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Abstract. Under a fairly general setup, we first modify the Stein-type two-
stage methodology in order to incorporate some partial information in the form
of a known and positive lower bound for the otherwise unknown nuisance pa-
rameter, 6(> 0). This revised methodology is then shown to enjoy various
customary second-order properties and expansions for functions of the associ-
ated stopping variable, under appropriate conditions. Such general machineries
are later applied in different types of estimation as well as selection and ranking
problems, giving a sense of a very broad spectrum of possibilities. This con-
stitutes natural extensions of these authors’ earlier paper (Mukhopadhyay and
Duggan (1997a, Sankhya Ser. A, 59, 435-448)) on the fixed-width confidence
interval estimation problem exclusively for the mean of a normal distribution
having an unknown variance.
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1. Introduction

In his classic papers, Stein (1945, 1949) came up with a two-stage procedure
for constructing a confidence interval I for estimating the mean y in a N(u,o?)
population when o2 € R* is completely unknown, in such a way that I has the
fixed-width 2d and P{u € I} > 1 — o whatever be p € R, 0 € Rt, where d(> 0)
and 0 < a < 1 are preassigned before data collection. The novelty of the two-stage
procedure came out loud and clear in showing that the confidence statement was
not influenced by the unknown magnitude of the nuisance parameter, 0. This was
remarkable, particularly because no fixed-sample procedure could solve this prob-
lem (Dantzig (1940)) in the first place. The two-stage procedure, unfortunately,
has poor characteristics evidenced in oversampling, even asymptotically. In order
to circumvent some of these undersirable properties, Mukhopadhyay (1980, 1982)
proposed a type of modification in the methodology. The investigations eventu-
ally led to a concept, such as second-order efficiency, in Ghosh and Mukhopadhyay
(1981). Cox (1952) is very pertinent in this context too. On the other hand, purely
sequential procedures practically took off from Ray (1957) and Chow and Robbins
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(1965) in a natural progression, culminating into Woodroofe’s (1977) nonlinear
renewal theoretic results. For an overview, the reader is referred to Ghosh et al.
(1997).

Recently, Mukhopadhyay and Duggan (1997a) have considered a modification
of Stein’s two-stage fixed-width confidence interval estimation procedure for p in
a N(u,0?) population, when the experimenter has some prior knowledge to justify
that ¢ > o, and o (> 0) is known. The corresponding two-stage procedure still
enjoyed the exact consistency property and the methodology also had attractive
second-order characteristics associated with it.

In this paper, we focus on two goals. First, in Section 2, we propose a gen-
eral two-stage procedure, synthesizing and extending the important ideas from
Mukhopadhyay and Duggan (1997a). The emphasis here lies first in obtaining
second-order results under a general setup. Sections 3 and 4 provide a variety of
explicit applications of our proposed general theory. Section 3 includes applica-
tions in estimation of (i) the mean vector of a multivariate normal distribution, (ii)
the location in a negative exponential distribution, (iii) the regression parameters
in a linear model. Section 4 includes applications in multiple decision theory, for
example, in the contexts of selecting the best normal or best negative exponential
population. In all these diverse examples, we aim at showing how easily the gen-
eral theory from Section 2 can be put to work so that we can conclude associated
second-order properties in specific cases. This, in turn, points toward significant
breadth achieved by means of the proposed generalization.

Mukhopadhyay and Duggan (1997a) reported encouraging findings obtained
from extended sets of simulations carried out in the context of fixed-width confi-
dence interval construction for the mean of a normal population. We have available
encouraging moderate sample-size performances of the proposed two-stage sam-
pling design in the case of few examples discussed in this paper. In order to keep
our presentation short and crisp, we refrain from including long sets of tables
summarizing the findings obtained via computer simulations.

2. General formulation and analyses

In many problems in the areas of estimation and multiple decision theory,
the expression of the so called “optimal” fixed sample size turns out to be ng =
g6"h*~1, where ¢, 7 and h* are known positive numbers, but 6 is the unknown
and positive nuisance parameter and yet we are assured that 6 > 6r,(> 0) with 6,
known. The explicit roles of g, 7, h* and 6 would be clear from specific applications
discussed in Sections 3 and 4. In this section, the asymptotic analyses would be
carried out when h* — 0. Throughout, [u]* and I(-) would respectively stand for
the largest integer < u and the indicator function of (-).

Let m(> mg) be the initial sample size where

(2.1) m = m(h*) = max {mo, [Q:L] + 1},

mo(> 1) being a fixed integer. Based on the pilot sample of size m, suppose that
one considers a statistic U(m) so that P{U(m) > 0} = 1, E{U(m)} = 6. In fact,
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we require that the estimator U(m) of 8 satisfy the following crucial property:

(22)  pmU(m)/0 is distributed as x2_ where pp, is a positive integer
of the form ¢;m + ¢y with positive integer ¢; and integer c;.

