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Abstract. Consider the problem of choosing between two estimators of the
regression function, where one estimator is based on stronger assumptions than
the other and thus the rates of convergence are different. We propose a linear
combination of the estimators where the weights are estimated by Mallows’
Cr. The adaptive estimator retains the optimal rates of convergence and is
an extension of Stein-type estimators considered by Li and Hwang (1984, Ann.
Statist., 12, 887-897) and related to an estimator in Burman and Chaudhuri
(1999, Ann. Inst. Statist. Math. (to appear)).
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1. Introduction and setup

We consider the problem of estimating the regression function f(x) in the
model

Yi = f(zi) + oey,

i = 1,...,n, where ¢; is a sequence of independent and identically distributed
variables with mean 0 and variance 1, and z; € K, a compact set in R%. Write
ti = f(zi), let || - || be the Euclidean norm and let || - |2 = n~!|| - ||2, and

correspondingly for (-,-) and (-,-),. Assume we have available two different linear
estimators, based on different assumptions on the regression function, i.e. the
parameter space and with different rates of convergence. We are unsure about
which estimator to use and hence would like to use the data to aid the selection in
an asymptotically consistent manner. Almost all commonly used nonparametric
estimators are linear in the data, see e.g. Buja et al. (1989) or Kneip (1994).
Assume fi; = M,y is an estimator with optimal rate of convergence for y € O,

(1.1) sgpn_lEH,u—MlylFNn(n).
1
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If we are willing to make the more restrictive assumption p € © C ©4, then a
rate-optimal estimator is flo = Moy where

(1.2) sup n~lE||p — Moyl ~ 2(n),
2

and ro(n)/r1(n) — 0 as n — oo, which implies n~Ylp — Miy|? = Op(ri), i =1,2.

Ezample 1. Let W3 = {f : |l f®| < oo} (and f has cont. derivatives of
orders up to p—1), let 71 = Wk, Fo= Wi k<l Let ¢ =1, ¢;(t) = V2 cos 2mjt
for j even and V2sin2njt for j odd. Assume every f has the representation
ft) = 2;‘;0 a;¢;(t) for t € [0, 1], say. Let IfFI2 = fol f(t)?dt. Then I fE2 =
Z?‘;O(Zﬂj)%a?. Estimating f is equivalent to estimating the Fourier coeflicients
aj, so ©; = {a: Z;il(27l'j)2ka? < oo} while ©; = {a: Z;’;l(%rj)”a? < o0}
Clearly ©; C ©1.

However, using the estimator fiz may result in a large bias if the assumption
i € O, turns out to be wrong. We would therefore like a combination estimator
which decides on the basis of data which estimator to use. Define the hybrid
estimator

(1.3) pa) = ajn + (1 - @)t

which can also be viewed as a smoothed version of a pretest-estimator where we
test p € Oy vs. pu € ©1/02 and use [y (o = 0) if we do not reject the null and fi;
(o = 1) if we do. The estimated value of o provides insight into the fit of the model
p € ©,. Clearly one should have 0 < a < 1 but we will ignore this restriction
in the technical part since this will hold asymptotically for our estimator &, see
Lemma 2. In order to focus on the main issue we will assume the noise level o is
known. We need a measure of ‘how wrong’ the null hypothesis is. Let the true
mean be p and define
by = inf{||u— AlI7 : & € O2}

and suppose this is attained at the point s € ©3. This holds true e.g. if ©2
is convex. For technical simplicity we assume the inf is attained, though this
assumption can be relaxed at the cost of dealing with a sequence of approximating
values.

