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Abstract. We consider robustness for estimation of parametric inhomoge-
neous Poisson point processes. We propose an influence functional to measure
the effect of contamination on estimates. We also propose an M-estimator
as an alternative to maximum likelihood estimator, show its consistency and
asymptotic normality.
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1. Introduction

Only recently has the statistical literature started to consider more frequently
problems of statistical inference for stochastic processes. However, robust methods
are almost completely absent except for time series data (Kiinsch (1984), Martin
and Yohai (1986, 1991)). The reason seems to be the great technical difficulties in
dealing with dependent data as, for example, the need to consider a large variety of
possible deviations from a given model, and the difficulty of obtaining limit theo-
rems or distributions of functionals (Martin and Yohai (1986)). Unfortunately, for
two reasons it is not possible to generalize directly most of the methods proposed
for time series. First, the methods are mainly for ARMA parameters which do not
have an immediate analogue for many stochastic processes, in particular, point
processes. Second, the methods and estimators use strongly the time direction,
which does not have an equivalency for spatial processes where the dimension is
higher than one. To our knowledge, the only other work concerning robust meth-
ods in a specific case of scalar parameter estimation of point processes in R is
Yoshida and Hayashi (1990), to be discussed later on.

We consider the inhomogeneous Poisson point process (IHPP) N in a finite
convex polygon A C R* and the same notation, N, is used for a point process
and a realization of it. Let A(z,8) > 0 be the (first-order) intensity of N assumed
to depend on covariates through the parameter § € R9. The maximum likeli-
hood estimator (MLE) maximizes the log likelihood and, if the loglikelihood is
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differentiable, it is a solution of the likelihood equation:
(1.1) 0= / I(z,0)(N(dz) — \(z,0)dz) = N(l(z,0)) — EgN (l(x,0))
A

where I(x,0) = dlog A\(x,0)/08. Note that the last equality is of the method-of-
moments type and, if ¢ > 1, (1.1) is a set of estimating equations and I(z,#) is a
vector.

Earlier works have considered the asymptotic properties of the maximum like-
lihood estimator (MLE). Kutoyants (1984) worked with an inhomogeneous Poisson
process on [0,7] C R. Krickeberg (1982) discussed the extension of Kutoyants’
results to a scalar parameter 6 and to compact sets A in a locally compact Haus-
dorff space, which includes R*. Rathbun and Cressie (1994) presented a proof
of Krickeberg’s results for a vector parameter § and a compact A C RF. They
showed that under regularity conditions the MLE is consistent, asymptotically
Gaussian, and asymptotically efficient as the observation region increases. In dis-
tribution, J'/2(8)(8 — @) converges to N,(0,I), where I is the identity matrix and
J(@) = [, Uz,0)l'(x,0)\(x,0)dz. Rathbun (1996) considers the asymptotic be-
havior of estimators when covariates are only observed for a sample of sites rather
than at all locations in the region.

Robust methods can be a valuable addition to the analysis of point processes
patterns as the following simple example shows. Consider the occurrence of plants,
viewed as discrete points, along a transect. Soil variation coupled with ecological
mechanisms creates environmental heterogeneity expressed in terms of different
plant intensities along the transect. Suppose the heterogeneity depends on a single
variable, soil moisture, which is known along the transect (in practice, it would
be measured at a fine grid and interpolated). We assume that the plant locations
can be described by an inhomogeneous Poisson process with intensity function
Mz;0) = e%9(®) | where g(z) is the soil moisture, measured on some scale, which
creates heterogeneity in the soil. This inhomogeneous Poisson process is simulated
with # = 1 and the 185 realized plants are represented by dots along the horizontal
axis in Fig. 1. Given these data, we want to estimate the parameter 6.

The MLE is § = 1.107 with estimated standard deviation s(¢) = 0.079 and
approximate 95% confidence interval of (0.953,1.262). Three plants, corresponding
to 1.5% of the 185 initially present, were erroneously recorded near a low-intensity
region (at z = 81.26, x = 81.27, x = 81.28). After this spurious addition, the MLE
for @ is §* = .747. The difference 6 — 6* is equal to 4.56s(0) and it is 25% smaller
than the true value of . Increasing the contamination makes the estimate worse:
adding 9 plants (5% of the total) in the region (79,82) changes the estimator to
6 = 514, implying a much smaller estimated effect of moisture.

As a second example, consider the periodic intensity A(t,8) = exp(3sin(6t))
with § = 5. Figure 2(A) shows this intensity as a solid line curve and the events of
a realization as dots along the horizontal line at height 0. Figure 2(B) shows the
multimodal loglikelihood of @ as a solid line curve together with a loglikelihood
of a contaminated process as a dashed line curve. The latter is composed by five
spurious events around ¢ = 9.4 added to the 52 original ones shown in Fig. 2(A). It
is clear that there is only a small change on the maximum likelihood estimate. In
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Fig. 1. Plants along the horizontal axis were generated by an inhomogeneous Poisson
process with intensity given by A(z,0) = €99(2) with 8 = 1 and displayed as a curve in
the plot. The continuous function g(x) represents some covariate (e.g., moisture) which
creates heterogeneity in the soil.
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Fig. 2. Events along the horizontal line y = 0 in plot (A) were generated by Poisson
process with intensity A(¢,8) = exp(3sin(6t)) with # = 5. The solid line curve is the
intensity and the dashed line curve is the influence function IF(t). The plot (B) shows
the log-likelihood function of the original data (solid line curve) and after addition of
spurious events (dashed line curve).

