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Abstract. Local polynomial modelling is a useful tool for nonlinear time se-
ries analysis. For nonlinear regression models with martingale difference errors,
this paper presents a simple proof of local linear and local quadratic fittings
under apparently minimal short-range dependence condition. Explicit formu-
lae for the asymptotic bias and asymptotic variance are given, which facilitate
numerical evaluations of these important quantities. The general theory is ap-
plied to nonparametric partial derivative estimation in nonlinear time series. A
bias-adjusted method for constructing confidence intervals for first-order par-
tial derivatives is described. Two examples, including the sunspots data, are
used to demonstrate the use of local quadratic fitting for modelling and char-
acterizing nonlinearity in time series data.
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1. Introduction

The local polynomial fitting method can be used for nonparametric estima-
tion of both a nonlinear regression function and its partial derivatives. Local
polynomial approach as a recent nonparametric regression method has various ad-
vantages, as demonstrated in Fan and Gijbel (1996). Local polynomial modelling
is also useful in modelling and prediction of nonlinear time series. This approach
is familiar in the time series literature as it has close connections to many other
modelling techniques such as local smoothing or state-dependent models. In the
time series context, the one-dimensional case is studied by Masry and Fan (1997)
who established asymptotic normality of local polynomial fitting for stationary
processes under some mixing conditions. Subsequently, Masry (1996) generalized
to this result to the multivariate case for local polynomial fitting of any order.
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Though significant theoretically, there remain many practical issues in apply-
ing these results in data analysis. For example, the mixing conditions of Masry
and Fan (1997) and Masry (1996) are complicated and not easy to check in prac-
tical situations. In this paper, we study the two important cases of multivariate
local linear fit and local quadratic fit in the natural setup of nonlinear regression
models with martingale difference errors. Our assumption on mixing is appar-
ently much weaker and appears to be a minimal short-range dependence condition
in this context. Our proof of asymptotic normality using a martingale central
limit theorem is different from the two cited references which employ the much
involved Bernstein’s big block and small block argument. Explicit formulae for
the asymptotic bias and asymptotic variances are given based on earlier results
in the nonparametric regression context of Ruppert and Wand (1994) and Lu
(1996). These formulae facilitate calculations of the asymptotic bias and variance
for partial derivative estimators and are useful in determining a proper bandwidth.

Nonlinearity in time series data has received increasing attention. For ex-
ample, a lot of financial and economical time series data have been found to
demonstrate some degree of nonlinearity (Mills (1993)). Modelling first-order par-
tial derivatives is a natural approach to characterizing nonlinearity in time series
data. For example, the structure of partial derivatives is used in identifying non-
linear time series models by Priestley ((1988), Chapter 5). Derivative estimation
also arises in the study of estimating Lyapunov exponents in time series, see e.g.
Nychka et al. (1992). While state-dependent and threshold models are among
the main parametric models for nonlinear time series, see e.g. Priestley (1988) and
Tong (1990), nonparametric techniques which do not commit to any specific model
form have become increasely popular. As a significant application of the general
theory of local polynomial fitting to be discussed in Section 2, the use of local
quadratic fitting for first-order partial derivative estimation is exploited in Sec-
tion 3, where it is demonstrated as a flexible tool for modelling and characterizing
nonlinearity in time series analysis. A bias-correction method for constructing con-
fidence intervals for first-order partial derivatives is described in Subsection 3.1. In
Subsection 3.2, two examples including the sunspots data, are used to demonstrate
this application in time series.

The data considered in this paper

(11) {(X07Y1)7(X17Y2)7"'7(Xn—17Yn)}

where Y; is the scalar response variable and X;_; consists of the p predictor vari-
ables at time i are assumed to arise from the martingale nonlinear regression
(MNR) model

(1.2) Y = m(Xio1) + v (Xiz1)ei

where m : R — R is some nonlinear function, v > 0 is a variance function. The
following assumptions on the model are made.

(A) {e;} is a sequence of martingale differences with respect to a sequence of
increasing o-fields {F;} such that X is Fo-measurable, X;, €; are F;-measurable
for all i > 1 and E{e; | Fio1} =0, E{e | Fiaa} = 1.
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(B) sup;>; E{[e:|*>*® | Fi_1} < oo for some 6 > 0.

