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Abstract. This paper deals with some inferential problems under an ex-
tended growth curve model with several hierarchical within-individuals design
matrices. The model includes the one whose mean structure consists of poly-
nomial growth curves with different degrees. First we consider the case when
the covariance matrix is unknown positive definite. We derive a LR test for
examining the hierarchical structure for within-individuals design matrices and
a model selection criterion. Next we consider the case when a random coeffi-
cients covariance structure is assumed, under certain assumption of between-
individual design matrices. Similar inferential problems are also considered.
The dental measurement data (see, e.g., Potthoff and Roy (1964, Biometrika,
51, 313-326)) is reexamined, based on extended growth curve models.

Key words and phrases: Extended growth curve model, hierarchical within-
individuals design matrices, inferential problems, random-coefficient model.

1. Introduction

In this paper we are concerned with an extended growth curve model with
several hierarchical within-individuals design matrices. For an N x p random
matrix Y, the model is defined by
(1.1) Y:A151X(1) +-"+AkEkX(k) + ¢, E(g) =0,
where A; are known N X r; between-individuals design matrices of ranks r;, X (i)
are known ¢; X p within-individuals design matrices with ranks ¢;, =; are unknown
r; X g; parameter matrices, and £ is an error matrix. Here it is assumed that X (i)

has a hierarchical structure
X1

(1.2) Xo=| 1|, i=1,..k
Xi
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and hence ¢; < --- < gx. By appropriately modifying between-individuals de-
sign matrices, without loss of generality we can assume g < --- < Gk- First we
consider the case when the rows of £ are independently distributed as a p-variate
normal distribution having unknown positive definite covariance matrix X, i.e.,
& ~ Nnxp(O,In ® ). Then the model is expressed as

(1.3) Y ~ Nnxp(A1Z1 X0y + - + AkZExX k), IN ® T).-

The model is an extension of the growth curve model by Potthoff and Roy (1964),
but a special case of Verbyla and Venables (1988), etc. It may be noted that the
model (1.1) includes an important one whose mean structure consists of polynomial
growth curves with different degrees. In this case the between-individuals design
matrices have a form of

A O

O :
(1.4) A1= ,...,Akz O ,

O Ark

where A;; : Nyxr;and Ny +---+ Ny =N. LetY = [Y{-- Y], Yi: Ny xp. Then,
the special model is expressed as

(1.5) Y'iNNNixp(A,‘,‘EiX(i),INi@E), 1=1,...,k,

where Y7, ..., Y} are mutually independent.

Random-coefficient models for Potthoff and Roy (1964) were considered by
Rao (1965) and Fearn (1975), etc. A natural random-coefficient model for (1.1) is
defined as

(1.6) Y, = AuZi X + ViX@) + &, 1=1,...,k,
where Vi, ..., Vk, &1, ..., &k are mutually independent, and
(1.7) Vi ~ NN, xq; (O,In, ® A(i))’ & ~ NN, xq; (O’ In, ® 02119)'

Here A® is the first g; X ¢; submatrix of A = A®) | Tt is assumed that A® is
unknown positive semi-definite, and o2 is unknown positive constant. Vonesh and
Carter (1987) have considered a random-coefficient model for unbalanced longitu-
dinal data. However, it may be noted that our model is not a special one of the
model as in Vonesh and Carter (1987), in the sense that the random-coefficient
components consist of k random matrices with different dimensions and a hierar-
chical structure.

The paper is organized in the following way. In Section 2 we see that the
model (1.3) and (1.6) can be viewed from other points of views. Their canonical
forms are also given. In Section 3 we consider the model (1.3). We derive a LR test
for examining the hierarchical structure for within-individuals design matrices and
a model selection criterion. In Section 4 we discuss similar inferential problems
under the random-coefficient model (1.6). In Section 4 we illustrate our results in
a special model and reexamine the dental measurements data (see, e.g., Potthoff
and Roy (1964)) by considering the model (1.3).
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2. Canonical forms for the models (1.3) and (1.6)

An extended growth curve model has been introduced by considering some
prior restrictions in the growth curve model due to Potthoff and Roy (1964), see,
e.g., Banken (1984), Kariya (1985), etc. Related to this, consider the ordinary
growth curve model given by

(2.1) E(Y) = AEX

Z[Al"'Ak] )
Sk oo Zred LXk
where A; : N xri, Xi :by xp, by =¢q, bo =q —q1,.--, bk = @k — g1 Then

the mean structure in the model (1.1) can be expressed as (2.1) with the following
restrictions

(2.2) Vi=1,...,k—1, Vj:i+1,...,k:CiEDj=O,

where C; = [0---O I, 0---0), D; =[0---0 I, 0---0)',i,j =1,....k.