fact, this is an expected result according to our definition of an influence function,
presented on Subsection 2.1. The spurious events were added at the locations
they would influence most the estimates and even so the effect is negligible, as
predicted by our results. This influence function is plotted in Fig. 2(A) as a
dashed line curve. This shows that robust methods can be useful to point out
when some contamination is not likely to affect usual estimators like the MLE.
These simple examples are artificial and the heterogeneity in Example 1 as
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expressed by sup, A(z,8)/inf; A(z,0) = 122 is extreme. However, they motivate
the search for robust estimation methods in point processes and a general treat-
ment of the problem can be found in Assuncdo (1994). Previously, Yoshida and
Hayashi (1990) proposed an M-estimator for  in the one-dimensional case and,
as far as we know, this is the only robustness approach in the point process lit-
erature. By generalizing (1.1), they defined an M-estimator for # as a solution of
[ h(z,0)N(dzx) — [, H(z,0)dt = 0 where h and H are to be chosen. Their ap-
proach differs from ours in several important aspects. First, they consider only the
special case of a Poisson process on the line and 6 € R while we intend to gener-
alize to processes in higher dimensions and vector parameters rather than scalars.
Second, they suppose that the true intensity is a combination of periodic functions
given by (1 — €)f(t — 8) + ec(t) with A(,0) = f(t —6), e € (0,1], 6 € (—.5,.5) and
that f and ¢ are both periodic functions. This is a restrictive set of assumptions
and the model considers only contamination by addition of spurious points. Their
main results are proofs of consistency and minimax asymptotic variance proper-
ties of their estimator. Hence, there is no local robustness as expressed by our
definition of influence functional. Third, we choose a robustifying function in a
different way. Their robustifying functions h and H in the definition of the M-
estimator are related through their assumption (3), page 491, while we adopt a
single robustifying function to substitute {(x;6) in (1.1). We find justification for
our approach on the link with logistic regression as explained in Subsection 3.1.

In this paper, we concentrate on parametric inhomogeneous Poisson point
processes (IHPP). However, in Section 2 we outline a proposal, to be developed
elsewhere, of a contamination model and an influence functional for general point
processes. We treat IHPP models in Section 3 introducing an M-estimator and its
influence curve. We also point out the relationship of our proposal with bounded
leverage estimators in generalized linear models (GLM) and we state the results
concerning consistency and asymptotic distribution of our M-estimator. Section 4
deals with the choice of a robustifying function and diagnostic tools derived from
our proposal. We give an example in Section 5 and present the proofs of the
asymptotic results in Section 6.

2. Contamination model

Let A C Rk k > 1, be the space where the points of the process lie and M(A)
be the set of all counting measures on A. Given a probability space with sample
space €2, a point process N on A is a random element of M(A). We assume its
first moment measure u is given by u(B) = [ AM(x)dx, where A(z) is the first
order intensity function and B € B, the Borel sets of A.

An extension of the influence curve to the case of point processes must define
a contamination model and the estimators appropriately. A contamination model
specifies the character and amount of error in observing N. A simple example of
a contaminated process is a thinned process where we observe the original process
with some of its points deleted. For instance, suppose that interest is in the spatial
configuration of objects identified as mines at the bottom of the ocean. Some of
these mines could be missed after being covered by sand. In another context, an
epidemic could rip plants of a small region. A particle-counting device may switch
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off randomly if intensity of incoming particles is above some threshold. Another
contaminating mechanism corresponds to the addition of points of another process
to the underlying process. For example, a particle-counting device could have a
constant level of noise in the form of spurious events being recorded, or plants of
a different species could be mislabeled as the species of interest in an ecological
study. Measurement errors, such as rounding errors, in the locations of the events
provide a third contaminating mechanism. Another common error in forestry is
the swap of z and y coordinates: the position of a tree in a region is taken with
respect to two coordinate axes and occasionally the z coordinate is recorded in
the y column and the y coordinate in the z column of the sheet.

A fairly general model for contaminated counting processes C” can be defined
as a combination of these mechanisms. The number of events of the contaminated
process in B € B is given by

CV(B) = /B Z%(z)N*(dz) + M (B).

Here, Z7¢ is a 0-1 process corresponding to the deletion of points. In general,
Z7¢ may depend on the realization N. For example, an event could be deleted
with high probability if there are too many neighboring events within a distance r.
The parameter 4 represents the amount of contamination obtained through the
thinning of N. When EN(A) < 00, 74 is the fraction of expected deleted points

Ya= ml—(A—))E (N(A) - /AZ“”(:I:)N(da:)> .

For the case when EN(A) = oo, we give an asymptotic interpretation for this frac-
tion by assuming that there exists a sequence of bounded Borel sets By, such that
B, 1 A, EN(B,) < oo, and defining 74 as the limit of E~'(N(By))E(N(B,) —
[, Z7¢(z)N(dz)) as n tends to infinity.

The process M7= is a point process yielding spurious points which are mis-
taken as points of N. The parameter -y, represents the amount of contamination
introduced by M7=. When pu(A) is finite, 7, is the fraction of expected added
points: 7, = EM7(A)/EN(A). When p(A) = oo, we proceed as before giving
this interpretation an asymptotic character.

Finally, N* is N subjected to measurement error at each event 7;, so that
1+ = (1—(i)1i +Gia;. The (;’s are Bernoulli random variables, possibly depending
on N, with probability of success p;, and «;’s are the 7;’s shifted by the measure-
ment errors. If E(N(A)) < oo, the amount of contamination is measured by the
proportion of expected number of points measured with error v, = > i/ u(A).
For the E(N(A)) = oo case, we work as before.

The total amount of contamination - is the sum of all contamination types,
Y = Ya + Y4 + ¥m. We want to study the properties of estimators when the
contamination is small and for that we will be considering situations as v —
0. We assume that the contamination amounts due to addition, deletion and
measurement error decrease at a certain relative ratio: v./y — fa, 7a/7 — fd4,
Ym /Y — fm, which implies fo + fa + fm = 1 since v = Yo +7d + Tm-
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2.1 Influence functional for point processes

In the point process setting, it is usually possible to represent the asymp-
totic value of a parameter estimate as a functional T = T'(P) evaluated at the
underlying probability distribution P. Denoting by P, the distribution of a para-
metric family, the asymptotic value should be the parameter of interest in order
to satisfy the Fisher-consistency criterium T'(Pp) = 6. The estimators appear as
those functionals evaluated at the probability distribution which puts mass one
at the observed N(w) € M(A) where w € Q. Many of the usual estimators of
non-parametric descriptors of point processes can be represented as functionals
(Assungao (1994)).