(C) The vector sequence {X;} is strictly stationary and satisfies the short-
range dependence condition: let f;(-,-) denote the joint density of X, X;4; and
f(-) denote the marginal density, then

oo

(1.3) sup 315w, v) — f(w)f(v)] < oo.

u,vERP =1

Condition (C) is a reasonable mixing condition which has been commonly
used in the nonparametric estimation literature (cf. Castellana and Leadbetter
(1986)). It appears to be considerably weaker than those in Masry (1996) and
Masry and Fan (1997) and may be a minimal short-range dependence condition
in this context.

Though the extra condition (A) is assumed on the model structure, it is quite
natural in the time series context and is equivalent to the requirement that enough
predictor variables are included in X;_;. As a consequence of (A), the following
results hold automatically:

m(Xi_l) = E{Yl I }-i—l}7 and V(X,'_l) = Var{Yi I ]'-,g_l}.

The latter also defines the variance function in (1.2).

Most time series models in common use satisfy condition (A). For exam-
ple, (A) is satisfied when ¢; is independent of X;_;,... in the past and F; =
o{Y;,X;;7 < i}. In particular, our setup includes the following nonlinear au-
toregression (NAR) - autoregressive conditionally heteroscedastic (ARCH) model.
Consider

(1.4) T = m(Ti—1,Ti2,...,Ti—p) + v (g, ... s Tiep)Eiy

where m and v as before and ¢; is iid, and defining F; = o{zx,k < i}. A given
time series data {z1,%2,...,zN} correspond to (1.1) through

}/i = xiaXi - (fl}'i,xi_l,... 7xi—p+l)T; (7‘ :p7p+ 17" 7N)

and n = N — p. The variance function v(-) in this context is known as the wvolatil-
ity function in the finance and econometrics literature. Obviously, the method
developed in this paper can be generalized directly to study the volatility func-
tion, cf. Hirdle and Tsybakov (1997), and Hardle et al. (1996). The latter also
considers the setup of a vector autoregression model with a heteroscedastic co-
variance structure. When ¢; is iid, the state process {X;} defined through (1.4)
is a Markov chain. Under certain assumptions on m, v and the distribution of ¢,
this process is geometrically ergodic, which enjoys some strong mizing property.
Asymptotic normality of some nonparametric estimators can be shown to hold as
a consequence, cf. Hardle et al. (1996).

Another direction of generalizing results of this paper is to estimation of
functionals of other aspects of the predictive distribution function F(y | F;_;) =
P(Y; <y | Fi-1), such as the regression quantile, cf. Welsh (1996).
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2. Local polynomial fitting

Consider first the local quadratic fitting. The estimators of m and its par-
tial derivatives my, ..., m, at any given point = (z1,... ,xp)T are derived by
minimizing the weighted sum of squares

n

(21) ;{K —-a— bT(Xi_l — 9}) — (Xi—l bt {E)TL(Xi_.l it (l?)}2’—l]:5K (XL;:—:B> )
where a is a real number, b is a p-dimensional vector, and L is a p X p matrix
which is restricted to be a lower triangular matrix for identifiability. The solution
corresponding to minimizing (2.1) consists of & = 7m(z), an estimate of regression
function at ¢, of b = Dy,(x) which corresponds to an estimate of Dy, (z) =
(dm(x)/dx1,...,0m(x)/0x,)T at x, and of L which corresponds to estimates of
elements in the Hessian matrix of Hy,(z) = (8*m(x)/dz;0z;) at . That is,
L(.’L‘) = (lij) satisfies l,‘j = hij ifi> j and = h”/z ifi= 7, where Hm(:l)) = (hij)
is the Hessian. Let 8 = (a,b7,vechT{L})T, and we have

(2.2) B=(XTwX) ' XxTwy,
where Y = (Yi,...,Y,)T, W = diag{K(X8=2),..., K(¥23:=2)} and

1 (Xo—x)T vech” {(Xo — z)(Xo — )T}
ey x={: s
1 (Xpo1—2)T vech{(Xp—1 — ®)(Xn-1—2)7}

Here vech? denotes the row vector consisting of the columns on and below the
diagonal of a symmetric matrix.