We can also write the mean structure (1.1) as
(2.3) E(Y) = AyEmXa) + - + Ap S Xk,

where
Ay =[Ai-- A, EBp=
Zki

Here we note that Ap)’s and X(;)’s satisfy

(2.4) 'R,[A[l]] DD R[A[k]]
and
(2:5) R[X(ylC - C R[X (i),

respectively, where R[A] denotes the space spanned by the column vectors of A.
von Rosen (1989, 1990) has considered an extended growth curve model (2.3) with
(2.4) and any X(;)’s, and has studied the MLE’s of E(Y) and ¥.

Anderson et al. (1993) have studied a general totally ordered multivariate
linear model including the above models, relating to an algebraic condition of
invariance under a full block-triangular group. Banken (1984) has given a canonical
form for the growth curve model (2.1) with a general set of restrictions as in (2.2).
The set of our restrictions is a special case and hence we will get a canonical form
for the model (1.3). However, in order to get a clear correspondence between the
original expressions and the transformed expressions, we give a direct derivation,
starting from the model (1.3). Applying the Gram-Schmidt orthogonalization
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method to A = [A; --- Ay} and X = X(4), we can choose H = [H --- H¢] € O(N)
and B = [B] --- B,]' € O(p) such that

Ly O -+ O
(2.6) R N
Leg -+ ++ Lk
and
G, O --- O
L . By By
(2.7) X=|: R [E}ZG[E],
: .0
By, B,
w1 o - Gre .
where H; : N Xr;, B;: by xp,£=k+1,n=N—r; —--- —r, and O(m) denotes

the set of all the orthogonal matrices of order m. Here the notation ¢ is used for
denoting k£ + 1 simply. Consider the transformation from Y to

(2.8) Z=HYB
Zu - Lk Zue
N Zn o Ze Zrel’
Zoy o Zge ZLa

where Z;; = H]YBj :r; X bj, 7y =n and by = p — qx. Let

©; O --- 0O
(2.9) e=L=G=| =~ " |,
: 0
Op - - Ok
Q11 ot Qll
(2.10) Q=BZB =| : :
Qo -+ Qe

Then, for the transformed matrix Z we have
(2.11) Z ~ Nyxp(E(Z), Iy ),
where (2 is an unknown positive definite matrix and
®, O --- O
(2.12) E(Z)= @.kl @k‘k O
o --- 0 O
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As a significance test for the hierarchical structure (1.2) we consider to test
the null hypothesis Hy : Zjg) = O,...,E) = O, which is equivalent to
(2.13) Hy:019=0,...,04 =0,
where O, = [0};,...,0},],i=1,... k.

Next we consider a canonical form for the model (1.6). Consider the trans-
formation from Y; to

(2.14) [Us Vil = Yi[Xfi)R(i) X(Ii)]’

where R() = (X(i)X(’i))'l and X(; is a (p— g;) X p matrix satisfying X(,.))'qz.) =0
and X(,.,X'gi) = I,_,,. Such matrices may be defined in terms of B and G in (2.7)
as

(2.15) X(yRY = ByGu, RY=(GwGu) ™,
where
G, O --- O
By :
By=|:], CGw=| . .
B; : . 0
Gy - - Gu
Then, we have
_ gld) o)
(2.16) (Ui Vil ~ Nn,xp (Aii:i 0),In, ® [ 0 02Ip—q,-” )

where U9 = A 4 52R0),
3. Inferential problems under the model (1.3)

3.1 MLE’s

The MLE’s under extended growth curve models have been studied by Banken
(1984), von Rosen (1989, 1990), Fujikoshi and Satoh (1996), etc. Here we attempt
to give simple expressions of the MLE’s of © and (2, especially certain submatrices
of © and certain transformed matrices of {2, starting the canonical form (2.11).
From these expressions we shall obtain distributional results on the corresponding
MLE’s. We use the following notations:

VO = (Zp,...,Zu) (Zn, - Zu),
and fori=1,...,k,
UD = (Za,.... Zu) (Za, .- Zut),
ve —yO Ly 4.y
AUNRERIR A

o
Zigiy = [Zins - - Ziil,y
Zi(i1--0) = [Ziiw1,- - - Zit)s

(i-1) _ G-1) (i-1) (i-1) —17,(—1)
Viisie = Vi - Vi(z’+1~-.e){‘/'(i+1--.E)(i+1-~-e)} V(i+1-~~e)i'
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Similar notations are used for matrices of O, Q, etc., partitioned in the same way.
Further let

Bis10)(14) = Vit (i 1) Nit1-0)(1-)
= (B(1+1m€)1 B(H—l-nf)i): (7’ =1,... 7k)

It is well known that there exists a one-to-one correspondence between €2 and the
set {Qllq...g, ey Qe Qe B(gl..g)l, R 7B(kl)k—1, ng}.

First we maximize the joint density f(Z;©,Q) of Z with respect to ©. Con-
sidering the conditional density of Z;(..;) given Zj;;;...¢) We can see that the
maximum occurs at

(3.1) 6; =[6i1,...,64]
= Zi(1.i) — Zi(i+1--~€)B(i+1-~-e)(1---i)7 i=1,...,k.
Then
(32) g(Q)=f(Z;6,0)
_ (271,)—pN/2|QI—N/2

1y/(0 (1)
X exp -—{trQ Ve )+trQ(2 o@-0Uge.-0 T
+tr QUMY

For the maximization of (3.2), Gleser and Olkin (1970) studied the case k = 2.
The maximization under the general case can be obtained by using their idea
repeatedly. This reduction has been used by Banken (1984). Summarizing these
results, we have the following results.

THEOREM 3.1. The MLE’s of ©;, B(Hl...g),:, Qis(it1.0), T = 1,... Kk, Qe
are given as follows:

éi: (1 i)—Zi(i+1~-~f)B(i+1 £)(1-++4)»

i—1) (i—1) -
(3.3) B(z+1 8)7‘—{‘/(14-1 £)(i+1- z)} lV(z+1 -£)i) i=1,...,k
) —_ -1
NQii-(i-}-l--Al) = V;i~(i+1~~-£)’

Ny =V,
Further the mazimum of the likelihood is

(3-4) Q(Q) = (27TN€)—pN/2{\NQu (2.-.e)| : |N022~(3-~.2)1 T |N5A7u|}-pN/2
— 1 k _
= @nNe) PNV ol Vaahapl - IV} P2,

Theorem 3.1 implied the following distributional results.
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THEOREM 3.2.
Iy,

(1) 6 — Oy = [Zi ~ Oy Zi(i+1...g)][ 5 : ]7
—B(it1.-8)i

where Biy1..0i = {V(z+1 £)(i+1-- e)} :+11)e)z Here (Zii — ©4i Zi(i1..0)) and
V((iz‘..el))(,‘...g) (hence B(2+1.4.g)z) are mutually independent,

[Zii — ©ii ZiGi41.-0)) ~ Nyisc(biyr+-+60) [0 ity (iot) @ I..], and

V((; Zl))(z 0~ Weiraby (R4 + Tio1, Qi t)(i--0))-

(ii) Nﬁll.(i“.g)(i...g),...,Nﬁkk.g, NQyg are mutually independent and for i =

PRI A 2Y

Nﬁii-(i+1---£) ~Wp(n+ri+--Frici—bigpr — - — blyﬂii-(i+1--~l))7
NQH ~ Wbi(n+ 4. -I-'r‘k,Qgg).

3.2 LR test

We consider to test the hypothesis (2.13). Let fo(Z;Z1,2) be the density
function of Z under the hypothesis (2.13). The maximum of fo(Z;Z),2) with
respect to Zy) is given by

g0() = (2m)7PN/2 |0~/

1 _ -
- exp [—i{trﬂ ly© 4 trQ(;__e)(Q__.[) (U(l) + 4 U(k))(z...g)(zmg)}

By the same way as in the maximization of (3.2), we have

0 k _
5up 90(2) = (2mNe)” PN el - Vi gy 2 [} T2

Therefore, the LR criterion is an increasing function of

1 1 k
Vi ol Vi1 IV

(3.5) A= -
)
Ve -]
1 k-1
_ Vgl Vi
k) k)
Vol Vil
= Ay A1)
where

1 (k .
(36) A(i—]_) ”1(1.{.)1) ZI/“/Z'L ()1+1) Z 1= 2, ceey k
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THEOREM 3.3. The LR criterion for testing the hypothesis (2.13) is an in-
creasing function of A = A(yy--- A_1), where A(;)’s are defined by (3.6). Under
the hypothesis A(;)’s are mutually independent, and Ay is distributed as a Wilks
A-distribution Ay, (riz1 + -+ Th,n+ 7114+ 47 — bigg — - = by).