Observe that when (2.2) is satisfied, U(m) L 0 as h* — 0. Let ¢* be positive
where

(2.3) T =q,=9+ esm™ ! + O(m‘2),

with some real number c3. Define a positive integer valued random variable as
follows:

* T *

(2.4) N = N(h*) = max {m, [%(m)] + 1} .

In various applications, what one does is to start with m random samples in the
first stage and obtain U(m), which leads to N that estimates nj. If N = m,
one does not take any more observations at the second stage. But, if N > m,
then one samples the difference (N — m) at the second stage. In either situation,
one proceeds with the appropriate inference procedures, given the nature of a
particular application, that depend on the totality of all N observations obtained
from the two combined stages of sampling. The two-stage sampling scheme (2.4)
is a generalized version of Mukhopadhyay and Duggan’s (1997a) strategy. At this
point, we set out to derive second-order characteristics of N given by (2.4) as
h* — 0, when m is defined by (2.1). Motivations behind these results would be
clear from the different applications addressed in Sections 3 and 4.

LEMMA 2.1. For m and N respectively defined in (2.1) and (2.4), we have
as h* — 0:
P(N =m) = O(n*/2)
where n = (01,/0) exp{l — (0./6)} which is a positive proper fraction and p, is
defined in (2.2).

From (2.4), we observe the basic inequality:

MSNSmI(N:m)+%*(m)+I.

(2.5) -

Since U(m) £ 6 as h* — 0 in view of (2.2), I{(N =m) £ 0 as h* — 0 in view of
Lemma 2.1, from (2.5) we can immediately conclude that N/nj L 1lash—o0.
Utilizing (2.2), we write E{U®(m)} = (20/Pm)°T(3Pm+s){T(3Pm)} !, and hence,

(2.6) E{U*(m)} = 8*{1 + s(s — 1)(czm) ™" + O(m~2)}.

Equation (2.6) holds whether s is positive or negative, but for s negative, p,, has
to exceed —2s. Taking expectations throughout (2.5), in view of (2.6) with s = 7
and Lemma 2.1, and then dividing all sides by ng, we can claim that E(N/ng§) — 1
as h* — 0.
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2.1 Second-order analyses

THEOREM 2.1. Form and N respectively defined in (2.1) and (2.4), we have
as h* — 0:
¥+ o(h*V/D) < BE(N) —nfy < ¢ + 1 + o(h*/?)

where ¥ = ¢~ {r(1 — 1)gey ! + c3}(00;1)" and n§ = gf7 /h*.
This result proves the second-order efficiency property of the two-stage pro-

cedure in the sense of Ghosh and Mukhopadhyay (1981). The following result is
needed in the proof of Theorem 2.1 and it is also of independent interest.

LEMMA 2.2. For m and N respectively defined in (2.1) and (2.4), we have:
(i) n8—1/2(N —ng) 5 N(0,02) as h* — 0 where o2 = 27 72(0071)";
(ii) ny Y(N —ng)? is uniformly integrable for 0 < h* < h§ with sufficiently
small h§.

Suppose that g : R — R* is a twice differentiable function such that

(2.7) (i) ¢"(z) is continuous at z = 1,
T
(2.8) (i) ]¢"(z)] < Zaix_b‘ for all z € RT,
i=1

where @;’s and b;’s are non-negative.

Next, we set out to provide the second-order bounds for E[g(N/ng)] under
certain conditions on g(-). As a special case, we would then be able to obtain
second-order bounds for all negative moments of N/ng.

THEOREM 2.2. For m and N respectively defined in (2.1) and (2.4), with
g(-) satisfying both (2.7) and (2.8), we have as h* — 0:
(i) 9(1) + 25 {g' (1) + 3089" ()} + o(ng™") < E{g(N/nf)} < g(1) +
g~ {(W + 1)g'(1) + 309" (1)} + o(ng™") 4 ¢'(1) > 0;
(i) g(1) +ng @ +1)g' (1) + 3039”1V} +o(ng™") < E{g(N/ng)} < g(1) +
ng {$g' (1) + 5039" (1)} + o(ng™") if g'(1) < 0;
with ¢ and og respectively defined in Theorem 2.1 and Lemma 2.2, with ng =
q67 /h*.

