 0 < € < w < 00, for sufficiently large n.
If we are interested only in the growth of Lgf')(m) as a function of n, we can
use the following formula

(5.6) L (z) = O(n®), B =max {% - i,a} ,

which is valid uniformly on every interval [0,w], 0 < w < 0o, provided that a #
{-1,-2,...} and are real.

In view of the rate of convergence, we shall present the asymptotic behavior
of Laguerre polynomials if n and z (independently) tend to infinity.

First, we define the following. If 0 < A < oo, p()\) denotes the image of
the straight line Im(w) = XA under the transformation z = w?®. This means that
p()) is the curve that can be described by the equality Re(—2)/2 = X, ie., it
is the parabola with focus at the origin and having the real line as its axis. Let
A(N) := Int{p()) : Re(—2)'/2 = A}.

If 0 < A <00, p=max{1,2)?} and @ € R— {—1,-2,...}, then 3 a constant
A=A\ p,a): Vne N—{0} and z = z+iy € A*(), p) := AA)N{z € C: |2| > p}
holds the inequality

(5.7) IL) (2)] < Alz|~¢/27 Y/ 4pa/271 /4 exp(—2 — 2Ay/n).
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5.3 Convergence of series in Laguerre polynomials
It will be seen that with series in Laguerre polynomials

(5.8) i anL{¥(z), a€eR-{-1,-2,...}
=0

we have to be careful because their regions of convergence are unbounded and this
causes some difficulties. For example, by using only the asymptotic formulas (4.5)
and (4.6) one can not prove a statement like Abel’s Lemma for power series.

As before, if 0 < A < 00, by A(\) = Int{p(}) : Re(—2)/2 = A} and by A*()\),
its exterior. By definition A(0) := @ and A(oo) := C, respectively A*(0) :=
C — [0,00) and A*(co) := @. Further, if p > max{1,2)A?}, we define A(}, p) :=
AN N{zeC:|z| < p}.

ProposiTION 1. If

Ao = max {O, —limsup(2v/n) ! log Ian|} ,
n— o0

then the (4.8) is absolutely uniformly convergent on every compact subset of A(Xo)

and divergent in A*(Xo).

To see the absolute convergence of (4.8), inequality (4.7) is utilized, namely if
a€R—-{-1,-2,...} and — limsup,,_,,(2v/n) " log|a.| > A¢, then, VA € (0, Ao)
and p > max{1,2)?}, the series

(5.9) Z anz¥ /% exp(—2) L) (2)

n=1

is absolutely uniformly convergent on the region A*(\,p). Indeed, if 0 < 7 <
X — A, then |a,] = O(exp(—(2X + 7)y/n)) and (4.7) gives that
|lanz®/ 24 exp(—2) L\ (2)] = O(n®/2~Y4exp(—2Ay/n)), ie., the series (4.9) is
majorized in A*(A, p) by

o0
(5.10) Z n®/271/4 exp(—7y/n) < 0.
n=1

5.4 Uniqueness of the expansions

A well known fact is that the orthogonal polynomials expansions have the
property (usually called uniqueness) that if > . anPr(z) = 0, then a, = 0
Vn € N. In other words, the coefficients of an orthogonal expansion are uniquely
determined by its sum. For example, in the case of a system of orthogonal
{P.(2)}>, polynomials on a finite interval [a,b] with respect to weight w(-) the
coefficients of a series of the kind f(2) = Y o~ anPn(2) are given by the equality

(5.11) a, = Ain /bw(t)Pn(t)f(t)dt, VneN, and A,= /b w(t)[P,(t)]?dt,
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provided that f(z) is uniformly convergent in [a, b].

In the case of Laguerre polynomials {L£,°'>(z)}g°=0 (¢ > —1) the interval is
infinite and we must be careful when applying representation (4.11). Rusev (1984)
has shown that

PROPOSITION 2. Let 0 < A < 0o and o > —1. If the complex function f(-)
has a representation

f(2) =) anl{(2), z€A(),
n=0
then f(-) is holomorphic in A(Xo) and Vn € N holds the equality

a / t*exp(—t) L\ () f(t)dt, VneN, and I = [In+atl)

"T I Jo T(n+1)
In particular, if f(z) =0, then a, =0 Vn € N.

5.5 Hermite polynomials
It can be seen (see e.g. Rusey (1984)) that

Hon(z) = (-1)"22nlL 712 (2?),  and

(512) H2n+1 (Z) — (_1)n22n+ln!L$11/2) (22), n € N.

Thus, the statements presented for Laguerre polynomials could also be referred to

Hermite polynomials. For the sake of convenience, we shall illustrate the following.
We define that if, S(7) := {z € C : |Im(z)| < 7}. By definition S(0) := 0

and S(o0o) := C. Similarly, S*(7) := {z € C : |[Im(2)| > 7}, if 0 < 7 < 00 and

S*(0) := C — (—00,00), and S*(00) := @. Then, the following Abel’s Lemma is in

order.

PROPOSITION 3. a. If

To := max {0, — limsup(2n + 1)~ 2 log |(2n/e)"/2an|} ,

n—0o0

then the series 3 oo anHn(2) is absolutely uniformly convergent on every compact
subset of S(19) and diverges in S*(1p). And

b. If a complex function f(-) has in the strip S(m) (0 < 19 < o0) a Tep-
resentation by a series of Hermite polynomials, i.e., f(z) = > oo anHn(2), then
f(-) is holomorphic in S(1o) and Vn € N

an=1 [ exp-EVHOfOdt,  and 1, = Jrrnl

In particular, if f(z) =0, then a,, =0 Vn € N.
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