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Abstract. This paper investigates the existence of Bayesian estimates for
polychotomous quantal response models using a uniform improper prior distri-
bution on the regression parameters. Necessary and sufficient conditions for the
propriety of the posterior distribution with a general link function are estab-
lished. In addition, the sufficient conditions for the existence of the posterior
moments and the posterior moment generating function are obtained. It is also
found that the propriety guarantees the existence of the maximum likelihood
estimate.
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1. Introduction

Polychotomous quantal response models have been used in many medical and
econometric studies to examine the relationship between various covariates and
a polychotomous outcome measure. When prior information is not readily avail-
able, a uniform prior distribution or some other non-informative priors such as the
Jeffreys prior for the regression coefficients is often used. Use of the uniform or
non-informative improper priors typically leads to a challenging problem, that is,
whether the resulting posterior distribution is proper. However, the posterior den-
sities for the regression coefficients are always proper when proper non-informative
priors such as “locally uniform” priors used by Box and Tiao ((1992), p. 23) are
employed. While Box and Tiao introduce locally uniform proper priors, in prac-
tice they integrate from —oo to oo and thus certain integrals that would converge
given a finite range of integration may not converge given a doubly or singly infinite
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range of integration. A similar point can be made with respect to Zellner’s maxi-
mal data information priors (Zellner (1997)) that in some cases are proper given a
finite range of integration but not with an infinite range of integration. Also, the
analysis in Ibrahim and Laud (1991) indicates that Jeffreys’s “non-informative”
prior is proper for certain generalized linear models and is not uniform. On the
other hand, Jaynes’ maxent prior (see, for example, Jaynes (1982)) given just that
it be proper is a proper uniform prior defined over a finite range. Again, if one
disregards the finite range, integrals may diverge.

Since an improper posterior makes Bayesian inference impossible, it is impor-
tant to study the propriety of the posterior distribution. An investigation of the
posterior propriety can avoid a poor experimental design, which may result in the
parameters of interest not identifiable without using a suitable proper prior.

When the response is dichotomous, Zellner and Rossi (1984) and Rossi (1996)
examined the existence of Bayesian estimates for the logit model. More recently,
Chen and Shao (1999a) established necessary and sufficient conditions for the pro-
priety of the posterior distribution with a uniform improper prior on the regression
coefficients for dichotomous response models. However, when the response is poly-
chotomous, the literature on the study of propriety is almost nonexistent. This
may be partially due to the technical difficulty of the problem. By extending
the results of Chen and Shao (1999a), we are now able to study the existence
of Bayesian estimates for polychotomous quantal response models with general
link functions. However, the conditions on the existence of Bayesian estimates for
the polychotomous response models are somehow quite different from the ones for
the dichotomous response models, which may be mainly due to the fact that the
dichotomous response models belong to the exponential family; but the polychoto-
mous response models do not.

We first introduce some notation, which will be used throughout the rest of
the paper. Let y = (y1,¥2,...,Yn) denote an n X 1 vector of n independent
polychotomous random variables. Assume that y; takes a value of [ (1 <1 < L,
L > 2) with probability

(1.1) ba = F(al + :Bz,ﬂ) - F(Ol_l + (l:z'ﬁ),
for | = 1,...,L, where §y = —o0, 8, = 00, ; < 0 < --- < 01, F(-) denotes
a cumulative distribution function (cdf), @ = (zi1,..., %) is a k x 1 vector of
covariates, 8 = (61,...,0,_1)" is an (L — 1) x 1 vector of L — 1 intercepts, and
B=(B1,---,0k) is a k x 1 vector of regression coefficients. In (1.1), F~1is called
a link function. Three widely utilized functional forms for F(-) in (1.1) are
(1.2) F(u) = @(u),
the probit model,
(1.3) F(u) = ﬂ(_“_)_,

1 + exp(u)

the logit model, and
(1.4) F(u) = exp|— exp(~u)],
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the log-log link model. In (1.2), ®(-) denotes the standard normal cumulative
distribution function. Of course, other functional forms of F(-), 0 < F(-) < 1, can
be employed; see, for example, Agresti (1990), McCullagh and Nelder (1989), and
Chen and Dey (1998). Using (1.1), the likelihood function, denoted by L(8,8 | v),
is
n .