THEOREM 2.3. Form and N respectively defined in (2.1) and (2.4), for any
fized non-zero real number t, we have as h* — 0:
(i) 1+tng o+ 2(t—1)o3} + o(ny™!) < B{(N/n§)'} < 1+tny '{y+1+
1t —1)03} +o(ny™!) if t > 0;
(i) 1+tng o+ 1+ 1(t— a3} +o(ny™") < E{(N/n§)t} < 1+tng ' {y +
Lt-1od}+o(ng™) if t <0
with 1 and oo respectively defined in Theorem 2.1 and Lemma 2.2, with ng =
qé” /h*.
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Lemma 2.1 implies in fact that m*P(N = m) — 0 for all fixed s > 0. In the
proofs of Lemma 2.2 and Theorems 2.1-2.3, we did not have to use the full potential
of this result. We are aware of some situations where assumption (2.2) fails, but
the asymptotic second-order results in the case of analogous two-stage procedures
essentially hold, in the presence of weaker rates of convergence of P(N = m) to
zero. The paper of Mukhopadhyay (1997) handles such a situation. Even so, the
present generalization is broad enough to successfully synthesize many different
types of problems in the areas of sequential estimation as well as selection and
ranking. Sections 3 and 4 would testify to that.

Remark 2.1. In (2.4), if one replaces U (m) by U (m)f(m) where f(m) =
1+ fom™! + o(m™1), then all the results in Section 2 go through except that c3
involved within 1 must then be replaced by (c; + qfo) where ¢, = ¢+ cym™! +
O(m™2).

3. Applications in estimation

First we include the estimation problem for the location parameter p in a
negative exponential population with unknown scale parameter (> 0). Then, we
address the fixed-size confidence ellipsoid construction of the mean vector g in a
N,(p,0%H) population where the nuisance parameter o(> 0) is unknown, but H is
a known p x p positive definite (p.d.) matrix. We also consider the point estimation
problems for g with regard to the same population. In the end, we briefly indicate
an example from the area of linear regression. For a general review, one should
consult Ghosh et al. (1997).

3.1 Negative exponential location
Let X1, X5, ... beii.d. random variables with the probability density function:

(3.1) f(@;p,0) = o~ exp{—(z — u)/o}(z > p),

where —o0 < u < 00, 0 < 0 < 00 are two unknown parameters. This distribution
has been used widely in reliability as well as survival analyses. Sequential and
multistage estimation problems for i and o were reviewed in Mukhopadhyay (1988,
1995). Having recorded Xj,...,X, we estimate p and o respectively by T, =
min{Xi,...,X,} and S, = (n — 1)71E7% (X; — T,,), with n > 2. Now suppose
that given two preassigned numbers d(> 0) and 0 < a < 1, we wish to construct
a confidence interval I for u such that the length of I is d and P{u € I} >
1 — . Here, the scale parameter is treated as a nuisance parameter. A two-
stage procedure was originally proposed by Ghurye (1958), and it does not have
the (first-order) efficiency property in the sense of Chow and Robbins (1965) and
Ghosh and Mukhopadhyay (1981).

Let us consider I, = [T,, — d,Ty] as the confidence interval for u. Now,
P{u € I,} > 1 — a provided that n is the smallest integer > ac/d = C, say,
where a = In(1/a). Now, C plays the role of n§ with ¢ = a, § = o, 7 =1 and
h* = d. But, let us suppose that ¢ > o where o (> 0) is available from prior
knowledge and the nature of the practical applications on hand. With 8; = o,
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and mg > 2, one then defines m as in (2.1) and N as in (2.4) with U(m) = Sp,
and implements the two-stage sampling design, with g}, being the upper 100a%
point of the F-distribution with degrees of freedom 2 and 2(m — 1). Based on all
the observations X1, ..., Xy, we then propose the fixed-width confidence interval
Iy = [Ty —d,Tn] for p.

Since I(N = n) and T), are independent for all n > m, we have

(3.2) P{u € Iy} = E[1 — exp(—Nd/o)]
= E[g(N/C)]

where g(z) = 1—exp(—az), = > 0. The condition (2.2) is satisfied with p,, = 2(m—
1), that is ¢; = 2, c2 = —2. It is also easy to see that a = {1+¢*,(m—-1)"1}~(m-D
and hence ¢}, = a + 1a>m~1 + O(m™2) so that (2.3) holds with c3 = 3a’.

From Ghurye (1958), and Mukhopadhyay (1988), it follows that for all fixed

U, o, dand a,
(3.3) P{uc Iy} >1—a [Consistency Property].

Using Theorem 2.1, we immediately claim that
1 1
(3.4) Eaaazl +0(d/?) < E(N)-C < §aaazl +1+ o(d"?),

as d — 0, and this refers to the second-order efficiency property in the sense of
Ghosh and Mukhopadhyay (1981).

Next, we should look for a second-order expansion, more specifically, bounds
for the coverage probability. Observe that |g”(z)| < a® for all z > 0, ¢'(1) = ae™?,
¢"(1) = —a2e~?, and (2.7) and (2.8) hold. We should then right away use part (i)
of Theorem 2.2 where 0 = go ', and obtain

(3.5) (1-a)+o(d) < P{uclIy}<(1-a)+aln(l/a)C" + o(d)
asd — 0.