PROOF. The distributional result is proved by using the following result
repeatedly. Let W and B be independently distributed as Wp(n, ) and Wp(q, X),
respectively. Let T = W + B, and decompose W and T as

Wi Wi Tyw T2
W = y T = y

[Wm W22:| [Tm Tzz]
where Wis : p; X p2 and Ti2 : p; X pa. Then it is known (see, e.g., Siotani et al.
(1985, p. 577)) that |Whi.2|/|Ti12| ~ Ap, (¢, — p2), and |Wii.2|/|T11.2| is inde-
pendent of Wy, and T. First we use the result to see that Ay is distributed as

Ay, (r2+- - -+7, n+71—bg—- - -—by) and is independent of {‘/((31.?,[)(3,"1), V((:,f)[)(?,.__e)},
and hence of {V((32) )30 V((ak) 0@ 13)}' Next we use the distributional result to

A(z), and so on.

We note that the hypothesis (2.13) can be also expressed as the set of addi-
tional restrictions

Banken (1984) has studied LR test for testing a general hypothesis as in (3.5).
The above result can be confirmed from his general result.

The limiting distribution of —nlogA(;) when n is large is a x? distribution
with f; = b;41(ri41 + -+ + 7%) degrees of freedom. A better x2? approximation is
obtained by the statistic with Bartlett adjustment —np; log A(;), where

1
(3.8) npi:n+rl+"'+""i_bi+2_“‘—bk+1+§(ri+1+.,.+Tk—bi+1—1)'

Since A(;)’s are independent, we have that the limiting distribution of —nlog A is
a x? distribution with f = f; +-- -+ fr_1 degree of freedom. Further, the statistic
with Bartlett adjustment is given by —nplog A, where

1
(3.9) p= ?(f1P1+"'+fk—1Pk—1)-
In fact, it holds that
(3.10) P(—nplogA < z) = P(xf: < z)+ 0(n™?).
In the special case k = 2 we can write the LR statistic as

: 2
(3.11) A=Vl IVish
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whose null distribution is Ap, (r2, n+71 —bs). The exact distributions of Ay, (r2,n+
r1 — b3) can be used (see, e.g. Anderson (1984, p. 304) and Siotani et al. (1985,
p. 248)) for b, = 1,2 and/or r; = 1,2, as follows:

n 1—Ay(m,n) n—-p+1 1-A,(1,n)
3.12 — =~ F : P~ Fpnepti-
B TRmwy " T TRy

For tables of the distribution of A, see, e.g., Table 47 of Biometrika Tables for
Statisticians, Volume 2, edited by Pearson and Hartly (1972).

3.3 AIC for the model (1.3)

We derive Akaike Information Criterion (Akaike (1973)) for the model (1.3).
Let the model denote by Mk (q1,...,qx). Since the likelihood function of Y is the
same as the one of Z in (2.11) with (2.12), we can write

AIC(Mi(q1, - - -, qx))
— —21og £(2;6,)
+ 2 x the number of independent parameters under My (qi,.-.,qx)-

Using (3.4), we obtain

(3.13) AIC(Mk(ql,...,qk»=Nlog{( ) Ve Var sl ~-|v;;°>|}
+ pN(log(2m) + 1)

k
+2{Zr,~(b1 + 4+ b))+ %p(p+ 1)}‘
i=1

The criterion can be used in selecting an appropriate model from a set of candidate
models with different values of k and ¢; < --- < gqx. For a refinement of AIC, see
Fujikoshi and Satoh (1996), who obtained a finite correction for AIC(M2(q1,g2))-

4. Inferential problems under random-coefficient model (1.6)

4.1 MLE’s and unbiased estimators
In this section we assume the random-coefficient model (1.6). It is easily seen
that the MLE of = is given by