Let T be the functional associated with a certain estimator and Py and P?
be the probability distributions of N and C7, respectively. Then, following Martin
and Yohai (1986), the influence functional of T is defined as

T(P") - T(Pn)
’y ?

when this limit exists. Note that the influence functional depends on the particular
path {P7,v > 0} followed by the contaminated distribution as 7y goes to zero.

To compute explicit expressions of the influence functional I F', we need to step
down from the general definition given earlier. We consider a simpler situation, still
general enough to contain some interest. We let N* = N, ignoring measurement
errors. Additionally, we impose some independence properties on the deletion and
addition processes. From now on, when we refer to the contamination model, we
are considering the model that follows.

We let the process Z7¢ be independent of N. We take Z7¢(x) to be a Bernoulli
random variable with parameter (1 —6p(x)), where p is a fixed function and 6 > 0.
That is, an observed N event at z is deleted with probability §p(x) and we assume
that, given N, the vector (Z7¢(®,),...,Z"¢(xn(p))) is composed by independent
random variables. Note that p(z) could depend, for example, on the non-random
first-order intensity A(x) of N.

Let 1 be the mean measure of the underlying process. Then we find the
following relationship between é and y4:

. o s e
wd-E(N(A))E(/A (-2 (w))N(d:c)) s [ poyutae) = a2

In particular, § goes to zero if y4 goes to zero and vice-versa. For convenience, we
take p(p)/pu(A) =1 which implies v4 = 6.

Let the process M7= be a point process independent of N and Z7¢. The first-
order intensity of M7= is en(x), where € > 0 and 7 is a fixed non-negative function
satisfying [, n(x)/u(A)dz = 1 when p(A) < co. The function n(z) could be a
function of non-random functions of the distribution of N, such as g(A(x)). For
example, g(A(x)) could be inversely proportional to A(z) indicating that we tend
to add spurious events on the voids of the underlying N.

The influence functional I F' can be computed explicitly for many estimators
of point process parameters (Assungdo (1994)). In this paper, we concentrate on
IHPP and the M-estimator suggested in the next section.

IF({P"},T,Py) = lim
’Y—P
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3. An M-estimator for parametric IHPP

To simplify notation, we write { N (dz)—A(z,0)dx} as dM (x,0). If the process
occurs on the real line, dM (x, ) can be usefully viewed as a martingale increment.
In higher dimensions, it is possible to establish a filtration F; such that the differen-
tial dM is a zero-mean martingale with respect to it. However, there will be many
important events not F;-measurable rendering this approach useless for k > 1
(Assungéo (1994)). We write integrals of the form [, f(z,0)dx, [, f(x,0)N(dz),
and [, f(x,0)dM (x,0) either as [ fo, [ foN, and [( fdM)g, or just as ff [ N,
and [ fdM, respectively, with an implicit integration region. The transpose of a
matrix C is denoted by C’ and the derivative of a function f by f.

In order to introduce our definition of an M-estimator we cast (1.1) in a more
abstract framework. Let pug(B) = EgN(B) = [, A(x,0)dx be the boundedly finite
mean measure and define the functional T by T'(Pp) = 6. Take expectations with
respect to the true 8" in (1.1) to obtain

(3.1) 0:/Al(:z:,O))\(a:,e*)da:—/Al(a:,e))\(:r,ﬂ)dzx:

We see that taking @ equal to 8 trivially satisfies (3.1). That is, the functional
T(Pp) = 8 is a solution to the functional equation

0=Ep, /A Uz, T(Py))dM (z, T(Fp)).

The robust approach assumes that the true distribution P of N is in the neigh-
borhood of the parametric Fp. For N in this neighborhood and extending the
definition of T' conveniently to this neighborhood, we can write the functional
equation on T’

0= Ep /A Uz, T(P))dM (e, T(P)).

We now introduce a robustifying function % instead of ! and define an M-estimator
of @ by the functional T'(P) which is a solution of the estimating equation

(3.2) 0=Ep / ¥(z, T(P))dM (z, T(P))
A
- /A ¥(z, T(P))(u(dz) — Az, T(P)))dz

where u(B) = Ep(N(B)) is the mean measure function of N. We discuss con-
ditions on 9 later on. Our M-estimator is trivially Fisher-consistent because,
if Py is the true distribution of the point process N, then (3.2) becomes 0 =
[4¥(x, T(Ps)){A(x,0) — Mz, T(Pp))}dx, which obviously has T(Ps) = 8 as a
solution.

When the point process is observed on A, the observed locations give origin
to the observed counting measure N(w,-), where w is a random element of the
sample space Q. This is used to formulate the empirical version of (3.2). We take
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a point process distribution Py ,,.) with its probability mass concentrated on the

observed counting measure N(w,-) and use the estimate 0= T(Pn(w,)), written
as T'(w) to simplify notation. Then, the M-estimating equation is

(3.3) 0= /A Wz, 8)dM (,b).

3.1 Relationship with GLM

Suppose that the intensity A(z,8) is a smooth function depending on a g-
dimensional covariate z(z) measured at location z. We divide a finite region
A C RF into m small k-dimensional rectangles of volume § > 0, denoted by A;.
The number of events Y; in A; are independent random variables and, if ¢ is
small enough, they have approximately a Bernoulli distribution with parameter
p; = Mx;,0)6, where x; is the center of A;. Taking derivatives with respect to 8,
the likelihood score of Y; is approximately (y; — pi)pi/pi = (yi —pi)0log A(x;,0)/060
and hence the likelihood equation is, approximately,

0= - p) ZERED . [ 1w, 0)(N(dz) - Nz, 0)d2)
=1

- / Iz, 8)dM ()
A

as m — o0o. Therefore, we can interpret I(z,8)dM (x,0) as a generalized likelihood
score.