3.2 Multivariate normal mean vector

Consider X;, Xa,. .., asequence of independent N, (i, 02H) random variables
where g € RP, 0 € RT are two unknown parameters, but H is a p X p p.d. matrix.
Here, o2 is the nuisance parameter. First, we address the fixed-size confidence
region problem and then the minimum as well as the bounded risk point estimation
problems for the mean vector g. In practice, let us suppose, however, that ¢ > oy,
where o (> 0) is known.
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3.2.1 Fized-size confidence region ~
Having recorded Xi,..., X,, we estimate p and o2 Eespectively by X, =
n~1¥" , X; and S2 = (np—p) 12 (X; - X,,)'H1(X; — X,,) withn > 2. Given

d(> 0) and 0 < a < 1 we consider the fixed-size ellipsoidal confidence region
(3.6) Rp={weR: (X, —w)H X, -w) <d®}

for u, and we require that P{g € R,} > 1 — o which holds if n is the smallest
integer > ac?/d* = C, say. Here, F(a) = 1 — a with F(z) = P(x2 < z),
x > 0. Here again, C plays the role of n} where ¢ = a, h* =d?,§ = 0% and 7 = 1.
Mukhopadhyay and Al-Mousawi (1986) proposed a two-stage procedure which had
the consistency property but it was not even first-order efficient. Mukhopadhyay
and Al-Mousawi (1986) also had developed other multistage procedures. Nagao
(1996) came up with the second-order properties associated with his sequential
procedure when the dispersion matrix has some special structure, including the
one considered in Mukhopadhyay and Al-Mousawi (1986).

With 6, = 0% and mgo > 2, we then define m as in (2.1) and N as in (2.4)
with U(m) = S2,, and implement the two-stage sampling design with ¢}, = pb,
where b,, is the upper 100a% point of the F-distribution with degrees of freedom
p and p(m — 1). The condition (2.2) is satisfied with p,, = pm — p, that is
with ¢; = p = —¢3. Utilizing the results from Scheffe and Tukey (1944), we can
write by, = ap™'{1 — 3(p — 2 — a)(pm)~! + O(m~2)}, and thus (2.3) holds with
c3=—%a(p—2—a)p~'.

Since I(N = n) and X, are independent for all n > m, we have

(3.7) P{p € Ry} = E[F(Nd?/o?)]
= E[g(N/C)]

with g(z) = F(az), z > 0 while the confidence region Ry corresponds to (3.6)
based on X,..., Xn.
From Theorem 2 in Mukhopadhyay and Al-Mousawi (1986) it follows that

(3.8) P{pe Ry} >1—-a [Consistency Property],

for all fixed g, o, d and «. Using Theorem 2.1, we also immediately claim that

1
(3.9) —5(1) —2-a)pto0;? +o(d) < E(N)-C
< —%(p -2 a)p_la2az2 + 1+ o(d),

as d — 0, while this refers to the second-order efficiency property. This matches
with the answer provided by Mukhopadhyay and Duggan (1997a) when p = 1.
Let us write h(z;p) = e~ (1/225(1/2»=1 5 5 0. Then, h(z;p) has the max-
imum at z = z*(p) = p — 2 for every fixed p > 2. Also, one can verify that
F(z) = —{20/2PH17(1p)} = h(zip) + (3p - 1){20/2PD(3p)} ~h(z;p — 2), and
F’(a) > 0. In the case p > 4, |F"(z)| is bounded and hence so is |¢g"(z)|, = > 0.
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That is, (2.7) and (2.8) are in order. The case p = 2 is similar. When p =1 or 3,
the upper bound of |g”(z)| would not exactly satisfy the condition (2.8), because
in that upper bound, one would see both positive and negative powers of x. An
appropriate combination of parts of the proofs of Theorems 2.2 and 2.3 would
easily indicate that the conclusions of Theorem 2.2 would still hold in the present
situation. Thus, since o2 = 2p~ 10202, we can immediately conclude that

(3.10) (1-a)+o0(d®) < P{pe Ry} <(1-a)+aF'(a)C7" + o(d?),

as d — 0. In order to derive (3.10) explicitly, the relationships such as F"(a) =
F'(a){-1 + i(p—2)a"'}, ¢ (1) = aF'(a), ¢"(1) = a®F"'(a) would be helpful.

3.2.2 Minimum risk estimation
Let X’s be i.i.d. Np(u,02H) as before. Suppose that the loss function in
estimating p by X, is taken to be

(3.11) Ly = A{(Xn — ) H™ (X — )}V/P7 + en'

where A, ¢, 7 and t are known positive numbers. The type of loss function given
by (3.11) was adopted by Wang (1980). The situation when r = 2 and ¢ = 1 corre-
sponds to the customary scenario of squared error loss plus linear cost of sampling.
Now, the risk associated with (3.11) is given by R, = E(Ly) = Ba™n= (/2" 4+ cn
with B = 2/27AT((p + r))/T'(3p), whereas this risk is minimized (approxi-
mately) if n = n* = {K*c 1}/ g2/ with K* = IrBt~!. We tac-
itly assume that n* is an integer. The corresponding minimum risk is given by
Rpe = Bo™n*~ /27 4 en*t = en*t{1 + BK*7'} = ¢(1 + 2tr~!)n**, and our goal
is to achieve this minimum risk approximately.