(1.5) L(B,01y) = [[[F(6y. + z/B) — F(6y,—1 + z,B)].

i=1
In the context of Bayesian analysis, it is required to specify a prior distribution of
6 and B, say, w(@,8). Then, the posterior distribution of 8 and 8 is

(1.6) (8,0 | y) o< L(B,6 | y)=(B,6)
= {H[F(% +2B) — F(fy, 1 + w{ﬂ)]} 7(8,0).

i=1

It is clear that the posterior (8,6 | y) is proper if and only if

an  [of [T { F(9y,-+${ﬂ)—F((’yi—l+w{ﬂ)]}7r(ﬂ,0)dﬁd9

0,<62<---<8p_,
< 00,

where R is the k dimensional Euclidean space. In this article, we are interested
in the following problem. If a uniform improper prior distribution for 8 and 6,
ie., m(B,0) x 1, is specified, what are the necessary and sufficient conditions for
the propriety of n(8,6 | y¥)? In addition, we are also interested in the sufficient
conditions for the existence of Bayesian estimates, such as the posterior means
and variances of # and 6.

The remaining of the article is organized as follows. In Section 2, we introduce
the mathematical formulation of Bayesian estimates and discuss the implementa-
tional issues for computing the posterior quantities of interest. The main results
are presented in Section 3, in which we carefully describe the precise conditions
on the existence of Bayesian estimates and examine the relationship between the
propriety of posterior distribution and the existence of the maximum likelihood
estimate. Two illustrative examples are give in Section 4. The proofs of all main
results presented in Section 3 are left to Section 5.

2. Bayesian analysis of polychotomous quantal response models

As discussed in Zellner and Rossi (1984) and Rossi (1996), the posterior ex-
pectation of various functions of the model parameters must be calculated. For
example, the posterior mean is the usual Bayesian estimate of model parameters.
Let c(y) be the normalizing constant of the posterior distribution (8,6 | y) with
a uniform improper prior, that is,

ey = [-f [ { F(8,, +alB) - F(Gyi—1+w{ﬂ)l}dﬁd9-

01<62<---<0r,1
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If ¢(y) < oo, then the posterior 7(B,0 | y) is proper and
1 n
(2.2) ".01v) = 5] H (8, + @/B) = F(By.—1 + =(P)]-

Furthermore, letting h(B,60) be a real-valued function or a real-valued vector/
matrix of B and 6, the posterior expectation of h(f,60) is given by

ey EWEO= [ f [ weom@oivdsan

01<02<--<0p1

Here, the posterior expectation E[h(B, 6) | y] is said to be existent iff (i) 7(8,6 | y)
is proper, and (ii)

(24 [ ] [ ineoim.61 s <o

01<62<---<0L-1

where ||h(8,0)| denotes a usual norm of h(B,0), for example, when h(B,6) is a
real-valued function, ||k(8,6)| simply takes the absolute value of h(B,6). This
convention will be used throughout the remainder of the article.

For Bayesian analyst’s posterior-distribution problems, many posterior esti-
mates can be expressed as E[h(8,6) | y] given by (2.3). For example, (2.3) reduces
to (a) posterior mean of 8 when h(B,60) = B; (b) posterior covariance matrix of 8 if

h(B,0) = (B~E(B|y))(B-EPB|y)), where EB|y) = [---[  [pPm(B,0]

61<02<--<6p1
y)dBdb; (c) posterior probability of a set A if h(8,0) = 14(B,0), where 14(8,6) =1
if (8,0) € A and 0 otherwise; (d) marginal posterior density for f3; evaluated at
ﬁj=ﬂ;(1§j§k)when ;

T(Bs-- > Bi=1,85 Bjt1s-- - Br: 0 | y)
(8,0 1y) ’

h(B,0) = w(B; | Bt,---+Bj-1,B+1, - Bx)

where w(B; | B1,- - -,Bj=1,8j+1,- - -, Bk) is a completely known conditional density
(see Chen (1994)). Some other posterior estimators, including posterior quantiles,
Bayesian credible intervals, highest probability density (HPD) intervals, cannot be
expressed as (2.3); see Chen and Shao (1999b). Precise conditions providing for
the existence of various Bayes posterior estimates will be investigated in the next
section.