Burman and Chaudhuri (1999) worked on ‘a functional version of the famous
James-Stein approach in parameter estimation’, meaning a compromise between
a nonparametric and a parametric estimator. The techniques used here are very
close to their approach. Some advantages in our approach are that there is no
need for one estimator to be ‘parametric’, i.e. have rate n~1, as long as its rate is
not faster than this. Estimators with rates faster than n~1 are seldom of interest
in practice due to their scarcity and may in fact be viewed as pathological, see
Li (1986). Moreover, we use Mallows’ Cf, to estimate the weight to put on each
component of the estimator, which enables us to recover the Stein-estimator used
by Li (1985, 1987). Burman and Chaudhuri (1999) use a variant of cross-validation
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which also requires more assumptions on the original estimators. Their use of
leave-one-out cross-validation renders their estimator useless when fi; = y, i.e.
M; = I since the leave-one-out estimator is now undefined. Historically, Stein’s
estimator was developed to improve upon the minimax estimator y (the raw data)
for a multivariate normal distribution, and shrinkage towards the origin (or any
other point) may be viewed as a crude way of borrowing strength from a lower-
dimensional model. This becomes more apparent when one considers the variant
shrinking towards the grand mean 4. In more complicated situations like curve
estimation the raw data is not an acceptable estimator, even though it may still be
minimax. It is desirable to improve a standard estimator by borrowing strength
from an estimator appropriate under more restrictive assumptions, and to do so
in a manner which does not render the estimator useless if these assumptions do
not hold. Instead of (global) minimaxity, we want to retain the optimal rate of
convergence. In this sense, our hybrid estimator turns out to be optimal. The rate
depends on how wrong the more restrictive assumptions are, quantified by the
distance from the actual parameter to the smaller parameter space. This problem
was considered by Li and Hwang (1984) for the particular problem that one of the
estimators under consideration is the raw data y. It is then desirable to retain
global minimaxity while getting optimal rate under the more restrictive model.
Our approach extends their estimator to compromises between almost any two
nested models.

2. The adaptive estimator

The distance between the true mean and the estimated mean using the hybrid
estimator is [|u — aMyy — (1 — a) May||, which is minimized at

(2.1) o = (Myy — May, p — May)||Myy — Mayl|| 2.

Our approach is to treat this as a pseudoparameter and estimate it by minimizing
Mallows’ Cr,, Mallows (1973), which is an unbiased estimate of the loss. Kneip
(1994) discusses choosing smoothing parameters for linear smoothers by this de-
vice. Other approaches are possible, e.g. variants of cross-validation (Burman and
Chaudhuri (1999)), generalized cross-validation or maximum likelihood. We have
EL(a) = En~Y||u — i(a)||® where
Lia) = n7 Yy — p(@)|? + 20°n " tr{aM; + (1 — o) Ma} — o2

=n"tly - May — a(Myy — May)|)? + 20%n " {tr M + o tr(M; — M)} — o2

This is minimized by
(22) &= (0"tr(My — My) + (y — May, Miy — May))/ || May — May|*.

Comparing with (2.1), we replace (Myy— Moy, p) with (y, Myy— May) —o? tr(M; —
M,), and E[(Myy—May,y—p)—o2 tr(M; —Ms)] = 0. The corresponding minimum
of the estimated loss is
L(a) = n~ Yy — May|? + 20%n " tr My — o2
—n | My — Mayl|*{o® tr(My — My) — (y — May, Myy — May))?
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Ezample 2. If ©; = R" and © = {0}, let i1 = y and jiz = 0, so (2.2)
becomes & = 1 — no?|jy|| =2 and

&) = (1 = no®/llyll*)y.

This is minimax for n > 4 when ¢; ~ N(0, 1) and for large n, ji(&) almost coincides
with the James-Stein estimator fis = (1 — (n — 2)0?/|lyl[*)y, James and Stein
(1961). The same observation is made in the original article by Mallows (1973),
p. 673, in the setting of linear regression with orthogonal regressors. This is a
special case of the next example.

Ezample 3. If ©; = R™, let iy = y and (2.2) becomes & = 1 — a?tr(I —
My)lly — May|| =2, or

j(6) =y — o2 tr(I — My)|ly — May| ~*(y — May)
and
B(a) = 0% — o*{tr(I — M2)}?/{n|ly — May|*}

which is the (simplified) Stein estimator that shrinks the raw data towards Moy
and its corresponding (simplified) risk estimator, see Li (1987), p. 967. Li and
Hwang (1984) use some identities from Stein (1981) to get exact unbiased risk
formulae for an estimator which is very close to fi(&). Let A = I — Ma, where Ms
is symmetric, and assume 24 < (tr A)I in the sense of positive definiteness. Stein
(1981) considers (in our notation)

fis =y — Ay)Ay
where A(y) = 02/(y By) and B = ((tr A)I —24)7'A%. If &; ~ N(0,1),
EL(jis, 1) = 02 — n~'o* By A%y/(y By)*.