(4.1) 2 = (AL Au) TTALU;

and hence

(4.2) Ei ~ Nroxg, 26, 89 ® (A7 4i) 7).
Let

. 1
(43) WO = Uy, — Pa)Ui, (i=1,...,k), == trV/Vi= %qﬁ
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where Py, = Ay(ALAi)" Al and f = Zle N;(p — ¢i). Then, the negative
of twice the log likelihood function after maximization with respect to Z;, 1 =
1,...,k, is given by

k
(4.4) dk(0%,8) = Y Nilog |91

i=1

k 2
. _ ‘L s
+ 3 (P TWE 4 f <10g02 + ?) .

=1

The MLE’s of o2 and A can be obtained by minimizing (4.4) subject to ¢% > 0
and A > O. A difficulty in this minimization problem comes from the fact that
(i) ¥® must satisfy a restriction ¥ — ¢2R() = A®) > O,
(ii) ¥ (1’5 have a hierarchical structure, i.e., ¥ is the first g; x ¢; matrix of
Uk = A+ 02R%).
The explicit expression is available for the case k = 1 (see, Khatri and Rao (1988)).
For simplicity, we consider the case when k = 2 and X;X; = O. Partition ¢
and W@ as

@_g_ [¥n Y2 @ _ (WS W
v =1 = o W =10 @ |
Vo Woo Wy Wi,

where V19 : q1 X @2, Wl(g) : q1 X g2. Then we can write

(45)  da(0?,A) = Nlog ¥y | + tr U (WD + w2y
+ Nalog |Ua2.1] + tr Uopn (=T Ip-qz)W(z)(_F Ip—g)

2 s
+f (loga + ;) ,
where Wop.1 = Wy — \1121\111_11\1112 and I' = \1121\1'1"11. This implies that

Ny =wO+wD,  T=wPwp)?,

(4.8) Ny, =W, 62=35
Therefore
Ay = WO + WD) - 62RO,
@) Aa = WP WD) WO + WD),
Bop = oW + LW WD) WOWD) WS - 6°RS).

We note that the solutions in (4.6) are the MLE’s if ¥ — 62R® = A is positive
semi-definite.
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It is difficult to give an explicit expression of the MLE in the general case
k > 1. However, we can propose an unbiased estimator for 2 and A, based on
w®, .. W) and s?. Note that
(4.8) W ~ Wyt (ni, A® + 0*RY),
' fs* ~a®x3,

and they are independent, where n; = N; — r;. Therefore, we have

1 . . )
(4.9) E (;W(’)) =AD + 0RO, E(s?) =0
Partition W and R in by,...,b; rows and columns as
o w0l (R - R’
(4.10) w® = : C RW = : oo
Wy L Ry A

Using (4.9) and making pooled unbiased estimators for submatrices of A, we can
get a natural unbiased estimator of 02 and A given by

5% = %,

~ N (%) (k)
(411) A(1~-~i)i = —T_I,H——-}-'I’L——{W(I 1)1 W(l i)t

4.2 Test and AIC
We consider testing the null hypothesis (2.13) under (1.6). From (4.2) it
follows that

(4.12) vee(Zjy.qy) ~ N(vec(Elp...), (ALiAu) ™' © QUDQ0),
where
-0 01
Iy,
(4.13) Q=10 R
. SRR
L O O I,

This suggests that

k
(4.14) T= Zvec((:);(zmi))'[(A;iAii)_1 ® Q;\i'(i)Qi] vec(© i(2-+i))
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should be used as a Wald type test, where U() is the unbiased estimator of ¥(*)
obtained from (4.11). The limiting null distribution of T is a x* distribution with

f= Z?:z ri(by + - - - + b;) degrees of freedom as n;’s tend to infinity.
Let the model (1.6) for Y be denoted by M(q1,...,qx). Then the likelihood
function of Y can be written as

k
(4.15) L(E,0% A) = [ 1X @ X~ N2 £(U, Vi; Biy 0%, A),
=1
where f(U;, Vi; Ei,02,A) is the joint density function of [U; V;] in (2.14). There-

fore, we can write AIC for the model Mi(q1,-..,qx) as

(4.16)  AIC(Mi(q1,---,qx))

k k
= ZN" log |[¥®)| + Ztr(\il(i))_lW(i)

i=1 i=1

2 k
+f (log &% + %) + ZNi log | X () X(;| + Nplog(2n)

i=1

k
1
+2{Z’ri(b1+"'+bi)+'2‘Qk(Qk+1)+].}.
i=1

5. A special case and numerical example

To illustrate our results, we consider the case where the data consist of two
groups, and observations in two groups are measured at the same p time-points
t1,...,tp or occasion. Further, suppose that the growth curve is linear for the first
group, and is quadratic for the second group. Then, we have an extended growth
curve model