Finally, we note that for polychotomous quantal response models, almost all
Bayesian estimates are analytically intractable. Fortunately, the recently devel-
oped Markov chain Monte Carlo (MCMC) sampling methods, which include the
Gibbs sampler (for example, Geman and Geman (1984) and Gelfand and Smith
(1990)), Metropolis-Hastings algorithms (for example, Metropolis et al. (1953),
Hastings (1970) and Tierney (1994)), can be easily adopted for computing the
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posterior properties. Assume that {(ﬂ(b), 0)),b=1,2,..., B} is a MCMC sample
from 7(B,0 | y). Then, E(h(B,0) | y) can be approximated by

B
(25) B(h(8,6) |5) = 5 > (B, On)-
b=1

It can be shown that under certain regularity conditions such as ergodicity,

E(h(B,0) | y) — E(h(B,0) |y) as.

as B — oo; see, for example, Tierney (1994). In particular, if [[,_,[F(8,, +
z/B) — F(0y,-1 + x/B)] is log-concave, which is true for all the three common
links (probit, logit, log-log link), then we can use an adaptive rejection algorithm
of Gilks and Wild (1992) to generate a sample from the posterior distribution
7(B,0 | y) without knowing the normalizing constant c(y). In addition, if F is
a scale mixture of normal link, we can use the efficient algorithms developed by
Chen and Dey (1998).

3. Existence of the Bayesian estimates

To obtain necessary and sufficient conditions for the existence of Bayesian
estimates described in Section 2, we first introduce some notation. Let

I={1<i<n:y;=L}, J={1<j<n:y;=1}, and
T={1<i<n:1<y <L}

That is, sets I, J and T divide the n observations y1,y2,...,¥yn into three groups
so that sets I and J include all polychotomous responses with values of L and 1
respectively, while set T contains all observations with values between 1 and L
exclusively.

The main results are given as follows. We first present the necessary and
sufficient conditions for the propriety of the posterior distribution given by (2.2).

THEOREM 3.1. Assume that

(3.1) /oo lulFt L= dF(u) < oo.

— 00

If the following conditions are satisfied
(C1) I and J are non-empty sets;

(C2) Ve =+1,1<I<kVa>0b >0, withYr o+ b >0,

Yj k yi—1 k
min Zb +E$-Ea < max zb +Zx~sa
jeJUT r FIAIAL ielor r delal
r=2 =1 r=2 =1
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then the posterior is proper, that is,

(3.2) // /R L(B,6 | y)dBd6 < co.

01<62<---<0p -1

THEOREM 3.2. If F(b) — F(a) > 0 for every b > a, then (C1) and (C2) are
necessary conditions for (3.2).

From Theorems 3.1 and 3.2, for a link function F~!, if F satisfies (3.1) and
F(b)—F(a) > 0 for every b > a, then (C1) and (C2) are the sufficient and necessary
conditions for (3.2). As to condition (Cl), if either I or J is empty, then there
is a quasicomplete separation in the data points. In this case, obviously there is
no information available to estimate either 6; or #;_;. Thus, (3.2) cannot hold.
As to condition (C2), it is not difficult to show that (C2) implies that the n x k
design matrix is of full column rank. Hence, the full rank condition on the design
matrix is necessary for the propriety of the posterior but not sufficient. On the
other hand, condition (C2) may not be easily verified. To this end, we present two
sufficient conditions for (C2).

Let X be the n x k known design matrix with rows ;. Define z = (L, z;)’
fori=1,2,...,n,

X, =(z*icl,—zrjeJuT), and Xp=(x},je€J,—z,ielUT).
L ’] 4] ]

Thus, X; and X are the two reconstructed design matrices from X . For example,
X is simply obtained by taking the i-th row to be «;* for ¢ € I and the j-th row
to be —x forje JUT.

PROPOSITION 3.1. Assume that I and J are non-empty sets and that the
design matriz X 1is of full column rank. Then (C2) holds if one of the following
conditions is satisfied:

(C3) There exists a positive vector a = (a1,...,an)’ € R", i.e., each compo-
nent a; > 0, such that

(33) G,IX1 =0.
(C4) There ezists a positive vector @ = (a1, ...,an) € R"™ such that
(34) a’Xg =0.

Thus, for verifying condition (C3) or (C4) it suffices to find a positive solution
for (3.3) or (3.4). This is a standard linear programming problem which can
be done using commercially available software, for example, CPLEX (CPLEX
Optimization (1992)).

Next, we briefly discuss the conditions on link functions. For the three widely
used probit, logit and log-log link models, it is easy to see that F(b) — F(a) > 0
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for every b > a and condition (3.1) holds. However, condition (3.1) may be too
restrictive for some links other than probit, logit, and log-log link, such as ¢-links
with degrees of freedom less than or equal to k + L — 1, stable distribution family
links, and exponential power distribution family links (see Chen and Dey (1998)).
At the cost of assuming more restrictive condition on z; and y;, we are able to
weaken the assumption on the moment condition (3.1).