When n is sufficiently large, the largest eigenvalue of A will be negligible compared
to the trace, so A(y) ~ o2(tr A)/||Ay||? and fs and (&) will be close. The results
of Li and Hwang (1984) also hold for f(é) which also works for asymmetric Ma.
They show that the estimator fig is minimax over ©; = R™ when the errors follow
a Gaussian distribution while giving a consistent estimator of u when En=lp -
Mayl||2 — 0. A ‘subexample’ is May = y1, which is appropriate if O, = {p 1 p; =
¢,c € R}, with risk

supn ' Ellu — g1 =n"'0?,

(S
the ‘parametric’ rate. The resulting estimator is a variant of the ‘Lindley’ estima-
tor,

fip =91 - (02(n ~1)/> (i - .17)2> (y — 1),
i=1

where the constant is n — 1 instead of n — 3 which is the optimal constant in
the Gaussian case, see the discussion in Stein (1962). Standard calculations using



COMBINATION OF REGRESSION ESTIMATORS 683

Stein’s unbiased risk formula, see Stein (1981), show that in the Gaussian case,
for n > 4,

supn'E|lp - i) = n"0%(3n - 5)/(n — 3) ~ n" 1352
©2

while fif, is still minimax over ©;. The rate is still optimal (i.e. n~!) for ©, but
the constant is inferior. In other words /i, is inadmissible on ©,. Here

n
. 1l w112 = =1y — 71112 — 1 Y
8n = inf n™!(lp—c]|? = n7H|u - B1)* =n ;(uz ).

This quantity enters in asymptotic risk calculations, see Casella and Hwang (1982),

e.g.
lim sup  n T E|u— jpl® = o%c/(0? + o).

" lu—p1ji2<ne

3. Properties of the adaptive estimator

We now study the behavior of the hybrid estimator, both with ‘oracle’ or ideal
metaparameter o* and estimated metaparameter &. Lemmas 1 and 2 are similar
to Lemmas 5.1, 5.2 and 5.4 in Burman and Chaudhuri (1999) where ro(n) = n~L.
The proofs are similar and have been omitted.

LEMMA 1. We have ||Myy— Mayl||2 = Op(r1(n)Vé6,). In addition, if 6, = 0
for large n, ||Myy — May|2 stays between ciri(n) and cory(n) with probability
getting arbitrarily close to one for some constants 0 < ¢; < ca.

LEMMA 2. Assume that 6, tends to zero as n tends to infinity. It then holds
true that

1+ Op((rl(n)/én)1/2) if 6n > ri(n)
a* =1 Op((6a/r1(n))"/?) if ra(n) < 6, <ri(n)
Op((ra2(n)/ri(m))*/?)  if 6, < ra(n).

First we look at the rate of convergence for ‘oracle’ choice of metaparameter.

THEOREM 1. Assume 6, tends to zero as n tends to infinity. Then

Op(r1(n)) o 6n>ri(n)
lu— 2@l = { Op(6n) if ra2(n) <6, <1i(n)
Op(r2(n))  if 6, < ra(n).
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PROOF.

e — i)l = la*(p = Miy) — (1 — ) (May — p)in
< o] lln = Miyln + |1 = "| - ln = M2yl
< a0y (r1(n)/2) + |1 = & [{Op(r2(n) /%) + 6,/%}

The theorem now follows from Lemma 2. O
By the projection property of fi(a*), we have
1@ — Il — lla(a) — pl2 = (&) — we)IE = (&~ a*)? i — fiall2
To prove the equivalent of Theorem 1 for ||i(&) — pl/2, it suffices to show that

(6 — a*)?|| M1y — Mayl||2 tends to zero at least as fast as la(a*) — p||2. It is useful
to notice

LEMMA 3. Ifa, >0 and EX2 = O(a?), then X,, = Oy(an).