A direct extension from the M-estimator in the i.i.d. case would allow for
% functions involving the whole score in a non-linear way. However, the spe-
cial meaning of the increments dM(x,8) in the likelihood equation of the point
process creates technical difficulties for such a general definition. One alterna-
tive is to define robustifying 9 functions involving only the term I(z,d), with
¥(x,08)dM (x,0) as the generalized robust score. An estimator based on %dM
would have a close relationship with the bounded leverage estimator, a Schweppe-
type estimator, defined by Stefanski et al. (1986) for generalized linear models. For
logistic regression models, their estimator is the solution of ) ;(y; — F' (@ z))¢¥(z,0)
where F is the logistic function and z is a vector with the covariates. The function
¥(z,0) depends on the covariates z and on @ but not on the observation y; which
makes their estimator unbiased, and hence Fisher-consistent. The analogy with
our situation is clear: the function 1 assumes the same role, and the “residual”
dM(x,0) = N(dz) — M(z,8)dz substitutes for y; — F(6'z).

If A(z,0) = exp(¢ z(x)) then we have the generalized likelihood score equal
to z(x)dM (x,8), which is of the same form as the logistic score. The use of the
log-link function make the intensity log-linear in the covariates and can be seen
in two ways. First, as we did above, if we approximate the number of events in
a small region by a Bernoulli distribution, then the log link is an approximation
for a logistic link function since the probability of success is small. On the other
hand, we can consider the true distribution of points in small regions A, which
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is a Poisson distribution with parameter [, A(z,68)dz =~ A\(zo,0)A. Then we can
adopt the logarithm on the grounds that it is the canonical link function for Poisson
distributions.

3.2 Influence function

Considering our contamination model C7 from the beginning of Section 3,
it is not difficult to obtain an explicit expression for the influence functional of
the M-estimator. Consider a one-dimensional parameter 6. Recall that the M-
estimator is the solution T'(P) of (3.2). The contaminated process C” has intensity
AY(z) = Az, 0)(1 — yap(x)) + van(z). Letting P7 denote the distribution of C
(3.2) becomes

(3.4) /AQIJ(%T(P’))(/\(%H)(I - 14p(z)) + van(x) = M, T(P7)))dz = 0.

Taking derivatives on both sides of (3.4) with respect to v and evaluatingat y =0
yields

P(x, 8 (fan(a:) fap(z) XNz, 0))dx
Eo [, ¥(z,0)l(x,0)N(dz)

(35)  IF({P"},T,Fy) =T(P) = /

For g-dimensional @, we obtain a matrix version of (3.5)

-1
(Pp) = ( / xb(w,e)l'(w,e)x(z,e)dz) [ #@.0) (e - fapla) N, 0))dz

As a simple example of (3.5), consider the case f, = 1 and fg = 0 where
contamination consists only of addition of points. Assume also that, for ¢ > 0,
the function n(z) = cly(x) is concentrated and constant in a region V of finite
k-dimensional volume |V|. Since we set fn(z = [ A(z,0)dz, then n(z) =
[VI~! [ A(y,60)dyly (). Denote the function A/ f )\ by A*. Then the I'F' converges

¢ w(0,0) [ 3 ] [[i1r = v(a,0) / o

if |V| shrinks to zero around the point zo and under the assumption that the

denominator is nonzero.
The MLE of one-dimensional  has I'F' given by

(3.6) l(mo,e)//Al?A*.

Note that I(x, §) measures the relative change on the intensity A(z, #) induced
by infitesimal changes on 6. If spurious points are added around locations where
this percent change is high and A(z, 6) is close to zero, we could expect large effects
on the MLE.

In Fig. 2, we plot the function IF(t) = I(t,5)/ [1>A* where A(t,0) =
exp(3sin(At)) and § = 5. This is the influence function (3.6) under the above
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periodic model and local contamination. The effect of spurious events added at ¢
on the MLE is periodic with increasing amplitude. Note that the peaks on IF(t)
are not in phase with those of A(¢,5) which shows that the maximum effect on
the MLE is not obtained by events added at points of minimum intensity. Since
the maximum IF(t) is around 5, we can expect the change T'(PY+) — T'(P) on
the estimator approximately equal to 5, when adding a fraction ~, of spurious
events. Adding 5 events around ¢ = 9.4 to the 52 original ones in Fig. 2(A) gives
a change of approximately 0.5 which is 10% of 5, the true value of §. Therefore,
we should not expect large changes on the MLE due to addition of events in this
model. ,

Similarly, a deletion-only contamination with deletion function p(z) in-
creasingly concentrating around a point zp produces a limiting IF equal to
~(z0,8)/ [ $IA*. In both situations described above, bounded IF for A = RF
occurs if and only if ¢ is bounded.

3.3 Asymptotic properties

Results assuring the consistency and asymptotic normality of the M-estimator
are given below and proved in Section 6. The main practical use of these asymp-
totic results is to obtain approximate confidence intervals and hypothesis tests.

Previous work in the asymptotic properties of the MLE used the general ap-
proach of Ibragimov and Has’minskii (1981) which consists of proving the uniform
local asymptotic normality of a parametric family of the probability measures. In
our work, we adopt Cramer’s approach to prove consistency. The main reason for
that is that the M-estimator defined by (3.3) can not be written in an useful way as
the gradient of a function p(N,#). This constrains us to work directly with (3.3).
That is, our estimator is not viewed as a minimizer of some criterion function. The
proof of the asymptotic normality assumes a Lindeberg-type of condition. Less
restrictive results seem to require the more powerful locally asymptotic normality
theory of Ibragimov and Has’'minskii (1981).

Let A C RF be a compact set with positive Lebesgue measure. Define 4, =
{tz,x € A} and assume that A; T R as t — co. Suppose N is an IHPP on R¥
with mean measure pg absolutely continuous with respect to (w.r.t.) the Lebesgue
measure and parametrized by {# € © C R?}. The intensity function, denoted by
Az,8), z € R", 0 € ©, is the Radon-Nikodym derivative of ug w.r.t. the Lebesgue
measure. : R

We consider the g-dimensional M-estimator 6, as the solution of the estimating
equation

(3.7) 0=g(6) = /A (z,0){N(dz) — A(z,0)dz},

which is a set of simultaneous equations on . We want to consider the asymptotic
properties of 8; as t — oo.