Let
ﬂ,l = {(7‘7.7) RS I7.7 S J)xil - le > 0}’
n,—l = {(7”]) (1€ Ia] € J,.’Ei[ — T < O}
For ¢ = (e1,€9,...,&), where ; = %1, let

k
T(e) = ﬂ Tje,.
=1

Thus, for a given €, T'(¢) contains all pairs (¢, j)’s of observations such that either
Zy—T;>0o0rzy—z; <0foralll <I<Ek.

PROPOSITION 3.2. Assume that T'(e) # 0. Let X1, Xo,..., X, be indepen-
dent random variables with the same cdf F. If

Ve, E [ min (|X;| + |Xj|)k+L_1] < 00,

()€ ()
then (3.2) holds. In particular, if there are I(¢) and J(e) such that I(e) x J(g) C
T(e) and

(3.5) E[ min |Xi]k+L'1] < 00,
1<i<m>

where m* = min, min(card of I(g), card of J(¢)), then (3.2) is true.

If m* > k+ L -1, it is easy to verify that (3.5) holds even when F is the
cdf of a Cauchy distribution. Therefore, the condition on F' given in Proposition
3.2 is much weaker than the one given by (3.1). Of course, the restriction on the
design matrix is much stronger. The condition T'(¢) # @ requires that there must
exist some common (i, j)’s such that either z;; — zj; > 0or zy — x5 <0 for all [.

Now we consider the existence of Bayesian estimates. Given a proper poste-
rior, the posterior median or the HPD intervals will exist. However, Theorem 3.1
cannot guarantee the existence of the posterior moments. Therefore, we present
the sufficient conditions on the existence of the posterior moments and the poste-
rior moment generating function in the next theorem.

THEOREM 3.3. Assume that (C1) and (C2) are satisfied. If

(3.6) / [ulFHL=1HPd P (u) < 0o

— 00
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for some p > 0, then

(3.7 [ [ IepE.o | vdsae < oo,

015025+

IA

0r-1

where ¢ = (8,0) and the norm ||C|| = (X5_, B2 + £15' 6)V2. If

(3.8) / * etolilgF(y) < oo

— 00

for some tg > 0, then

(3.9) / / /R HIIL(g,0 | y)dpds < oo,

61<62<---<0p-1

for some &g > 0.

For the three widely used probit, logit and log-log link functions, it is easy to
see that conditions (3.6) and (3.8) holds. Hence, (C1) and (C2) are the sufficient
conditions for (3.7) and (3.9). However, the moment generating condition (3.8)
does not hold for all ¢-links.

Finally, we examine the relationship between the propriety and the existence
of the maximum likelihood estimate. The next theorem confirms that (C1) and
(C2) are the sufficient conditions for the existence of the maximum likelihood
estimate.

THEOREM 3.4. Assume that F is continuous and that (C1) and (C2) are
satisfied, then the mazimum likelihood estimate of (B,0) exists.

When F is continuous and satisfies F(b) — F(a) > 0 for every b > a, it
follows from Theorems 3.2 and 3.4 that if the posterior is proper, then the MLE
exists. This result is useful since (i) the posterior is simply not proper if the MLE
does not exist and (ii) the existence of the MLE is routinely checked by many
widely used statistical softwares such as SAS and Splus. For example, in SAS
the LOGISTIC procedure performs some checking to determine whether the input
data have a configuration that leads to infinite parameter estimates (see Stokes et
al. (1995) for detailed discussions). On the other hand, as proved by Wedderburn
(1976), the MLE exists only for certain generalized linear models in the exponential
family. Hence, Theorem 3.4 is of great importance in checking improperness of the
posterior distribution, while Proposition 3.1 provides practically usable conditions
to determine the propriety of a posterior density.
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Table 1. The rating data.

Gender | female female female male male
Rating | poor fair good poor fair

4. lllustrative examples

In this section, we present two simple examples to illustrate how to verify the
conditions stated in Section 3.

Ezample 4.1. At a private college, five students, including three females and
two males, submitted course project reports in a given semester. The reports were
graded and were rated as “poor”, “fair”, or “good” by their instructor. The rating
results are given in Table 1.