1 - 1
_[1ny 0 ] [én &2 O
(5.1) E(Y)_[ 0 1N2] [521 §22 523] 2% :g ,
P

where 1y is the N dimensional column vector whose elements are all one. It is
assumed that each rows of Y are independently distributed as Np(-, L), where ¥ is
unknown positive definite. Note that we assume that the data of two groups have
an identical covariance matrix. Our interest is to see whether the growth curve
for the second group is also linear or not, i.e., {23 is zero or not.

Let ; and > be the sample mean vectors, and S the pooled matrix of sums
of squares and cross-products for the observation matrix Y. The LR statistic (3.6)
is based on

By

(5.2) v® = | B, | SV[B] B; By,
B;
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where S) = S 4+ Ny, % and S = SO + Ny 3,95. Here B = [B] B} B} is an
orthogonal matrix of order p such that

1 .- 1
Bl G11 (0] ]
5.3 = t cee ,
(53) [32] [GZI 922 té t‘;
1 P
where By : 2 x p, By : 1 x p, G11 : 2 x 2 and Gy : 1 x 2. We can write V;2); as
(5.4) Vi, = By{S® — §O) By (B35 B) "1 B35} B,
B, GN=1ip’ p! 110
= [0 0 1] B, (S ) [Bl BQ] 0
1

-1
= the (3, 3) elements of { [ﬁl] (SN~ B; Bé]} .
2

This reduction is obtained by using Lemma 7.5.1 in Siotani et al. (1985). For
calculation of the LR test statistic A, we need not obtain Bs and it is sufficient
to obtain B; and B; by applying Gram-Schmidt orthogonalization to the three

column vectors )

1 131 ty
o, and
1 tp t2

The LR statistic for testing the hypothesis “€23 = 0” is given by
(5.5) A=V35/Vars
or equivalently
1-A N—-p+2
A1
The AIC in (3.13) can be expressed as

1 P
67 MO0 0) = Niog { (5 ) W%l VAL 81}

(56) F = ~ Fl,N—p-{-Z'

1
+ Np(log(2r) + 1) + 2 {QI +q2+ §P(P + 1)} .

For k = 2, Fujikoshi and Satoh (1996) obtained a corrected AIC as
(5.8) CAIC(M2(g1,92))

1 p
= viog{ (5 ) WO WS- W + N logcam)

(@2~ @1)N (p — g2)N? N
N-p+¢g-2 N-p+g—-1 N-p-3

aN
' (N—p—3)(N—p+q1—3){(N‘3>(N+1)+p—q1}
92— q N -2
TN -pta-9 {N_p+q1_3+(P—Qz)N}-
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We applied the above results to the dental measurement data (see Potthoff
and Roy (1964)), which are made on each of 11 girls and 16 boys at ages 8, 10,
12, 14 years. We analyzed by deleting a boy’s measurement, since it is regarded
(Lee and Geisser (1975)) that the measurement is outlier. So, Ny = 11, N3 =15
and p = 4. We assume the model (5.1) for the dental measurement data, which is
denoted by M»(q1,q2) with g1 =2 and g2 = 3. Then we have

A =V viP, = 16.743/22.041 = 0.75960

and F = 7.59567. The p-value is 0.01099. This suggests that boy’s data is not lin-
ear, but quadratic. As the other possible models, we consider the models M>(2,2);
both girl’s and boy’s data are linear, M3(3,3); both girl’s and boy’s data are
quadratic. The AIC and CAIC are given as follows:

AIC  CAIC
M(2,2) 520.58 528.82
Ma(3,3) 521.40 532.11
My(2,3) 519.45 493.67

This suggests also that the model M3(2,3) is more appropriate, in the comparison
with M3(2,2) and M2(3,3).
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