The local linear estimator 81, can be defined similarly as in the case of local
quadratic estimator with all quadratic terms omitted from (2.1), (2.2), (2.3).

Let U denote an open neighborhood of & = (21, . ..,2)7 in ®?, and let ciU)
be the class of functions which have up to order d continuous partial derivatives in
U. Let I, denote the identity matrix of dimension £. For simplicity, the kernel K
is assumed to be spherically symmetric, i.e. K = k(||z||) for some function k. We
denote py = [u{K(u)du, J; = [u{K?*(u)du for any nonnegative integers £. In
the Appendix, some commonly used multivariate kernel functions are defined, and
formulae for higher-order moments are given. Also let I, I> denote the identity
matrices of dimension p and p(p + 1)/2 respectively.

2.1 Local linear fitting
The following theorem is developed for the local linear estimator, for which
the kernel K is assumed to satisfy [u$K (uq,...,up)duy - du, < 0.

THEOREM 1. Under model (1.2) and Assumptions (A)~(C), consider any ¢
distinct points @, . . ., ¥ satisfying f(x;) > 0, v(x;) > 0, if there exist open neigh-
borhoods U; of ; such that m € C3(U;), f € CY(U;), v € co(U), i =1,2,...,¢,
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the local linear estimators 3L(wl), B (xz¢) are asymptotically independent and
jointly normal as h — 0, nh? — oco. In particular, at each point = (z1, . .. Zp) T,
we have that

(nh”)l/2 diag{l,h[l}{[h(a:) — Br(x) — Br(x,h)}

is asymptotically normal N(0,%(x)). Here Br(x,h) is the asymptotic bias given
by

—h2u2V (z) + (h3)

(24) BL(z)h) = 2
( )+ 27 f( )bl(x)—l-o(h)
where V2 () =3P, 82m(:1;)/8:ri,
63 —~ &
[ 433 Gt
3m 8 m(x)
@25 by =|" Zz driozy |
83m(:1:) 3m(a:)
\“4 — 0x70z)
(pa — M%) 6:1:( ) f(:z: Z 6z18$z agg) \
&?m(x) 8f(:1: z) of ()
(26)  by(z) = (=) oz Z (%28% R
2
(a — 2)2 ;’;(f) xp 32 (%Z 8(’;;:)
and -
U(:E)J() 0
S@)=| /@ v(z)J;
pf(z)"

Remark 1. It should be pointed out that in Theorem 1 for the results cor-
responding to the regression estimator to hold, weaker smoothness assumptions
m € C*(U), f € CO(U) will suffice. The local linear regression estimator has been
a popular method for nonlinear prediction of time series.

Theorem 1 generalizes Theorem 3 in Lu (1996). The proof of Theorem 1 is
similar to and contained in the proof of Theorem 2 to be given in Subsection 2.3
and is thus omitted here.
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2.2 Local quadratic fitting
We have the following theorem for the local quadratic estimator, for which
the kernel K is assumed to satisfy [ul?K(u,...,up)duy - - - dup < 00.

THEOREM 2. Under model (1.2) and Assumptions (A)-(C), for I distinct
points ..., % such that f(x;) > 0, 1/(:1:]) > 0 for all j, if there exist open
nezghborhoods U; of @; such that m € C*U;), f € C(Uj), v € co), j =

L,2,...,¢ then for h — 0, nh? — 0o as n — oo, the local quadratic estzmators
ﬁ(a:l) .., B(x) are asymptotzcally independent and jointly normal. In particular,
at each point ¢ = (z1,...,%p) T, we have that

(nh?)Y/2 diag{1, hp I, k2 }{B(z) — B(z) — B(z,h)}
is asymptotically normal N(0,X(x)), where

h4

0(:1:) —— 0 (x) + o(h*)

3‘f( 31f(x)