PROOF. By Chebychev’s inequality, for any € > 0, let C = sup,(a, 2EX?%) <
o0 and M = (C/e)'/2. Then P(a;!|Xn| > M) < az?EX;/M? < C/M? = € hence
a; X, =0,(1).0

THEOREM 2. Assume Ee? < 0o and 6, tends to zero as n tends to infinity.
Assume the largest eigenvalue of MyMa, Amax(M5M3), is bounded for all n. If
ro(n) is not faster than n~!, i.e. liminf, o nra(n) > 0, then

Op(ri(n)) i &n>ri(n)
H’" - ﬂ(d)”i = Op(én) if 7‘2(7’),) <éb,<m (n)
Op(r2(n))  if 6n <ra(n)

If ro(n) is slower than n™1, i.e. liminf, o nra(n) = 0o, then
I — (@) 12 = Il = A(a®)I2(1 + 0p(1))-

PrROOF. In this proof let C denote a generic positive constant whose precise
value may change from equation to equation. We have

&— o = | My — May||"2((y — pt, Mry — May) — 0” tr(M; — M)
and consequently

(6— ")l — 213 = [ Myy—May|l7*((y =, Miy— May)n—n~"0® tr(My = M3))*.
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The behavior of | My — Myy||2 is known from Lemma, 1. Define

An = (y — p, Miy — Moy), — a’n~ L tr(M, — My)
= (e, Miy)n — o*n " tr(M1) — (e, May)n — o*n~ tr(M3))
= ((e, Mae)n — o*n~  tr(M})) — ((e, Mae), — a2n ™1 tr(My))
+ (&, Mip = p)n — (&, Map — pio)n + (6,18 — pi2)n
=An1—An2+Ans — Ana+ Ans

say. By an application of Theorem 2 of Whittle (1960), see Li (1987), p. 970, we
have that if Fe? < oo,

Elo? tr(My) — (e, My€))? < Ctr(M] M)
for some constant C > 0. Since o®n~! tr(M{M;) < supg, n " E||p — Myy||?, and
E[A7 1] < On7l (n7 er(M{M))),

we find that A,; = Op(n_1/2r%/2). The same argument gives that A, =
Op(n‘1/2r;/2). Furthermore, EAZ 3 < Cn™2||Myp — p|> < Cn~lry s0 Aps =

O,(n=1/2r1/?y and
EA2,, < On~?||Map — pal® < Cn>(| Mot — Maps|® + [ Mapiz — pol?)
< Cn~? (Amax<M4Mz>|m il + sup s - Maull2>
2
= O0(n"16,) + O(n~try(n))

50 Apa = Op(n=Y2(65/* V ry(n)V/2)). Finally, Ans = Op(n—1/26?) since
EA%, < Cn~2||u — pa|® = Cn~'6, and all together A, = O,(n~'/2r}/%) 4
0,(n=1/26%/?). Therefore,

Op(n™'r1/6,) + Op(n™t)  when 6, >m

A%l Myy — Myyl|,? :{
n” 1Y 2y“n Op(n‘lén/ﬁ)-i-op(n_l) when 57; <rn

which implies (& — a*)?||Myy — May||2 = O,(n~!). This concludes the proof since
li(a*) — u||? does not go to zero faster than this by assumption. For the last
statement of the theorem, recall that A, = O,(ay) implies A, = 0,(b,) whenever
an/bn — 0, an, b, — 0.0

4. A numerical example

In this section we report on a numerical experiment. Let

©1 = {f : [|[f®| < oo, f continuously differentiable} and ©5 = {f : f is linear}.
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True and estimated curves for n=31, sd=3
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Fig. 1. Smoothing spline, linear regression and hybrid estimator when fi is truth.
True and estimated curves for n=31, sd=3
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Fig. 2. Smoothing spline, linear regression and hybrid estimator when fa is truth.