THEOREM 1. Assume that conditions (A)—(F) from Section 6 hold. Then,
with probability tending to 1 as t — oo, the M-equation g4(6) = 0 has a g x 1 root
0 such that 0, — ;.
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THEOREM 2. Assume that conditions (A)-(G) from Section 6 hold. If

8, is a consistent solution of g(0) = 0, then /A:i(60)(0: — 6y) —4
N,(0,C~YB80)F(60)C'"1(8o)) as t — oo.

We estimate the covariance matrix by substituting @ by the consistent esti-
mator 8; on the formulae above and evaluating the expressions at A rather than
at the limit when ¢t — oo.

4. Choosing a ¥ function

In any application we have to choose a specific function 1. Ideally, this choice
should be guided by what specific contamination patterns we want to protect from.
In this respect, the I F' defined earlier is valuable in showing how the different con-
tamination patterns will affect the estimator. For example, if addition or deletion
is suspected in certain regions, the calculations at the end of 3.2 show how to
bound that influence. However, we also suggest some members of the ¢ class that
can be used in general.

Strong results concerning optimal M-estimators in regression contexts have
been achieved by Hampel (1978), Krasker (1980), and Krasker and Welsch (1982)
and, in GLM models, by Stefanski et al. (1986) and Kiinsch et al. (1989). Stefanski
et al. (1986) studied the GLM model with covariate vector z and response Y

considering M-estimators 9¢ satisfying

n

> (i, zi,0y) = 0.

=1
They require ¢ to be Fisher-consistent, i.e.
Egp(Y,2z,0) =0.

They impose a bound b2 on the self-standardized sensitivity of the estimator 9,/,
defined as

ATICy(y, 2)
4.1 s =SuUpsupP ——r— s
(4.1) (%) UPSUD STy, A) &

where ICy(y, z) is the influence curve of é¢ and Vy is its covariance matrix.

A 9" estimator satisfying these conditions is called efficient if Vi — Vi is
positive definite for any other v in the class. They prove that, if there is such an
efficient estimator, it must be

s(y,z,e) - C(0)7
if 2> (s—C)yBl(s~C)
(s(y, z,6) — C(6))b/\/(s — CYB~1(s - O),

otherwise,

(4.2) ¥(y,2,0) =
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with B(#) and C(f) satisfying the implicit equations B(6) = Ep(1e1p) and the
Fisher-consistency Eg(%) = 0 condition.

However, the problem is far from settled. For example, it is known that
bounded influence estimators can have unbounded maximal bias curve for small
amounts of contamination (Martin et al. (1989)). In addition, it is difficult to
extend optimality results to point process data since it is not clear how to define
an appropriate measure of influence to bound. A direct translation of the sensi-
tivity is unsatisfactory because our IF includes the contamination path through
the deletion function p(x) and the addition function 7(z) making the supremum
difficult to handle. Resorting to the GLM approximation of 3.1 does not work
either, since as the number of observations Y; increases (by taking finer partitions
of A), the parameters P(Y; = 1) go to zero. However, we can use the approx-
imation and results from Stefanski et al. (1986) to suggest an element of the 9
class. Although not proven to be optimal in the point process situation, this sug-
gested estimator should have good robustness properties. Another approach, a
Huber-type estimator, is discussed in Assungéo (1994).

Consider the M-estimator given by

ws) b(0.6) I(z,0), if 52> 1B
. z,0) =
I(z,0)b/VI*B~1l*, otherwise,

where

I*(2,8) = I(z,0) / I(z,0)dz,
A

* * i b2
¥"(z,6) = I"(z,6) min {1’ l*’(x,O)B”l((?)l*(I’a)},

and B(6) = [, ¥*¢¥*'A.
Given the observed point process N, we obtain this M-estimator as the solu-
tion of the simultaneous equations

0= /Al(.’c,O)\/min{l, l*’(z,O)Bﬁ(e)l*(m,O) }dM(:z:,())

* - . b2
B(6) :/Al (z,0)1" (x,0) mln{l, l*’(m,ﬂ)B—l(O)l*(a:,B)}/\(m’o)dx'

Any ¥ leads to Fisher-consistency and centering is not required. However,
there is another reason why centering could be useful and its motivation comes
from the relationship with the GLM (see Subsection 3.1). The value of I(z,0) is
weighted by I'(z,0)B~!l(z, ), which is a norm of the vector I(z,6) defined by the
matrix B. Hence, the weights depend on the B-norm of I(z,6) rather than on its
distance from a convenient average value. The value of I’B~' on our definition
is just a point process version of the diagonal elements h;; of the hat matrix
in regression and this is already a centered measure of distance in the covariate

and




ROBUST ESTIMATION OF POISSON PROCESSES 669

space. Hence, we can take [* = [ when the intensity is a log-linear function of the
covariates with a constant term as one of the predictors. However, in general, it
is useful to take the centered I* defined previously.

The 4 we propose have two desirable characteristics. First, it is relatively close
to the term I(x, ) hence retaining part of the MLE efficiency and rendering valid
the asymptotic results (see Assumption C in Section 6). The second is that this ¥
estimator bounds I(zx,8) outside a certain region and downweighs the information
conveyed there (events or no events). The region is {x € A : I* B~1* > b*} and
it depends on ¥ itself. It can be seen as a distance measure for the term I(z, 0),
standardized by the covariance matrix of the point process score YdM.

To fully specify the estimator one must determine the value of b. The choice
of b involves a trade-off between efficiency and robustness. A small value of b
will downweigh more regions in the estimation procedure increasing protection
against deviation from the model. However, decreasing b also decreases efficiency
by making ¢ different from the efficient [(z,0) in larger regions. In principle,
b(6) should not be too small and this is found through the use of the information
inequality. Krasker and Welsch (1982) and Stefanski et al. (1986) have found
minimum bounds for b. Unfortunately, these contributions can not be used in
our problem since there is no meaningful sensitivity measure. We leave for future
work a more detailed study of this tuning constant. In Section 5, we calculate our
estimator using some possible values for b in order to build some knowledge of its
effect on simple situations.

An iterative method is required in order to estimate 6 and we can use a direct
analogue of that proposed by Stefanski et al. (1986), or a modification of it which
improves speed (Assungdo (1994)).