This is a standard polychotomous response problem in which the response is
the project grade while gender serves as a sole covariate. We code female as 0 and
male as 1 and we also denote the response to be 1 for “poor”, 2 for “fair”, and 3
for “good”. Then, the sample size n =5, k = 1, L = 3, and the five observations
arery = T2 =r3=0,z4=25=1,y1=1,92=2,y3=3,ys = 1, and y5 = 2.
Using the notation given in Section 3, we have I = {3}, J = {1,4}, T = {2,5},
X =(0,0,0,1,1), and

It is easy to see that I and J are non-empty, X is of full rank, and a = (2,1,1,1,1)’
satisfies o’ X, = 0. Hence (C4) is satisfied, and it follows from Proposition 3.1 and
Theorem 3.1 that the resulting posterior is proper. A small SAS program for this
three-level ordinal response data set was also written. The LOGISTIC procedure
returns the unique maximum likelihood estimates for all three commonly used
links (probit, logit, and log-log link).

Ezample 4.2. We consider the same data given in Example 4.1 except the
last male student dropped out from the instructor’s grade sheet. Then, we have
T =22=23=0,z4=1,y1=1,y2=2,y3 =3, and y4 = 1. Then I = {3},
J = {1,4} and T = {2}. For this case, we will show that the resulting posterior
with a uniform improper prior is not proper.

Since k = 1, in Theorem 3.1 we take ¢ = 1, a1 = 1 and b, = 0. Then, we
have Table 2. From Table 2, it is easy to see that (C2) does not hold. Therefore,
it directly follows from Theorems 3.1 and 3.2 that the resulting posterior is not
proper. Similarly, we consulted with the LOGISTIC procedure in SAS for verifying
the existence of the MLE, and the LOGISTIC procedure provides the following
information:
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Table 2. The computation of condition (C2).

jEJUT Wi, br+ Zle zjea [1€IUT Zy‘—l br + Zl 1 Til€101
1 0 2 0
2 0 3 0
4 1
min =0 max =0

“There is possibly a quasicomplete separation in the sample points. The
maximum likelihood estimate may not exist.”

From the above two simple illustrative examples, we have learned that es-
timating the three unknown parameters for a three-level ordinal response model
requires five data points.

5. The proofs of theorems

In this section, we provide the proofs for all the theorems and the propositions
stated in Section 3.

PROOF OF THEOREM 3.1. It follows from the fact that
o0

F(b) - F(a) = / 1{a < u < b}dF(u),
— 00

where the indicator function 1{a < u < b} = 1 if a < u < b and 0 otherwise, and
the Fubini theorem that

(5.1) / [ 16| vydsap
01<02<- <01 1
/n /91<92< <01 /Rk
{8y, 1 + @B < u; < Oy, + x/B,1 < i < n}dBdOdF (u),

where dF(u) stands for dF(uy) - - dF(u,). Put

(5.2) h(u) :/

01<62<--<0p 1

/ 1{6, 1+ /B < s < by, +B,1 < i < n}dBds.
Rk

By (3.1), it suffices to show that

Jk+L-1
(5.3) h(u) < A(z, y) max |us
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for some A(z,y) < oco. To estimate h(u), letting t; = 61, t, = 6, — 6,_; for
r=2,...,L—1 yields

(5-4) hlu) = /t,20,r=2,...,L—1 /R’“ /—Z

yi—1 Yi
-1{Ztr+w{ﬂ<ui<Ztr+m{ﬁ,i€T}
r=1

r=1
yi—1
~1{Ztr+m{ﬂ<ui,iel}
r=1

-1 {uz <t + (l:z,ﬂ,l € J}dtldﬂdtg <eedtp_q,

where {3 ¥ ¢, + 2/B < u; < ¥:  tr + @/B,i € T} denotes 1 if T is empty.
Note that

yi—1 Yi
(55) 1 {Z tr+ @B <u; <D tr+aBic T}

r=1 r=1

y:i—1
-I{Ztr+m{ﬁ<ui,iel}-1{ui<t1+m{ﬂ,i€J}

r=1
Yi
=1 =Y t,—x! t
{os (s 20 - 0) <o
r=2
yi—1
. i
< &0 (u’ - 22 br = m’ﬂ)}
r=
Yi
=1{— min [ —u; t B <t
{ jeJu:r( u’+; T+maﬁ> 1
yi—1
< mi ; — tr — @ .
ieor (u’ 12—; T :1:1,3)}

