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Abstract. We provide lower efficiency bounds for the best product design
for an additive multifactor linear model. The A-optimality criterion is used to
demonstrate that our bounds are better than the conventional bounds. Ap-
plications to other criteria, such as IMSE (integrated mean squared error)
criterion are also indicated. In all the cases, the best product design appears
to perform better when there are more levels in each factor but decreases when
more factors are included. Explicit efficiency formulas for non-additive models
are also constructed.
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1. Introduction

Finding optimal or efficient designs is usually a difficult task in multi-
dimensional models when different factors have to be incorporated. Simplifica-
tions can be expected if the model structure can be partitioned into components
related to the influence of individual factors. In this paper, we are concerned with
additive model structures of the form

k
(1.1) Eyt)=PBo+BTf(t) =Po+ Y BFfit:), teT,
=1

where t = (t1,...,t)T, fO)T = (f1(t1)T, ..., fu(tx)T) is the vector of regression
functions on the design region T and 8T = (8],...,BL). The absence of mutual
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influence among the factors leads to the natural assumption that 7' = szl T;
is the product set of possible experimental settings ¢ € T in which the k factor
levels t1,. .., t; may be chosen independently of each other. This model is popular
because the effects of the individual factors are additive and no interactions are
permitted among factors, see Clark (1965), Cook and Thibodeau (1980), and Wong
(1994) where they assumed the factor levels are all continuous. This type of model
is also common in the analysis of variance setup where each factor ranges over a
finite set of qualitative levels. The latter situation occurs for instance in the
standard k-way layout. Schwabe (1996, 1998) considers design issues for models
where both qualitative and continuous factors are present.

Let p; be the dimension of the regression functions fi associated with the
i-th factor, and assume that the components of each f; are linearly independent,
i =1,...,k. Additionally, we assume that the model is homoscedastic and that
all observations are uncorrelated.

In practice, each factor in a multi-factor experiment may affect the mean
response differently. To accommodate for this, we consider the marginal models
given by

Ey(tz) =ﬂ0,i+ﬂffi(ti)a t; ET‘ia i:]-v--'1k7

where f3; is a p;-dimensional vector of parameters. These marginal models and
their optimal designs will play a crucial role in the construction of efficient designs
for the model (1.1).

All designs here are continuous designs in the sense that they are treated
as finitely supported probability measures on the set T' (Kiefer (1959)). Our
focus is on product designs which have the form § = & X --- ¥ & and each
component &; is a design defined on the marginal design region T, i=1,...,k
These product designs are easy to construct since they are pieced together from
the designs from the ‘smaller’ marginal models. Because of their simplicity, these
designs are perhaps the most widely used in multi-factor experiments, see for
example, Rafajlowicz and Myszka (1988, 1992) and Wong (1994). An increasingly
popular design strategy is to restrict the search for the optimal designs within the
class of product designs (Schwabe (1996), Dette and Roder (1996)). The resulting
optimal design is called the optimal product design and we will show in this paper
that this type of design is generally rather efficient.

If we let F(£)T = (1,f(t)T), the normalized information matrix of £ rela-
tive to the full model in (1.1) is given by M(¢) = [, F(t)F(t)T€(dt). Likewise,
if Fi(t;)T = (1, f:(t:)T), the normalized information matrix of the marginal de-
sign & is M;(&) = [, Fi(t)F; (t;)T€;(dt;). These matrices are used to gauge the
worth of a design. For instance, for A-optimality, we seek to minimize the trace
tr M(¢)~1, and the A-efficiency of an arbitrary design ¢ is given by effs(§) =
tr M(€4)~1/tr M(€)~! where £4 is an A-optimal design (see e.g. Pdzman (1986),
p. 82). This quantity is between 0 and 1 and its reciprocal denotes the number
of times the design & has to be replicated in order to do as well as the optimal
design. Thus designs with high efficiencies are sought in practice.

The ease of finding the optimal design depends heavily on whether the crite-
rion is compatible with the product structure. Schwabe (1996, 1998) discussed this
issue in detail and noted that D- and G-optimal designs can be obtained as the
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best product designs. Schwabe and Wong (1997) derived formulas for expressing
the D- and G-efficiencies of product designs in terms of the D- and G-efliciencies
of the marginal designs for suitable classes of multifactor linear models with hier-
archical interaction structure. Analogous results are not available for other criteria
such as A-optimality. Part of the problem is that the optimal product design may
not be optimal among all designs.

The aim of the paper is to exploit the unique structure in additive linear mod-
els and provide sharper efficiency bounds for product designs. We use A-optimality
as an illustrative criterion in the k-way layout but the method is applicable to other
design criteria as well. For example, we state corresponding results for the inte-
grated mean-squared error criterion commonly used in regression settings where
the factors are continuous. Extensions to models with hierarchical interaction
structures are briefly discussed in the last section.