4.1 Residuals and diagnostics

Diagnostics are the dual aspect of robust estimation. Based on a robust
estimator, parts of the data departing from the model are more easily diagnosed.
Since this anomalous part is downweighed during the estimation procedure, it does
affect the estimate and hence it does not mask its presence.

A number of residual techniques are available in one dimension, (0,7'). Let 7;
be the observed events. Lewis (1972) proposed to look at the transformed process
with events v; = A(7;,0) where A(t,6) is the accumulated intensity fot Mz, 0)dx.
This new process is a Poisson process with rate 1. To use it as a diagnostic,
the estimated value of @ is used to calculate v;, that is, v; = A(7;,8). Ogata
(1988) suggested to plot the cumulative number of v-events as a function of the
transformed time A(t, é), and applied a Kolmogorov-Smirnov test to assess the fit.
Berman (1983) suggested to test whether the interevent distances are i.i.d. with
distribution exp(1). Some other techniques have been discussed in Ogata (1988).
They strongly use the ordered structure of the line, and hence they are not easily
generalized to higher dimensions. For point processes observed in [0,a] x [0,8],
Cressie ((1991), p. 656) proposed to project the events onto either [0,a] or [0, bl,
and analyze them as a one-dimensional point process.

Lawson (1993) defined a deviance residual for spatial Poisson processes. Let
{z;,i = 1,...,n} be the location of n events observed in the finite region A. The
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Poisson process has intensity A(z,8). Let T; be the Dirichlet tile area corresponding
to the i-th event and § be the MLE of 8. Lawson obtains a saturated model
estimate of A(z;,0) as T;"! and, using \; to denote A(z;,8) he defines the deviance
contribution of the i-th event

n R
~ ~ AT
di =lo /\tT; n|—1lo /\-,Tz -1+ n—~J-f—
g (; / ) g(A\T3) ST AT
and the residual
. n
r; =sgn(T7 ! — pA)V/d;, where p=—-——.
en(T;" — phi)Vd; b= S T

Our robust estimation procedure gives a natural measure of influence of small
regions on the fit. We can plot the values of the weights w(x,8y, B) evaluated in
a fine grid over the region A. Hence, we can check which areas are being severely
downweighed. These are the areas with potential to alter the MLE fit. Then,
a scatterplot of the weights against the residuals AM; = N; — (A(z;,0y)) X the
area of cell 7 can show whether the model is well fitted to this cell or not. If
suspicious cells happen to be neighboring areas, then the robust diagnostic will
have identified a subregion where the fit is not good and with great influence on
a non-robust fit.

5. Example

We return to the analysis of the simulated plant data of Section 1. Let 6y = 0
and

100 100
By = / (g (@)@ dz = / #(z)dz = 215,
0 0

where g*(z) = g(z) — [ g(z)dz, as initial values for the M-estimator of § = 1.
Table 1 shows these results. The row with b = oo corresponds to the maximum
likelihood estimate. The other lines correspond to the robust estimates for several
values of b. We can see that the ¢ estimates and its estimated standard deviation
are almost invariant for all choices of the tuning constant b and they are equal to
the MLE results except by b = .1 when we see a slight difference.

The 1.5% contaminated data set adds 3 plants in the region of low intensity
around 80, at z = 81.26, x = 81.27, z = 81.28. The new MLE is él = .747 with
approximated asymptotic standard deviation 0.096 and nominal 95% confidence
interval (0.559,0.935). From Table 1 we note that the robust estimates are very
accurate for b < .5 when they start to degrade and to get close to the maximum
likelihood estimate. If we let the contamination increase to 5% by adding 9 plants
in the region (79, 82), for b < .2 we get very good results for the M-estimator.

Figure 3 shows Ogata’s diagnostic plot for the transformed process v; =
A(7;,0;) with 1.5% of contamination. It is obvious that the model is not fitting
the data well. However, this plot does not give any indication of what is causing
the problem. This is a situation where the model could be discarded because of a
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Table 1. Maximum likelihood (b = co) and robust estimates.

Non-contaminated Data 1.5% of Contamination 5% of Contamination
b by & B by & B By & B
.1 1.097 .080 112.48 1.073 .082 104.18 1.024 .084 89.64
.2 1.107 .079 161.03 1.060 .081 152.44 965 .08  136.80
5 1.107 .079 161.29 .989 .084 140.97 758 .095 110.33
1 1.107 .079 161.29 871 .090 123.94 .569 .104 93.17
2 1.107 .079 161.29 747 .096 109.17 .533 .109 84.07
o) 1.107 .079 747 .096 514 .106
P 2
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Fig. 3. Cumulative numbers of the transformed process v; = A(7i,8;) for the non-
contaminated process (top plots) and the 1.5% contaminated process (bottom plots).
The first column of plots correspond to the MLE and the second, to the robust estimator
with b= 0.2.

small portion of the data not fitting and washing away the estimate. The robust
estimator, being insensitive to the spurious events, will not change when we pass
from the non-contaminated process to the contaminated one (see Fig. 3). The plot
for the contaminated process shows that the model is fitting well but it is not able
to detect the spurious events. We could finish the analysis unable to detect those
anomalous events even after adopting the robust estimator.
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Fig. 4. Robust residuals using b = .2. The top plot on the left shows the raw residuals
r; with the index i labeling A; = (i — 1,i) (see text for definitions). The other plots
show the standardized residuals r} and the weights.

We also use some robust diagnostic tools, in addition to Ogata’s plot. We di-
vide the segment [0, 100] into 100 equally sized subintervals Ay, ..., A10o. For each
A;, we calculate the number of events N(A;) occurring in A;, and the approximate
expected number A(i — .5, 6,)|A;| at A;. We then define the robust residual

ri = AM(A;,04) = N(A;) — MG — .5,0y)

and the standardized robust residual

Ti
VG — .5,04)

The values w; = w(i—.5, é¢) are, approximately, the weights assigned to z € A;. A
plot of w; against r¥ can show what points are being downweighed and with what
standardized residual. Another way to use these weights is to obtain v; = w;r;, a
combined indicative of misfit and downweighed influence.