It follows from (5.4) and (5.5) that

Y
(5.6) h(u)= /trZO,r=2,...,L—1 /Rk (jg.lliST (—Uj + r;tr + wj’ﬂ)
yi—1
Yi
-1 {jénJiLr}T (—uj + ;tr + a:]'ﬂ)

yi—1
+,min, (u - 22 ty — m{ﬂ) > 0} dBdty - - - dtp_,
r=
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v; k
= Z / (minT <—Uj + Ztr + szlglﬂl)
g=+1,1<I<k (Rt)k+L-2 jeJu < a
yl_l
' t Tl
+z‘g}ng ( Z r Z il tﬁt))
Y5 k
1 {jg}lllﬂlT (—u,- + Ztr + Zxﬂslﬂl)
yl—l
vt ( Z tr = quazﬁl> > 0}

dpy -+ - dBedts - - - dtL—1~
Let

d= inf
e1=%1,1<I<k,0<a; <1,0<b,-<1,2<r<L-1,a;5=1 for some lp, or b,y=1 for some ro

yi—1 Y k
By (C2), we have d > 0. Denote maxi<i<k2<r<z—1 max(8,t,) by M*. We have
(6.7 0< nbm (—u, + Zt + Zmﬂé‘lﬁl)
'.‘/1_1
+ ig}ile ( Z tr — Z%mﬂz)
< 80 (Zt +Zwﬁz) vkl
yi—1
— Dnax (Z tr + szlelﬂl) + igﬁﬁ,tuﬂ
yi—1
< 21I£ax fuit = M (zeIUT (Z tr/M” + Zx”alﬂ’/M )

<2 max |u;| — M*d.
1<i<n

Hence

(5.8) max(fy,ty) = M* < 2 max |uil/d.
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This proves (5.4), by (5.6) and (5.8). O

PROOF OF THEOREM 3.2. If J =0, by (5.2)

Yy
Rk J§,<602<--<60_,

* l{ey,‘—l + wi/ﬂ < Ui < ey;- + :c,-’ﬂ,i € T U I}d01 M daL._]dﬂ = 0O0.
Similarly, if I = @, we have also h(u) = co. This proves (C1) necessary for (3.2).

Next we show that (C2) is necessary. If (C2) is not satisfied, then there exist
sequences of ¢;, a; and b, such that

Yj k yi—1 k
(5.9) jén}ST (Z b + Zxﬂalal) > lrenlzb)% (}: b, + Z milala[) .
r=2 =1 r=2 =1

Noting that J is a non-empty set, (5.9) implies that Zle a; > 0. Without loss of
generality, assume ; =1 for [ = 1,...,k and a; = 1, that is,

Ys k i1 k
(5.10) ngJiST (r; br + 51 + ;leal) > max. (ZZ; by + i1 + gmm) .
Let T; = {i:y; =1} for [ =1,2,..., L and put
(5.11) C={u:0< —uj+(l—-1)<1/2forj€T;,1<I<L}.
Since F'(b) — F(a) > 0 for any a < b, it suffices to show that for any u € C,
(5.12) h(u) = oo.

From (5.6) it follows that

vs
. > i —u; 4
(5.13) h(u) > /(R+)k+L—2 (jgl]lLIJlT ( uj + ;tr + :z:]ﬂ>

yi—1
. !
+z'g}ng (u‘ B Z b a:,ﬂ))

r=2
Yi
. '
-1 {jél:illLIJlT <—Uj + ,5_2 t + a:]ﬂ)

yi—1
i - —_ 7! -
—i—ig}lunT (u, Z t, :B,,B) > 0} dBdts - - - dtp_;

r=2

Y5
> / / min | —u;+ Y t.+zp
t-21,r=2,...,.L—1 J(R+)k <J'€JUT ( ! TZ::Q " !

)
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+ min { u; —
i€IUT

Y5
. !
.1 {jg]lLIJlT (—Uj + E t- + wjﬂ)

r=2

yi—1

S
r=2

)

yi—1
+ lg}ng (ui - X; t, — a:,'ﬂ) > 0} dﬂdtg ceedtp
r=

Yj

_ H ay. L !
B »/(R+)k+L-—2 (jénJlLIJlT ( uj + (i 1)+ Ztr + mjﬁ)

+ min (ui - (yi - 2) -

ieluT

Y;
-1 { AminT (—-Uj + (yj — 1) +ZtT +

JuU
I€ r=2

. dﬂdtg o dtL_l.
Noting that

mm (—uj +(y; — 1)+ émn (wi — (yi — 2))

r=2
yi—1

S

r=2

] ﬂ)

)