2. A-optimal designs for additive k-way layouts

We present A-optimal designs when all factors are each at 2 levels including
a control level for each factor. The marginal regression function here is f;(¢;) = ¢;
for t; = 0 (control) and t; = 1 (treatment), respectively. The aim is to show that
finding the optimal designs can be laborious even in quite simple situations and so
it is useful to have approximations for the optimal designs. The optimal designs
found here will be used in Section 3 to assess the precision of our proposed lower
efficiency bounds for the optimal product designs as approximations.

Table 1. Optimal moments a* and b* and A-efficiency of the best product design £*.

k a* b* tr M(€4)~ Y (trM(£*)™1) A-efficiency of £*
2 0.4189 0.1937 10.6038 (10.6569) 0.995
3 0.4229 0.1969 15.3340 (15.4853) 0.990
4 0.4264 0.1997 20.0250 (20.3137) 0.985
5 0.4295 0.2021 24.6822 (25.1421) 0.981
10 0.4409 0.2108 47.5821 (49.2843) 0.965
100 0.4765 0.2363 433.505 (483.843) 0.895

Under this setting, the model equation is not affected by permutations of the
factors, and an A-optimal design can be found in the class of symmetric designs £°
which are invariant with respect to these permutations. The information matrix
of £° is

s [ 1 a1t
M(ﬁ ) o (alk (a— b)Ik -I-blklg)

where I and 1; denote the k x k identity matrix and the vector of all 1’s in R¥,
respectively.
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The desired A-optimal design £ 4 is given by the values of a* and b* which min-
imize tr M(£°)~!. These values are displayed in Table 1 together with tr M (£4)~"
for selected values of k. The numbers in parentheses correspond to tr M(£*)~!
for the best values of the first two moments for the product £* = & x --- x & of
the one-dimensional marginal A-optimal designs & (i.e. for a = V2 -1 =0.4142
and b = a2 = 0.1716). The A-efficiency is obtained by dividing the two traces
corresponding to £4 and £*.

3. Lower bounds for the A-efficiency

We now discuss lower A-efficiency bounds useful for assessing the proximity
of any design to the optimal one. These bounds are especially important in situ-
ations where the optimal design is unknown or is too laborious to compute. High
efficiencies indicate that the performance of the design is close to the optimal.

3.1 Conventional lower efficiency bounds
Standard lower efficiency bound can be obtained from convex analysis argu-
ments, see Pdzman ((1986), p. 118) for example. For the A-criterion, one obtains

effa(6) >2 - i}euT)F(t)TM(E)”21*“(if)/trM(é)‘1

based on the directional derivative of the convex functional tr M (£)~.

This bound may become negative if the number of factors k becomes large.
As an example, consider identical marginal models f; = fi, T; = T, and hence
£ = €f. Theneffo(& x---x &) > 1—ck(k—1)/{ktr My (£7) ' = (k—1)}, where c
is a nonnegative constant which depends on the marginal model. In particular, for
the k-way layout with equal numbers of levels for each factor (i.e. p; = p) compared
to the control, the efficiency bounds of the best product design are displayed in
Table 2.

Here the regression function f; = (fi1,..., fip)T is given by f;;(t;) = 1 for
t; = j and fi;(t;) = O otherwise, t; € T; = {0,1,2,...,p}. Similar results have
been observed by Wierich (1989) under a different parametrization.

These bounds are not satisfactory because they may yield negative numbers
and are rather inefficient, when compared with the actual efficiencies (Table 1).
An alternative bound has been developed by Dette (1996) who proposed the lower
efficiency bound

f(€) 2 tr M(§)™!/sup F()TM(€)F(t)

He based his arguments on the directional derivative of the concave functional
{tr M(£)~1}~! instead of the convex functional tr M(£)~!. For the k-way layout
setup when all factors have the same number of levels these bounds are presented
in Table 3.

These bounds are better than those provided in Table 2. However, for large
k these efficiency bounds tend to zero, suggesting a bad performance when a large
number of factors is involved.
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Table 2. Lower A-efficiency bounds for the best product design; convex optimization
(k-way layout with p1 = --- = pp, = p; “—" denotes negative values).

PNk 2 3 5 6 10
0.81 061 020 — —
0.90 0.79 0.59 0.49 0.07
0.90 0.81 0.62 0.53 0.15
0.91 0.83 0.66 0.57 0.24

W N e

Table 3. Lower A-efficiency bounds for the best product design; concave optimization
(k-way layout with p; = --+ = py = p).