The first row of plots in Fig. 4 shows the robust residuals for the contaminated
data using b = .2. The plot on the left shows the raw residuals r; and the plot
on the right shows the standardized residuals r} with the index ¢ labeling A; =
(i — 1,i). The raw residuals do not indicate any problem but the standardized
residuals show one obvious region with large residuals.

*.—
T; =
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The plots in the second row of Fig. 4 use the weights w; with b = .2. The plot
on the left shows w;r} versus the index i of A; = (i —1,i] and the plot on the right
shows w; against r}. Again, there is one subinterval with large combined residual
and influence. The bottom plot is the most interesting one. It shows that there are
3 subregions being downweighed. These subregions are (80, 81], (81,82], (83,84]
with (81,82] receiving the smallest weight. This is the region where the spurious
events lie. Although the regions (80,81] and (83,84] are moderately downweighed,
their residuals are small hence the model is well-fitted there, as expected. This
useful information is made available as a by-product of our robust estimator.

6. Proofs of asymptotic results

With g;(8) defined in (3.7) we have Eg = g;(f) = O when [($A)g is finite.
Then Covg ¢:(6) = fAt ¥(z,0)¢ (x,0)\(z,0)dz. Aitchison and Silvey (1958), who
can be consulted for the proof, gave the following lemma.

LEMMA 1. If g; is a continuous function mapping of R into itself with the
property that & g,(8) > 0 for every @ such that @0 = 1, then there erists a point 8

such that 8 < 1 and g® =o.

REGULARITY CONDITIONS.

(S) A(z,8) >0 for all @ € © C R? and = € R". There exist a neighborhood
©g of 6 such that, for all t > 0, € ©p, and & € R", there exist the derivatives
with respect to @ of A(z,8) up to third-order and of ¥(x,8) up to second-order.
With probability 1, the random integral g¢(f) may be differentiated twice with
respect to @ € ©g by interchanging the order of integration and differentiation.

(A) Ai(6o) = [,, Mz, 00)dx — 00 as t — oo.

(B) Let 0 < ay; < -+ < ag¢ be the eigenvalues of the symmetric and positive
semi-definite ¢ x ¢ matrix Wy(6o) = [, Y(x,00)¢' (z,00)A(x,00)dz. We assume
that 0 < ay, for all ¢ and that A, (80)W:(6o) — F(8o), as t — oo, where F(6o) is
a symmetric positive definite matrix.

(C) Let (x,8p) denote dlog A(,00)/56 evaluated at § = 6o and

Ct(ﬂo)z/A P(x,00)l' (z,00)\(x,00)dx.

We assume that A;'(80)C:(60) — C(8o), which is a positive definite matrix.

(D) Let u be a ¢ x 1 unitary vector and let 99, (z,60)/06 denote o, (x,8)/00
evaluated at 8 = 6. Furthermore, let T3(u) be the ¢ x ¢ symmetric semi-definite
positive matrix with ij-element

(558 (258 v

and eigenvalues {Bi¢(u);i = 1,...,¢}. If B, = sup,{maxi<i<q Bit(u)}, then we
assume that A;%(6p)B: — 0 as t — oc.
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(E) For all @ € ©g, we have

2 0.
1§Iir,lﬁl}c(gq [0°%,.(x,0)/00,0,] < G(x)

with G(&) satisfying
Jlim A;2(00)G% () A(x,00) = 0
- 00 At
and
limsup/ A1 (00)G(2)\(x,00)dx = M; < 0.
t A
(F) For all 8 € ©¢ we have

2T
86:6,

< H(z)

(13,00)

with H(z) satisfying lim sup, fAt H(z)/Ai(0p)dz = M> < oo.

(G) For t sufficiently large, we can find partition A, = Y .-, Ai such that,
for any fixed v € R? and any € > 0, the sequence of independent random vari-
ables Y;; = fA“ v'Y(x,00)dM(x,0y) with mean zero and variance Varg, Yy =
Ja,, v'¥(2,00)¢'(z,00)v\(z,00)dx satisfies

Nit

Jim Ay (6) D Eoo(Yivzseni(o0)) — O

=1

Condition (S) refers to the smoothness of A and 9. Condition (A) requires
the increase of the number of events. The unbounded growth of A;(fy) guarantees
that we do not stop observing events after some finite ¢. W;(6p) can be interpreted
as the expected information about 8y in A; as we will see in the study of the
asymptotic distribution of 8. Then condition (B) says that information about
accumulates and goes to infinity as ¢t — oo, and that the asymptotic growth occurs
at a constant rate with the increase of the expected number of events. This is a
minimum requirement if asymptotic results are to be valid. Condition (C) requires
¥ and [ to be somewhat similar. This is also reasonable and we recall that the
Hampel-optimum M-estimator of a scalar 4 in an i.i.d. context is given by the
score [ centered and bounded below and above by constants —b and b (see Hampel
et al. (1986), p. 119). Condition (D) imposes a constraint on the accumulation
rate of the derivative of 9 with respect to that of A(8y). For example, in the
one-dimensional case, it is satisfied if the growth of [ ¥2)\ is of the same order as
that of A(6y), i.e., if fﬂ/}Q/\ = O(A(6p)). Finally, conditions (E) and (F) impose
bounds on second derivatives and condition (G) is a Lindeberg-type condition.
Note that it is always possible to obtain Y;; with constant variance. The fact
that T;(u) in condition (D) is positive semi-definite will become clear during the
consistency proof.
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In the MLE case, when 9 = I, we have C(6y) = F(6p). Many classical models
can be easily checked with respect to these conditions. For example, for one-
dimensional 4, the log-linear intensity A(z,8) = exp(z(x)8) have l(z,0) = 2(x)
and hence (D), (E), and (F) are trivially true. As with (C), integrating on A,
we have [ z(z)z(z)'A; ' (80)A(z, 6p)dz equal to the second moment of a random
variable z(X) where X is a random point chosen in A; with density proportional
to A(x,6p). Therefore, (C) is equivalent to require convergence of this second
moment.