The true regression function is taken to be either

4

fi(z) =ao + 2Z{aj cos(2mjz) + b;sin(2mjz)} or fo(z)=5-5z
7j=1

where 0 < z < 1, ag = 1.0, a = (—0.5,0.5,2.5,1.0)" and b = (2.5,1.0,0.5,0.5)".
We take fi1 = M1y to be the cubic smoothing spline estimator with the smoothing
parameter chosen by cross-validation, computed by the S-plus function
smooth.spline. Strictly speaking, this data-dependent choice of smoothing pa-
rameter makes fip nonlinear in y. The estimator fi is the linear regression estimate
of y on z. We take z; to be equispaced on [0,1] and use Gaussian errors from
the S-plus function rnorm with o = 1. It is well known that (n) = n~%/5 and
ro(n) = n~1. The three estimates were computed for n =21, n = 41 and n = 101,
each by 10000 replications, and the mean squared errors together with the esti-
mated values of o were computed. Figures 1 and 2 show typical situations, the
first picture for fi the true regression function and the second picture for fa the
true function. The mean squared error (MSE) for the three estimators is tabulated



COMBINATION OF REGRESSION ESTIMATORS 687

Table 1. Mean squared error for different estimators of regression function, f; true
regression function, based on 10000 simulations. Standard deviation in () o=1

Sample size 21 41 101
Smooth. spline  23.81(0.47)  21.92(0.08)  22.20(0.06)
Lin. regr. 607.57(0.02) 1146.25(0.02) 2766.35(0.02)
Hybrid 23.47(0.48) 21.81(0.08) 22.19(0.06)
mean(d&) 0.97 0.99 1.00
sd(&) 0.01 0.01 0.00

Table 2. Mean squared error for different estimators of regression function, fs true
regression function, based on 10000 simulations. Standard deviation in (),o=1

Sample size 21 41 101
Smooth. spline 3.28(0.04) 3.46(0.04) 3.42(0.04)
Lin. regr. 2.01(0.02) 2.02(0.02) 2.02(0.02)
Hybrid 2.49(0.02) 2.63(0.03) 2.72(0.03)
mean (&) 0.27 0.30 0.33
sd(&) 0.40 0.41 0.42

Table 3. Mean squared error for different estimators of regression function, f3 true
regression function, based on 10000 simulations. Standard deviation in ()o=1

Sample size 21 41 101
Smooth. spline 3.86(0.04) 3.94(0.04) 3.90(0.04)
Lin. regr. 2.91(0.02) 2.90(0.02) 2.93(0.02)
Hybrid 3.07(0.02) 3.16(0.02) 3.24(0.02)
mean(&) 041 0.46 0.49
sd(&) 0.44 0.45 0.45

in Tables 1, 2 and 3. Here & was truncated to be in [0,1]. It appears that the
hybrid estimator does a very good job when f; is the true regression function and
an acceptable job when f is the truth.

To study the intermediate case, let f3(z) = v(n)(z? - z). It is easy to show
that 6, ~ v(n)?/5 = O(y(n)?). The intermediate case in Theorem 2 is when
n~1/2 < y(n) < n=%/5. The behavior of the estimators in this case is similar to
the case 1 € ©2, as can be seen from Table 1. In the simulations, v(n) = 10-n=9/20
was used so § = O(n=%10). A typical situation is Fig. 3.

As far as rates of convergence are concerned, we can safely use the adaptive
hybrid estimator as long as we do not use an estimator with rate faster than
n~!. This is not a problem in practice. It might look as if all estimators are
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True and estimated curves for n=31, sd=1
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Fig. 3. Smoothing spline, linear regression and hybrid estimator when f3 is truth.

asymptotically inadmissible, since we could use the hybrid estimator together with
some other estimator, getting still better rates in some part of the parameter space
etc. However, what we really would like is supe, n~ E|p — p(&)|? for i = 1,2
in order to compare exact asymptotic risk. It is reasonable to conjecture that
the supremum risk gets larger if more weight factors need to be estimated, recall
the example involving the Lindley estimator. So even though the rate is still
optimal, the constant in the asymptotic risk will increase. Computing the exact
asymptotic risk is only possible in very special cases, see Golubev and Nussbaum
(1990). It is also clear that replacing o2 by a consistent estimator will not invalidate
the results of Theorem 2. In practice, most nonparametric regression estimators
have smoothing parameters which when estimated from the data will destroy their
linearity. This could also be taken into account at the cost of increased detail.
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