B(z,h) = 3—];;L;b(w) + o(h®) ,
h? h? B2
R W%(w) + o(h%)

where b(x) is deﬁned in (2.5) in Theorem 1 of Section 2, and

o(z )_ Hzﬂa Z 0 m(ﬂ’) " Z 8*m(z)

8z20x?’
1<i<j<p L

uzusza‘*m(w 3f(il:) % Z Pm(z) 8f ()

01(:E)= oz3 Ba:iaxg oz; ’

1<ijg<p
i#]
and h2y(z) and h?y:(x) are defined in Lu (1996). Furthermore,

27) S(z)=

JQV({E)
’ W) . °
¢fy((::)) vech{I;} 0 ;E:"; (A - u2(it42——,u%0)l;2) vech{I,} vechT{Il}>
where

p = (pa — 12) " Jo(ua + (p — Dd)? — 2pTapa(pa + (p — Dpi3)
+pud(Ja+ (p—1)J3)},
¢ = (pa — p3)"H{Jopa + @p — 1) Japi3 — (p — 1) I3 12
— Japa — Jopapa — (p — 1)Jop3},

A:diag /\1,/\2,...,)\2,)\1,)\2,...,/\2,-'-,/\1,/\2,/\1 i
S—— —’ N’

p-1 p—2
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- —4
where At = (Jq — J5)(ua — p3) 7%, Ao = J3py "

Remark 2. It is noted that in Theorem 2 for the results corresponding to the
first-order partial derivative estimators to hold, weaker smoothness assumptions
m € C3(U), f € CO(U) will suffice. An application of local quadratic fit for first-
order partial derivative estimation will be discussed in more detail in Section 3.

Remark 3. Theorem 2 generalizes Theorem 4 in Lu (1996). The explicit
expressions for the asymptotic bias and asymptotic covariance matrix are first
derived in Lu (1996), which involves complicated matrix calculations.

2.3 Proof of Theorem 2
Write

(2.8) Su{D(B(z) - B(z))} = Rn + (nhP)"V/22Z,,
where

Sn = (nh?) ' D1 XTW XD,
R, = (nh?) "' DI XTW(M — X J);
D = diag{1, hly, h*L,};

where M = (m(Xo),...,m(Xn,_1))7T;

n
Zn = (nhP) 12D IXTWVI2E = (nhP)=12 Y Zpy;
i=1
where E = (e1,...,en)7,
V = diag{v(Xo), ..., »(Xn-1)}
(2.9) and
(5=
Zni = h K (X—'l;x> VM2 (Xi_1)es.
(===
vech
h h
If m = m(z1,...,z,) € C¥U), for a positive number k (less than d), we
denote the k-th-order differential D¥, (, u) at any given point u = (u1,...,u,) €
RP by
*m(x) ; ,
Dfn(a:’ ’Ll.) = Z Cikl'“ip i1 i2 ip uil o 'u,;)”,
i1, nip 0z 0z - - - Ozp
where the summations are over all distinct nonnegative integers 4;,...,%, such

that 4y +--- + i, =k, and Cfl,,,ip =kl/(i! - dpl).

The following lemmas on S,, R, and Z, are available. The proofs of Lem-
mas 1 and 2 follow from condition (C) and the Chebyshev’s inequality. Proof of
Lemma 3 is given at the end of this subsection.
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LEMMA 1. Under condition (C) and f(x) > 0, we have as nh? — oo,
(2.10) Syt = A(R)™! + Op((nh?)~1/3),
where A(h) = [(1,uT,vech” {unT})TK (u)f(z + hu)(1, uT, vech” {uuT})du.

LEMMA 2. Assume m € C4U), f € CY(U), and condition (C), as h — 0,
nh?P — 00,

21 Ro = B{R(h, ) + olh) + Opl(nh”) )},

where

h / D, (e, w)K (u)[D¥ (z)uldu
R(h, z) :% (@) / uD? (z, u)K (u)du
h / vech{uuT} D3, (2, u) K (w)(DT (z)uldu

/Dfn(a:,u)K(u)du
0
/vech{uuT}Dfn(m, u)K(u)du

f(z)h
+(Z:!)