)

y:i—1
; (g — 9 — — !
+ zénIng (uz (yi — 2) Tz—:z tr—x/p

Jj€J
1 <xllilg 1 ;’Iél:lx:( uJ l 1 ) 21<nll£ll , Erell’-ln( (l ) )
= —_ — — >
1+ 1<l;rél£1 L II'GHI:[I.( Uj + l 1) 2121132([ I;Iéax( u; + (l 1)) 1/2

for u € C, we have

jeJuU
I€ r=2

yi—1
> ‘Bl — !
B (Zt +e ﬂ) 2% (Z bt wzﬂ)

+ énjm (—uj+ (y; — 1)) + II}ISIT(UZ - (¥ —2))

. !
mlnT(—u]+(y]—1)+Zt +:c,3)+ mng<ui—(yi—2)—Z2tr_
r=

yi—1
> 1/2+ mm (Ztr+wﬂ> - max. (Z tr+mi'ﬂ> .
r=2

Thus, by (5.13)

Y5
h > 1/2 i t ! _
(U) o /(R+)k+L—2 ( / +jgl]lLIJlT (; T + ZB]ﬂ)

max
1eluT

(

yi—1

%Z—ltr-kwﬂ))

)
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yi—1
{1/2-!— Imn (Zt +mﬂ> - reneg%(Zt +:1:,B) >O}
-dBdts - - - dtp_,.

Letting m = f1, m; = Bi/Br for i = 2,... )k, and s, = ¢, /B forr =2,... L -1
yields

h(u) > / pE=3
(R+)k+L—2

[1/2 +m { mln (Z S+ xj1 + Z.’zﬂm)
yi—1
- 13% (Z Sr+ x4 + Zx,ml> }J
{1/2 +m { mm (Z sr + 1 + Zx]ml>
yi—1
(B

. dndSQ ce dSL_g.

By (5.10),
yi—1
T {ngLI}T (Z Sr + Tj1 + ijlnl) - zg}%)’.(l“ (Z Sr+ T+ sztnl) }
{}g}’xLI}T (Zb + 1 + Zagm,)
yi—1
—iItEIIIaL‘JDf(I‘ (Z by + ;1 + Z.’K,la[> }
{ gl]lST (Z(ST —by) + Zxﬂ(m - al)>
yi—1
~ max (Z(Sr*b )+Z$zz m—a )}

> _ _ _
> 171{2<l<k|m a| + mal);(llsr bTI}B

k
where B = L + maxjcrujur 2,5 |Z;i1|. Hence,

(u) > /
71>0,0<m —a; <1/(8Bn;),2<I<k,0<s,—b,<1/(8Bn;),2<r<L—1
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2<r<L-1

{1/2 mB (max |m — ai] + 2<§1§a1},(—1 |sr — bri> > 0}

. dT]dSz s dSL_g

.nf‘”‘ -3 [1/2 mB (rgax Im — &+ max |s.— brl)]

> /
71>0,0<m —a;<1/(8Bn),2<1I<k,0<s, —b,<1/(8Bn1),2<r<L-1

(14t eSS dnds, - - dsp—2
= (1/4) /0 nf+L_3(1/(8Bn1))k+L—3dnl
= 00,
as desired. O

PROOF OF PROPOSITION 3.1. We first show that (C3) implies (C2). Note
that Vt; and b, > 0 satisfying Ef_l Iti| + Zf’:; b, > 0,

Z by + max (Z letl) Jmax. (yz:_l by + Zx,,t,)

r=2
and

Y5 k L-1 k
i b gt ] < b, ati ] .
it (S S < S (2o

r=2

It suffices to show that V¢; with Zle it >0

k k
(5.14) jglJleJlT (; zﬂtl> < rzleajx (; xiltl) .
Let a > 0 satisfy a’X; = 0, namely

> 6-Ta

jeJuT i€l
and
E a;T = E a;zy for 1=1,...,k
jeJuT iel

Without loss of generality, assume that

Z aj:Zaizl.