PROOF OF CONSISTENCY. Let S(6y,6) be the surface of a g-dimensional
sphere centered at 6y and with radius 6 > 0 arbitrarily small. Suppose we prove
that

P(A;1(80)(8 — 60)'9:(6) < 0 for all @ € 5(8y,6)) -1 as t— oo.

Then, for t sufficiently large, by Lemma 1, there exists 8 in the interior of the
sphere such that A;*(6)g:(6;) = 0 which implies g;(8;) = 0. Hence, it suffices to
prove the inequality.

Define H(8) = A;*(8,)(0 — 6,)'g.(8). Using (A) and Taylor’s expansion, we
expand g:(@) around 8y for @ in a neighborhood of 8, to obtain

H(6) = A7 (80)(8 — 60) 9:(80) + A7 (80)(6 — 60) D ge(80) (6 — 6o)
+0.5A;1(80)(0 — 60) D*(6,,6,6")
= R; + R, + 0.5R;3.

The g x ¢ matrix Dg;(6o) has ij-th element given by 8g;+(6)/00; evaluated at 6.
The gx 1 vector D?(6o,8,0") has k-th element given by (8—8,)’ D3 (6" )(6—6) where
D2(6%) is the ¢ x ¢ matrix with ij-th element given by 82 gy/86,00; evaluated at
0" and 6" is in the line connecting @ and 8;. The rest of the proof consists of
controlling each of the terms R;, Ra, and Rz, and then showing that Ry < 0
dominates R; + Ry + R3.

For @ on S(6y, 6), we have @ = 6+ 6u where u is an unitary vector. Therefore,

Varg, (R1) = Ay *(60)(8 — 80)" Cova,(9:(60))(6 — 6o)
= 52A;2(00)U’Wt(90)u < 62A[1(90)aqt
which goes to zero uniformily in S(6,8) as t — oo by (A) and (B). Since Eg,R; =

0, Chebyshev’s inequality gives that Ry — 0 in probability.
For the term Rs, we have

(61)  Ra=A7'(60)(0 - 60 ( / wdmm)—a(%)) (0 —60).

Using (C), the second term in the right hand side converges to.—(8—6,)'C(6o) (0 —
0()) <0if @ 7& 00. For 8 = 0() + bu € 5(00,5) we have —(0 - 00)'0(00)(0 — 00) <
—v16% < 0 where 7, is the smallest eigenvalue of C(fy). The g x 1 vector

A %{;;90_) (8 — 60)dM (z,60)
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has mean zero and covariance matrix §27;(u) with j-th element given by

@ — 8o) <8'/’(8“; ”")) (8'/’1‘ g’; 60) ) (8 — 80)\(z, B0 )da.

A

Incidentally, this proves that Ti(u) in condition (D) is a symmetric semi-definite

positive matrix. Therefore, the random variable A; *(80)(8 — 8o)’ [ (%'ng Yo, (0 —
6,) has mean zero and variance

§2A72(80)(8 — 00)'To(w) (8 — 60) = 6*A; 2(B0)u' Ty (u)u < 6*BA;*(60) — 0
by condition (D). We use Chebyshev’s inequality once again to obtain Ry = 0p(1)—

16% < —716%/2 < 0 for all € S(8,6) if ¢ is large enough.
Considering R3, we have

ID2(6%)]i5] < / G(z)N(dz) + / H(z)dz

by conditions (E) and (F). Therefore,
|D%(6")| < 62 Z |u'D2(6%)u| < 6 {/G(m)N(dw) + /H(a:)da:} .

This implies that, for 8 € S(6o,6),

|(6 — 80)' D?(6")| _ 8lu||D*(6")]
A+(6o) A+(6o)

< X% {/G(:c)N(da:) + /H(w)da;}.

Using condition (E) we obtain

|R3| =

G(z) _ [ G(=) G(x)
/ Ko V@) = [ fogy M (@:00) + [ gy fo)dw < op(1) + My
for large t since
G(z) [ G¥=)
Va‘roo ( » mdM(l‘,eo)) = " m/\(w,%)dw — 0.

Condition (F) gives |A; (6o) [ H(z)dxz| < M, for large t.

Let S, be the event that all the three inequalities, |R;| < 6%, Ry < —ay/262,
and |Rs| < q(M;+M,+1)83, are satisfied uniformly in S(6o,§). Then P(S;) > 1—e
if ¢ is large enough. For such t, for w € S;, and § sufficiently small, H () < 0 for
6 € S(0y,6) and we have the desired result.
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PROOF OF ASYMPTOTIC NORMALITY. Since
0 = g:(8:) = g:(60) + Dg.(60)(8. — b0) + 0.5D° (60, ,6"),
we obtain

(6.2) W, %(00)91(60) = — Wy /*(80) D g1 (80)(8 — 6o)
— 0.5W,*(8,)D?(8,,6,6").

By conditions (B) and (G) and the Cramer-Wold device, the left-hand side of (6.2)
converges in distribution to a N,(0,I). From the control of the Ry term on the
consistency proof, we have

A7 (60)Dg:(80) = —C(6o) + 0p(1)
and hence

—¢At(eo>W;”2<eo>—DA%(§f§ L F2(80)C(0)),

which implies that

—W,%(86) D g:(60)(8 — 60) = (F~'/%(86)C(80) + 0p(1)) v A¢(00) (6. ~ 60)-

The k-th entry of D?(00,0,0")/+/A:(6o) can be written as

(A71(80)(B: — 60)' D2(6°))/Ar(80) (8: — 80) = 0,(1)v/Ae(80)(8: — 8o)

and hence the right-hand side of (6.2) is

[(F=1/2(80)C(80) + 0,(1)) + (0.5(F~*/%(680) + 05(1))0p(1))]V/Ae(80) (B: — o)

which is .
(F~/2(80)C(80) + 0p(1)] v/ Ax(80) (B: — bo)-
Then, Lemma 6.4.1 from Lehmann (1983) gives

(6.3) VA (00)(8; — 80) —a N,(0,C(60)F(80)C" " (60)).
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