LEMMA 3. Under conditions (A), (B), and (C), for any l points x, ..., x
such that f(x;) > 0, f € CO(U;), v € C°(U;), where U; is an open neighborhood
of ¢ for 1 <i <1, as h — 0, nh? — 00, Zn(®1),...,Zn(x) defined in (2.9) are
asymptotically independent and jointly normal. In particular, at a particular point
x, we have

(2.12) Zy — N(0,%,),
where
1
= v(:r:)f(a:)/ ( u ) (1, uT, vech {uuT})k(u)>du + O(h).
vech{uuT}

Now we can give a proof of Theorem 2 based on these lemmas.
PRrROOF OF THEOREM 2. From (2.8), we have
(2.13) (nh?)'/? diag{1, hI, i’ L }{B(z) — B(x) — Bn} = S, ' Za,

where B, = diag{1,h7 11, h=21,}S; ' Rn,.
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By Lemmas 1 and 3, the right-hand side of (2.13) tends in distribution to
N(0,X), where
E(h) = ATHh)Z, A7 1(R).

On the other hand, it can be shown that
E(h) = Z(z) + o(h),

by same calculations as in Lu (1996).
Next we show that B, has the right expansion. Combining Lemmas 1 and 2,
we write

B, = h®diag{1,h7' I, A 2 LH AT (h)R(h, &) + o(h) + O,({nh?}~1/2)}
= B(z, h) + h30,({nh?}~1/?).

Meanwhile B(z, h) so defined can be checked to have the given form.
The asymptotic independence of the estimators at different points follows
similarly using the first part of Lemma 3. We have thus proved Theorem 2. O

THE PROOF OF LEMMA 3. By the Cramer-Wold device, to prove asymp-
totic multivariate normality of Z,(x) at a particular point z, we only need to
prove for any linear combination of components, say

1 Xi_ — &
(2.14) §méml( ;L )1/1/2(Xi_1)s,~,

(5 (=)
()0 )
*(E).

Here a, b, c are constant, vectors of dimension p and p(p+1)/2. Tt is easy to check
that {£,;, F;} is a sequence of square-integrable martingale differences.

Note that Z,, defined in (2.9) is in the form of an array sum of square-
integrable martingale differences. By a martingale central limit theorem, see e.g.
Shiryayev ((1984), p. 511), we only need to check the Lindeberg condition:

where

> E{€2.1(16ns] > €) | Fiia}
i=1

n . |2+6
<M E {L"z'& | }"i_l}
i=1
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n

_ 1 1 Xi_l—ﬂ: 1/2
—ZEWE{W(—T ) e

=1
] (Xi—;l— m) V2(X; 1)

l Xiq—x 2+
h
where assumptions (A) and (B) are used.
Applying the Chebyshev’s inequality, the right-hand side of the above equa-
tion is equal to

246
| }-i-—l}

246
E{lei**® | Fiz1}

1 n
= (nhr)i+6/2¢8 ;

6
V(2+6)/2(X 1)

i—1/)s

1 n
=~ _supE{|es|**? | Fi E
(nh)1+6/2¢8 izfl’ {lel*° | Fi-a} £

1
(nhp)/2¢8

P
— 0,

Bl { f@2+9/2(@) [+ au + oft) + Op((nt?) %)}

if h — 0, nh? — oo, as n — co. So the Lindeberg condition is satisfied.
Furthermore,

- 1 & (X2
;E{éii | Fisib = 2 le (__17_:1;) v(Xi-1)-

Applying the Chebyshev’s inequality again, the right-hand side of above equation
is equal to

f(@)(=) / H(w)2du + o(1) + Op((nh?)™/?),

where

/l(u)2du = /{a + bu + ¢ vech{uuT }}2K (u)*du
' 1
= (a, b, cT)/ ( u ) (l,uT,vechT{uuT})
vech{uu”}

- K(u)*du(a,b, chHT
+ o(1).

So by Theorem 4 of Shiryayev ((1984), p. 511), we have

36w 5 N(0, (a,b,¢")Su(a, b,¢")T),

i=1
where

1
= 'u(:l:)f(w)/ ( u ) (1, uT, vechT {uu” }) K (u)?du + o(1).

vech{uuT}
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By the Cramer-Wold device, this implies that
d
Zn — N(0,%,).