JjeEJUT el

Hence,

k k
jglJiLrJlT (;letl> < Z aj Zxﬂtl

jeJuT 1=1

Y =3 St < g (Yt

=1 jeJUT =1 iel
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Thus, we have
k k
min it | < max Tyt
jeJor (lz_:l gt l) = el ; it

and the equality holds only if

k
(5.15) Z(L‘utl =c
=1

for some constant ¢ and for all 1 < i < n. Since the design matrix X is of full
rank, (5.15) cannot hold for any t; with Zl 1 [ti] > 0. This proves (5.14).
Similarly, one can prove that (C4) implies (C2). 0J

PROOF OF PROPOSITION 3.2. Note that for t, > 0,

Yj yi—1
(—uj r e 8) « iy - S - )

r=2
Yi y:i—1 k
- - tr— Y t,— o
jesuTieIuT ( uj + Ui + ; }22 lz;(le %z)szlﬁll)
Yi yz*l k
< jen}iiléz (—uj +u; + Ztr - Z ty — Z(xil _ le)51|ﬂl|)
Y r=2 r=2 =1
L-1 k
T jeTier <_uj i ; tr — ;(mu - $j1)€l|ﬂz|>
L-1 .
<=t i bl =S o
- ; AP ('u’lH"’l g(le %I)EII,BII)
L-1 .
< 2 T (i,j~1)11€l¥(6) (lugl | zl ;( il J[) lwll)
L-1 L
2 et i (|U3|+|U1| l;m, xJ,||5l|>
L-1 L
B r=2 " (4,7)ET(¢) (I ]l | l| = (i,j)GT(E)l il Jl“ﬂll)
k
<=-)> 1t + mln ui| + |ui]) — min  |zy — z;]16;
T; et o min (sl fus) 2 o min |z — 2516
L-1
<-> t-+ min (Ju;|+ |u 8
7 G )(| 3|+ Juil) - Z| |

Now (3.2) follows from (5.6). O
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PROOF OF THEOREM 3.3. Similar to (5.1), we have

/ / ICIPL(B | v)dBds
01<62<--<fr_1 JR*

/" /01S92S"'S9L—1

- / ICIP1{6y, -1 + 2B < wi < Oy, + 7B, 1 < i < n}dBAIdF (u).
Rk
It follows from the proof of (5.3) that

/o <6,<-<8 /Rk ICIP1{Oy, -1 + @B < ui < by, + 78,1 < i < n}dBdd
1 <B3<-<BL 1

< Az, y) masx fuafHEHP.

Therefore, (3.7) holds.
As to (3.9), we have

/ /eéoIICHL(my)dgdg
0,<6,<--<81_1 JR*

/ " /(915925"'59L-1

: / eleh1{0,, , + z/B < u; < by, + x{B,1 < i < n}dBdfdF (u).
Rk

Along the lines of the proof of (5.3), one can obtain that there exists A(z,y) such
that for any 6 > 0

/ / N6, 1 + z/B < u; < Oy, + x/B,1 < i < n}dfdf
61<02<---<6p_1 J Rk

< k+L—1 1),

< A(z, y) max s | exp <5A(w, y) max qul>

Letting 8 = to/(2A(z, y)) yields (3.9). O
PROOF OF THEOREM 3.4. Let ¢ = (8,6'). When L({ | y) = 0, the ex-
istence of MLE is obvious. If L(¢ | y) # 0, then there exists a {, such that
L({¢, | y) > 0. Let M > 1 such that
F(-M)+1-F(M) <L | y)

We next show that there exists D such that

(5.16) sup L |y) <L | y),
: ¢IeI>D



EXISTENCE OF BAYESIAN ESTIMATES 655
where ||| = max;<j<g4 -1 ||, which will imply that

supL({|y)= sup L({|y).
¢ ¢liei<p

On the other hand, L(¢ | y) is a continuous function of ¢, so there exists ¢ such

that .
Li{|y)= sup L(|y)
$IICH<D
and hence the MLE exists.
Observe that if min; <;<{6,, + B} < —M or maxi<i<n{by,—1 + 8} > M,
then
L{¢ | y) < max(F(-M),1 - F(M)) < L({, | v)-

To prove (5.16), it suffices to show that

. ’
(5.17) lrgniléln{eyi +x/f}>-M and max {0y.c1+ /By < M
implies
(5.18) Il <D forsome D < oo.

Lett) =6,,t, =6, —6,_; forr =2,...,L — 1. It follows from (5.17) that

yi—1
(5.19) _M_jénJiST (1‘ B+ Ztl) <P <M~ nax (a:ﬂ+ Z tl>

=2 =2

and hence

yi—1
(5.20) 0<2M + n}m (mﬂ—l— Ztl> - max < /B + Z t,)

From the proof of (5.7) and (5.8), it is ready to see that (5.20) implies

<
premax_ max(8i, It < 2M/d,

which together with (5.19) gives (5.18). O
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