Note that n* plays the role of n} where ¢ = K*?/(2t+7) p* = (2/(2t+1) g = 52
and 7 = r/(2t + r). With 8, = 0% and mo > 2, we then define m as in (2.1) and
N as in (2.4) where U(m) = S2,, the same as in Section 3.2.1, and ¢y, = q. The
condition (2.2) is satisfied with ¢; = —¢; = p, and (2.3) holds with c3 = 0. After
implementing the two-stage procedure, we propose to estimate u by Xny. Using
Theorem 2.1, we immediately obtain the following result:

(3.12)  —2rt{p(2t + )2} "H(o?/a2) /BT 4 o(l/(2tHT))

<E(N)-n"

< —2rt{p(2t + ,,,)2}—1(0_2/0_%)r/(2t+1‘) +14 O(Cl/(2t+r)),
as ¢ — 0, and this refers to the second-order efficiency property.

Since I(N = n) and X, are independent for all n > m, we have E(Ly) =
Bo"E(N—(1/2r) 4 ¢cE(N?), and hence the
(3.13)  Regret = E(Ln) — Rp-
= c{2tr M E((N/n®)~ VD7) — 1] + [B((N/n")") = 1]}n*".

Then, utilizing Theorem 2.3, we can immediately obtain the following result: As
c— 0,

(314)  ctn™ " (p—1) + o(en™") < Regret < ctn*"!(p +1) + o(en™ ),
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where p = $r3{p(2t + r)}~1(0? o} )/ (2tF7).

In the case when t = 1 and r = 2, that is under the squared error loss plus
linear cost, for all p, the regret given by (3.13) reduces to cE[(N — n*)?/N], and
hence one can fall back on Lemmas 2.1 and 2.2 directly, without appealing to
Theorem 2.3. The final result then would become: Regret = 2c;'72(0%/0%)7c +
o(c), which reduces to (2p)~!(c/or)c + o(c). This result was derived in Theorem
4.1 of Mukhopadhyay and Duggan (1997a) when p = 1. Observe that “p” in
(3.14) reduces to (2p)~!(0/oL)c as well when r = 2 and t = 1, but (3.14) gives
the second-order bounds for the regret, rather than the second-order expansion of
the regret itself.

Remark 3.1. The corresponding bounded risk point estimation problem for
the mean vector was briefly discussed in the technical report of Mukhopadhyay
and Duggan (1997b). We omit it from here for brevity.

3.3 Linear regression problem
Consider the linear regression model with normally distributed errors. We
write
Y,=z/B+e;, i=12,...

where ¢;’s are i.i.d. N(0,0?), # is an unknown p x 1 vector of parameters, and &;’s
are known vectors. Let us denote Y, = (Y1,...,Y,) and X/, = (x,...,%,) and
assume that the model is of full rank, that is the rank of the p x p matrix X] X,
is p(< m). Also, we assume that the nuisance parameter o(> 0) is unknown.

Having recorded (#;,Y;), i = 1,...,n, we estimate B by the least squares
estimator Bn = (X}, Xn)"'X] Y, and use the loss function

(3.15) Lo = A(B, - B) (0" X1, X0) (B, — B)

with A(> 0) known. Our goal is to make the risk < W where W (> 0) is preas-
signed. Hence, the sample size n has to be the smallest integer > Apo2/W = n*,
say, which corresponds to n§ with ¢ = Ap, h* = W, 7 = 1 and 6 = 02. Let
us assume that o > o where op(> 0) is known. Then, we implement the
two-stage procedure (2.4) where U(m) = S2,, the mean square error, namely
(m —p) " Y{(Y, — mﬁm)'(Ym - mﬁm)}, m given by (2.1) with §, = 0% and
mo > p+2. With g = 5(m—p)[L{3(m —p—2)}/T{3(m - p)}], let ¢}, = Apgm.
One can verify that the risk, E(Ly) = Apo?E(N~1) is at most W, for all fixed B,
0%, A and W. This refers to the risk efficiency property. Now, (2.1) holds with
Pm = m — p, that is with ¢; = 1, ¢ = —p. Again, from 6.1.47 of Abramowitz and
Stegun ((1972), p. 257), it follows that ¢, = 1 + 2m~! + O(m~2), that is (2.3)
holds with ¢3 = 2Ap. Hence, Theorem 2.3 (ii) would provide second-order bounds
(as W — 0) for the risk, E(Ly). Further details are omitted.