The joint asymptotic normality of Z,(21),. .., Zn (%) can be proved similarly.
So Lemma 3 is proved. O

3. Partial derivative estimation

In this section, we consider only the scalar time series model (1.4). For the

state vector by X; = (i, Zi—1,...,Ti—p+1)7, we denote the p first-order partial
. . . 2] A i
derivative functions (pdfs) by m;(X;) = %)f),...,mp(Xi) = %. The

dependence of m;(X;)’s on the state vector X; is of particular interest for char-
acterizing nonlinearity of m. We consider application of local quadratic fitting to
estimation of my, ..., m, based on time series data.

In order to assess nonlinearity of a time series, the issue of quantifying the
variability associated with the pdf estimators becomes crucial. In principle, in
order to test whether the estimated pdfs are constant over different parts of the
phase space, a simultaneous confidence band for the derivative function is desirable.
Unfortunately, this theory is not available at the moment. So, we will be content
with developing pointwise confidence intervals for my,..., m, at any given point
x with the understanding that these intervals are expected to be considerably
narrower than simultaneous confidence band.

3.1 Confidence intervals

One issue in confidence interval construction is to deal with the bias in the
nonparametric estimators. Some type of bias-correction is desirable since the bias
term is often not negligible. The bias for f)m(a:) involves third-order partial deriva-
tives, so the local cubic fit with a larger bandwidth h4 is adopted for estimating the
third-order derivatives. Thus, plugging in the estimated third-order derivatives
into formula (2.5), one obtains the estimated leading bias term (h2/ (62))b(x).
Similar to the local linear and local quadratic fits, under conditions (A), (B) and
(C), some general restriction on h4 and appropriate smoothness conditions, it can
be shown that the the third-order derivative estimators are consistent so that 5(:1;)
is a consistent estimator for the bias term b(x).

On the other hand, the variance estimation for D, (x) is relatively straight-
forward. One option is to use the pre-asymptotic conditional variance matrix for
B given by

(3.1) (XTwx) ' xTwvwx(xXTwx)™!

assuming that estimates of the variance function v(-) at each data points are
available. (The calculation also involves the inversion of the matrix (X7W X)
of dimension (p + 1)(p + 2)/2 at each z.) In this paper we use the asymptotic
variance formula in (2.7) directly, and the calculation involves only estimation of
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the density f(x) and the variance v(x) at the given point. We use the kernel
estimators given by

~ . 1 ~ Xi_l——:z:
f(z)—’@ZK( » ):
i=1

and

o= Ern (%) /S (%) o

=1

where myw is the Nadaraya-Watson estimator given by

o= Ern(542) [ 56 (25)

Under general conditions, it can be shown that f(z) and #(z) are consistent.
For example, if f is differentiable in an open neighborhood of z, then the mixing
condition (C) together with a simple application of Chebyshev’s inequality implies
that

f(o) = @) + [ K(u)(raDF (@) + HO(ul)du + Op((nhD) ™)),

as nhh — 0o, hy — 0.

Theorem 2 implies that, assuming h — 0, nh? — oo, nh?*® = O(1) and
relevant consistency conditions on plug-in estimators, an asymptotically 100(1 —
a)% confidence interval for the partial derivative vector D,,(x) is given by

I, = [Dm(m) — h2b(x)/(6p2)
— Zapp (k) 2L (@) [ (ua 2 ()1, - DT

Do(x) — h?b(x)/(62)
+ Zoya(nhPTR) V220N (@) [ (ua f12(2))(1, ..., 1)T].

3.2 Ezxamples

Two examples are considered in this subsection. Tricube kernel (cf. Appendix)
is used in these examples, though other kernels in the Appendix can be used. Also
different kernels other than the one used for local polynomial fit may be used for
density and variance estimations.