PNk 2 3 5 100
0.84 0.72 0.55 0.04
0.90 0.83 0.71 0.08
0.91 0.84 0.72 0.09
0.92 0.85 0.74 0.10

W N e

3.2 Lower efficiency bounds based on the additive structure
To improve the lower efficiency bound, we consider the A-optimal designs {3,
for estimating the direct effect 3; in the marginal model. This means €3, minimizes

tr Cy(&) " where Ci(&) = fp, fi(t:) fu(t:)T&:(dt:)— [, fi(ti)&(dt:) [, fi(ti)T&i(ats).
If we use £} x &g, X - - - X g, as areference design within the set of product designs,
we obtain for every arbitrary design £ by a refinement argument

k k
e M(E)™ > tr My() ™ + ) trCi(&) T > e My(€)) T+ ) tr Ci€,) ™!

i=2 i=2
where &; is the projection of £ onto the i-th component. Hence, by replacing the
first factor by any other we establish

THEOREM 1. Let &} be A-optimal in the i-th marginal model, i = 1,... k.
Then & x --- x & is an A-optimal product design in the additive model (1.1) and
eff 4 (67 x -+ x &)
o iy trCil€s) ™! + maxicick {br Mi(g]) ™! — tr Ci€,) ™"} >0
- Sy tr Mi(€) 7 — (k- 1)

For the additive k-way layout, when all factors have the same number of levels

p, this lower bound simplifies to

eff a6 x  x &) 21 -2k — Dp(Vp+ 1= VB) (ko + VP +1)* ~ K +1}
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Table 4. Lower A-efficiency bounds for the best product designs, structural approach
(k-way layout with p1 = --- = pg = p).

p\k 2 3 5 —o0
092 0.89 0.86 0.82
0.95 093 092 0.90
0.96 095 094 0.93
0.97 0.96 0.96 0.95

L R

and the corresponding values are given in Table 4. The last column indicates
the limiting behavior when k tends to infinity. A comparison with the convential
bounds in Table 2 and Table 3 shows that these new bounds are substantially
better, in particular for large k. Moreover, it becomes evident that the best product
designs have high efficiencies even when the number of factors is large.

In regression settings with continuous level factors, A-optimality is not ap-
propriate. A more suitable criterion which has properties similar to A-optimality
is the integrated mean-squared error criterion defined by IMSE(¢) = [ var(fo +

BT F(£))A(dt) = tr M(£)~'M()) where X is uniform on the design region T. The
IMSE can be identified as an A-criterion if the regression functions are chosen
to be orthonormal with respect to the uniform measure A\. Hence, analogous ef-
ficiency bounds can be obtained when the A-criterion tr C;(¢;)~! concerning the
direct effect (3; is replaced by the integrated mean squared error tr C;(&;)™C;(\:)
adjusted for the general mean [, (8o + BT £i(t:))Ai(dt;), where A; is uniform on T;.
Using, this observation Schwabe and Wong (1998) demonstrated that the efficiency
bounds for the IMSE-optimal product designs are also better than those obtained
from the conventional bounds, for an additive quadratic regression model. In gen-
eral, the methodology proposed here can be used to obtain efficiency bounds for
the ®,-criteria based on the eigenvalues of the information matrix and for criteria
based on the variance F(t)T M (£)~!F(t) of the predicted response.

4. Extensions to hierarchical interaction structure

We conclude this paper by mentioning that the ideas in Section 3 can be
applied to construct lower efficiency bounds for more complicated models as long as
the models have hierarchical interaction structures. The D-optimality of the best
product designs for such models has been treated by Schwabe (1998). Specifically,
let ® denote the usual Kronecker product, and consider the multifactor model

given by
Ey(ty,....te) = >_ Q) fi(t:)"Bs

s€A ich
where A is a subset of the power set of {1,...,k} and &),y = 1. For example, if
A = {0,{1},...,{k}}, we have the additive model; if A is the complete power set

we have the Kronecker-product model and if A = {0, {1},...,{k},{1,2},...,{k—
1,k}}, we have the first-order interaction model.
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Table 5. A-efficiency bounds of the best product design for the first-order interaction
model.

p\k 3 5 — oo
1 081 073 0.68
0.88 0.83 0.81

091 0.88 0.87

5 094 093 0.92
10 0.97 096 0.96

We say the model has hierarchical interaction structure if § € A implies
that all corresponding lower order interactions are also included in the model,
i.e. 8 € A for all subsets & of § € A. Examples of models with such structure
are the three models just mentioned. Product designs for these models satisfy
tr M(& X -+ X €)™ = 3 5cn [Tics{tr Mi(&)™! — 1}. Thus, the product of the
A-optimal marginal designs is the best product design.

In particular, for the best product design in the k-way layout with equal
numbers of treatments (p; = p) and first-order interactions we have

eff 4 (&7 x -+~ x &%)
P+vp+1)*+ (k- 2)(p+f)2+ (k+1)(k 2)(p+f)4

—k(k—l)p+\/p+ ~k(k-2)p+VP+1)?+ 2 (k~1)(k 2)

Selected numerical results are presented in Table 5. Due to the complexity
of the models these efficiency bounds are lower than the corresponding results in
Table 4. When k = 2, it can be shown that the best product design is A-optimal
(Rafajlowicz and Myszka (1988)), and, hence, its efficiency is equal to one. For
k > 2, the present bounds are useful, because we cannot determine the A-optimal
design explicitly and the actual A-efficiencies of the best product design are thus
unknown.

Also in the present situation of first order interactions the efficiency bounds
based on the model structure are substantially better than those obtained by pure
convexity arguments, in particular, for large k.
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