In this setup, minimum risk point estimation problem for £ or the fixed-size
confidence region problem for f could also be easily introduced under similar sort
of two-stage sampling schemes when ¢ > o, with (> 0) known. In order to
review such procedures when o(> 0) is completely unknown, one should refer to
Ghosh et al. (1997), Mukhopadhyay and Abid (1986), and Mukhopadhyay (1991).
Finster’s (1983, 1985) papers are also very relevant. We omit the details for brevity.
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4. Applications in multiple decision theory

The basic theory developed in Section 2 is now applied for two interesting
selection and ranking problems. Again the emphasis lies in achieving asymptotic
second-order characteristics for the newly proposed two-stage methodologies in
such problems.

4.1 Selecting the best normal population

Consider independent populations y,...,7¢ with k& > 2, and suppose that
Xit, .-+, Xin, ... are i.id. N(u;, 2) random varlables from 7;, with u; € R and
o€ Rt i=1,...,k Letuswrite X;, = n™ X7, Xij, UZ = (n—1)"187_,(Xij -
Xin)?, and Un =k~1%k (U2 forn >2,i=1,..,k We assume that all the
parameters are unknown whereas o? is considered the nuisance parameter. Let
us denote g/ = (u1,- .-, k) and write ppy < --- < pe-1y < ppiy for the ordered
u values. Pursuing Bechhofer’s (1954) mdzﬁerence zone formulation, let there be
two preassigned numbers §*(> 0) and P* € (k~',1), and our goal is to select
the population associated with g, referred to as the best population, so that
P(CS) > P* whenever g € Q(6*), with Q(6*) = {p : ) — pe—1 = 67}, the
preference zone. The parameter subspace Q°(6*) is referred to as the indifference
zone. Here and elsewhere, “CS” will stand for “Correct Selection”. Define C =
h202/6*2 where “h” satisfies the integral equation: [ ®F~!(y+ h)é(y)dy = P*,
#(-) being the standard normal density and ®(z) = [ ‘o OWdy, xR If o2 were
known, then C could be interpreted as the optimal fixed sample size required from
each 7 in conjunction with the selection of the population glvmg rise to the largest
sample mean. We tacitly assume that C is an integer. When o 2(> 0) is completely
unknown, a two-stage procedure was developed by Bechhofer et al. (1954). For a
review of other multistage sampling techniques in this problem, refer to Chapter 3
in Mukhopadhyay and Solanky (1994).

Let us, however, assume that o > oy, where oL(> 0) is known in advance.
Now, C plays the role of nj with g = h?, 8 = 02, 7 =1 and h* = 6§*2. One then
defines m as in (2.1), with mg > 2, 8, = 0%, and considers N as in (2.4) with
U(m) = U, and ¢}, = q. We then implement the two-stage methodology and
select the population associated with maxi<;<k X;n based on the observations
{Xi1,...,Xin,i=1,...,k}. Since I(N = n) and (X1n,- -, Xkn) are independent
foralln > m, we have (from Theorem 3.2.1 in Mukhopadhyay and Solanky (1994)):

(4.1) inf P(CS)= [ / {®(y + NY25* o~ 1)}F- 1¢(y)dy]

neQ(s*)
= E[g(N/C)]
where g(z) = f(z'/?) and f(z) = [°° ®*1(y + hz)é(y)dy, > 0. The condition
(2.2) is satisfied with pm, = k(m — 1), “that is ¢1 = —cp = k. Obviously (2.3) holds

with ¢3 = 0.
Using Theorem 2.1, we immediately claim that as 6* — 0,

(4.2) o(6*) < E(N) — C < 1+ o(6%),
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since 1, defined in Theorem 2.1, turns out to be zero, and this refers to the
second-order efficiency property. Next, we look at the second-order bounds for
the probability of correct selection under the least favorable configuration, that
is when ppy) = -+ = pp_1) = ppw — 6*, where P(CS) attains its infimum for
p € Q(8*). The conditions (2.7) and (2.8) hold with r = 3, b; = %, b, = 1, and
b3 = . Since g/(1) is positive, Theorem 2.2 (i) leads us to claim that

(4.3) P* + k7 Y(0?/02)g"(1)C ! + 0(6*?)
< inf P(CS)
pE(6*)

<P +{k7H(0?/0])g" (1) + ¢ (1)}C! + 0(6°%),

as 6* — 0. Observe that g(1) = P*, and 03, defined in Lemma 2.2 simplifies to
2k‘102a;2.

Remark 4.1. One should note that in order to mimic the original two-stage
procedure of Bechhofer et al. (1954), we could instead use ¢, = 1(m,k, P*)
where P{T; < 271/21,i =1,...,k — 1} = P*, with (T},...,Tk_1) distributed as
(k — 1) dimensional multivariate ¢ with equicorrelation = % and the degrees of
freedom = k(m — 1). In that case the two-stage procedure (2.4) would have the
consistency property, namely, that P(CS) > P* for all fixed g € Q(6*), o2, P*
and 6*. If such g}, satisfies (2.3), then we can easily obtain results analogous to
those in (4.2) and (4.3), and these obviously hold when k = 2 and ¢, = 73.