Erample 1. (Simulations from an exponential autoregression model) Time
series of length 500 is generated from the model (1.4) where &; ~ N(0,1), v = 0.52,
and 2 )

m(zi, xi_l) = ((]51 + me” 7% )l‘z + (¢2 + e 0% )371'—1

where ¢; = 1, m; = 0.8, ¢ = —0.25, w3 = —1.5, 79 = 1. Time series plot of
the simulated data is shown in Fig. 1(a). The phase plot is given in Fig. 1(b).
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Fig. 1. Simulations from an exponential AR model: (a) time plot; (b) phase plot; (c)
estimated curve of my; (d) true curve of mo; (e) estimated surface of m; (f) true surface
of mj.

The pdfs m;, m, have the property that only m;(X;) (where X; = (xi,z;-1)7T)
depends on both z;, z;_¢, and ma(X;) depends only on z;.

Estimations of m;, my at each data point are given using p = 2 and bandwidth
h = 1.5. Figure 1(c) shows both the original 172, and a smoothed version (the solid
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Fig. 2. Annual sunspots numbers from 1700-1996: (a) kernel density estimation of f;
(b) N-W estimation of conditional variance v; (c) surface plot of estimate of pdf mi;
(d) surface plot of estimate of pdf ma; (e) time plots estimates (raw estimate: solid line,
bias-adjusted: dashed line) and 95% Cls (dotted lines) for my; (f) same as e except for
ma.
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smooth line) with respect to variable z; only. Note that though the raw estimated
function 7, is not smooth as a function of x;—this is probably due to the artifact
that it is estimated as a function of both z;, x;_1, the smoothed version resembles
the true mo in Fig. 1(d) quite well.

Figure 1(e) shows the surface plot (after some interpolation) of estimates 7.
Figure 1(d) shows the true m; (under the same interpolation). It appears that the
shape of pdf estimates is fairly close to the truth.

Ezample 2. (The annual sunspots numbers 1700-1996) In this example, we
apply the bias-correction method described in Subsection 3.1 to the sunspots data.
We use p = 2 and bandwidth h = 40 except in the unusual years 1955-1960 when
h = 70 is used. We choose secondary bandwidths by the rule hy = 1.2k, hy = 0.8h,
hs = 1.2h. The time plot of estimates of density f is given in Fig. 2(a). Esti-
mates of conditional variance v are shown in Fig. 2(b), which indicates that the
heteroscedastic model is more appropriate. Figures 2(c) and 2(d) show the interpo-
lated surfaces of estimates of first-order partial derivatives mi(X;) =
om(z;,x;_1)/0zr; and ma(X;) = Om(z;,x;~1)/0r;—1. It appears that at small
sunspots numbers m; has largest magnitude while my has largest negative mag-
nitude. This observation is consistent with the nonlinear and asymmetric nature
of this series. The variabilities of these estimates are given in Figs. 2(e) and 2(f)
which show estimates (including both raw estimates and bias-adjusted ones) and
95% pointwise confidence intervals.

Appendix: Some useful kernels and their moments

Some useful multivariate kernel functions and their higher-order moments are
given. For normal kernel K,(z) = (27)7P/2 exp(—||x|?/2),

fom =1-3---(2m—1),  Jom = piom/(2"77/?).

For uniform kernel K,(z) = C'b_ll{”m“g} where Cp = nP/Q/P(%), Jom =
tom /Cp and

pam = 0/ + 28 (Lt 3) [ (B ;).

A large family of kernels is given by the power family

-1 _ o ﬂ . <
Kopta) = { G elP, el <1
0, otherwise,
for 8 > —1, a > 0, where C,p is given by: Cag = 2nP/2B(B8 + 1, 2)/(aI'(8)),
where B is the beta function, I' is the gamma function. Some important cases:
Ksi(a = 2,8 = 1): Epanechnikov; Ka(a = 2,3 = 2): biweight; Ka3(a = 2,8 =
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3): triweight; Kaz(a = 3,8 = 3): tricube. Higher-order moments are given by (for
integer m > 0)

w(w’ﬁﬂ)%’%m%)/
{p(2as)s (25 0))
B( 2ﬁ+1) (1%1,%;)/
{B(Gsrr)n (25 g) ouaf-
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