4.2  Selecting the best negative exponential population

Consider independent populations 1, ...,7, with k& > 2, and suppose that
Xit,-..,Xin,...areiid. random variables obtained from 7; having the probability
density function f(z;pi, o), defined via (3.1), with y; € R,0 € R*,i=1,...,k.
Let us write Ti, = min{Xi1,...,Xin}, Uin = (n — 1)7'Z%_(Xi; — Tin), and
U, =k™ 185 U;, forn > 2,i=1,...,k. We assume that all the parameters are
unknown whereas o is considered the nuisance parameter. Let us denote as before
B, p1), and pursue the indifference zone formulation again, given two preassigned
numbers §*(> 0) and P* € (k7',1). We define the preference zone Q(6*) as
before and the problem is to select the population associated with (k] referred
to as the best population, in such a way that P(CS) > P* whenever g € Q(6*).
Let C = ag/6* where “a” is obtained by solving the equation, f;°{1 — exp(—z —
a)}*~1lexp(—z)dz = P*. If o were known, then C could be interpreted as the
optimal fixed sample size required from each 7 in conjunction with the selection
of the population associated with the largest sample minimum order statistics
among the corresponding T;c’s. We tacitly assume that C is an integer. When
o2(> 0) is completely unknown, Desu et al. (1977) developed a two-stage procedure
for this selection problem. For a review of other multistage sampling techniques
in this problem, refer to Chapter 4 in Mukhopadhyay and Solanky (1994), and
Panchapakesan (1995).

Let us, however, assume that ¢ > o where o,(> 0) is known in advance.
Now, C plays the role of nj§ where ¢ = a, § = o0, 7 = 1 and h* = §*. One
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then defines m as in (2.1), with mg > 2, 8, = o, and considers N as in (2.4)
with U(m) = U, and ¢}, = q. We then implement the two-stage methodology
and select the population associated with max;<;<x T;n based on the observations
{Xi1,...,Xin},i=1,...,k. Since I(N = n) and (Tin,...,Tkn) are independent
for all n > m, we have (from Theorem 4.2.1 in Mukhopadhyay and Solanky (1994)):

(4.4) elnn(%* P(CS) = [/000{1 —exp(—z — N6*o~ )}l exp(—z)dz
= E[g(N/C)]

where g(z) = [;°{1—exp(—z—az)}*~! exp(—2z)dz, z > 0. The expression in (4.4)
can be further simplified as follows:
(4.5) o P(CS) = £;Zgb(k, u)E[gu(N/C)]

E -
where b(k,u) = ( D(-1)*(u + 1)7! and gu(z) = exp(-uaz), z > 0, u =
0,1,...,k— 1. The condition (2.2) is satisfied with pm = 2k(m — 1), that is

with ¢; = —cy = 2k. Obviously (2.3) holds with c3 =
Using Theorem 2.1, we immediately claim that

(46) 0(5*(1/2)) < E(N) -C <1+ 0(6*(1/2))

as 6* — 0, since 1, defined in Theorem 2.1, turns out to be zero, and this refers to
the second-order efficiency property. Next, we look at the second-order bounds for
the probability of correct selection under the least favorable configuration, that
is when up) = = Pk—1) = M) — 6, where P(CS) attains its infimum for
p € Q8%). Combme (4.4) and (4.5) and observe that |g"(:1;)| is indeed bounded
for all z > 0, g(1) = P* and ¢’(1) is positive. Note that o3, defined in Lemma
2.2, reduces to k~!(0/o), and hence Theorem 2.2 (i) would immediately provide
second-order bounds for the expression given in (4.5). Other details are omitted
for brevity.
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Appendix

A.1 Proof of Lemma 2.1
For technical convenience, let us choose a sequence of h* — 0 such that
g07h*~! always remains an integer > mo. Now, for sufficiently small h*(> 0),

(A1) P(N =m) = P{q;,,;U"(m) < h*m}
= P{x},. < (ag5 )" (0.8 )pm}
< 1nfE{exp( txpm)}exp{tpm(qq Y7667}

= (14 2t,)~V/DPm exp{topm (g )/ 7(0,671)}
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with ¢ = to = 3{(66;')(g%q*)"/7 — 1}, which can then be made larger than
2{00.' (1 — &) — 1} if h* < h?, for any positive . In other words we can mathe-
matically guarantee that #g is pos1t1ve if h* < h with, say, e = P L(1-6,671). The
result then follows from (A.1), analogously as in Lemma 2.1 in Mukhopadhyay
and Duggan (1997q). O

A2 Proof of Theorem 2.1
Throughout the basic inequality (2.5) we take expectations and obtain

(A2) gnE{U™(m)}h*"! < E(N) <mP(N =m)+ ¢, E{U™(m)}h*"! + 1

In view of Lemma 2.1, we have mP(N = m) = o(h*(1/2)), and we also use (2.6)
with s = 7 and the expansion of ¢}, from (2.3). The result then follows. O

A.3  Proof of Lemma 2.2

For technical convenience, let T' = max{m, QJM} and note that T < N <
T + 1. Thus, it will suffice to verify the lemma with N replaced by T. Observe
that P(T = m) has the same order given in Lemma 2.1. We start with the basic
inequality

4, U"(m)

g, U (m)
h* :

<T<mI(T=m)+

and rewrite it as
(A.4) V(m) + kp <037 V3(T = nd) < mI(T = m) + V(m) + knm,

where V(m) = (g2,/h*)ng” V2 {UT(m) - 67} and km = (67/h*)ns"?(gz, — q).
In view of Lemma 2.1, it is clear that mI(T = m) £ 0as h* > 0. From
(2.3), it follows that km — 0 as h* — 0. Next, we utilize (2.2) to claim that
p 2 {U(m) — 6} 5 N(0,262) and hence, pi/2{U7(m) — 67} 5 N(0,2726%7) as
h* — 0. We can rewrite V(m) as (8767 ¢;)~1/2 3,{2{UT(m) — 07} + 0p(1) and thus
V(m) 5 N(0,02) with o2 = 2¢; '72(06,1)™. This is part (i).
Next, we use (A.3) to write

QE{UT(m)} < E(T) <mP(T =m) + gf"lE{UT(m)}
(A.5)

Z*2E{U2T(m)}<E(T2)<3m2P(T m) + & E{UZT(m)}

h*2
and combine these with (2.3), and (2.6) for s = 7, 27, in order to claim that
E{(T —ng)*} > h*"2{¢* + 2gcam™ + o(m™1)}6
x {1+ 2727 — 1)(e1m)™ + o(m™1)}
—2n5h* g+ csm™ + o(m1)}07
x {1+ 7(r = 1)(cam)™  + o(m™ 1)} + ng? + o(1).
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In other words,

(A.6) E{n(’;_l(T -ng)?} > n(g*m)~{2qcs + 2¢°7(21 — 1)01_1}
— 2n3(gm) ez + qr(2r — ey '} + o(1)
=2¢7172(00,1)7 + o(1).

In a similar fashion, we exploit (A.5) all over again, and we can then show that
E{ni (T — ng)?} < 2¢7'72(66;')" + o(1), and combining this with (A.6), it
becomes clear that E{n{~'(T —ng)?} — 2¢7 172(0671)™ as h* — 0. Now, part (ii)
follows from part (i). O

A.4  Proof of Theorem 2.2
We will provide only an outline. For some random variable £ between 1 and
N/n§, we write

w7 B} = o+ {SWBW - i) + IR0 E)

with Q = n ™} (N — n§)2. For the first term within { } in (A.7), we simply use
Theorem 2.1. For the second term within { }, we split the integral over the sets
[N = m] and [N > m] and use Lemmas 2.1 and 2.2 to show that E[Qg"(£)] —
039" (1) as h* — 0. We leave out the rest for brevity. O

A5 Proof of Theorem 2.3

Consider g(z) = z* for z > 0 and hence the result follows from Theorem 2.2
when t < 2. In the case t = 2, g”(z) = 2 for all z > 0, and hence Lemmas 2.1 and
2.2 and Theorem 2.1 together lead to the result.

Next, let us focus on the case when t > 2. With our specific g(-), equation
(A.7) reduces to

E{(N/ng)t} =1+n! {tE(N — )+ (1 - 1)E[Q£“2]} +o(ng )

where ¢ lies between 1 and N/nj. The result will follow once we show that
(A.8) E{Q€*} = af + o(1).

Let us choose some p > 4 and note that £ < p on the set [N < png]. Thus,
QEt2I(N < png) < p'~2Q, and we use Lemma 2.2 to claim that E[Q¢*"2I(N <
pnd)] = a2 + o(1). But, £ < N/nj on the set [N > png] and hence

(A9)  E{Q&I(N > pnf)} < E{Q(N/ng) " *I(N > png)}

o\ 2
=FE {Nt <1 - %) ng! (N > pnf;)}

< ngE{(N/ng) I(N > png)}
< naEl/Q{(N/ns)Zt}Plﬂ(N > pna)
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Now, from (A.3) and dominated ergodic theorem one can see that all positive mo-
ments of N/ng are finite, and hence from (A.9), we will claim that E{Q¢~2I(N >
png)} = o(1), once we verify that

(A.10) ng?P(N > pnd) -0 as h* — 0.

Let us assume for technical convenience that pnj is an integer. Writing Y* =
mI(N =m) and Z* = qU"(m)/h*, we have the following:

(A11)  P(N 2 png+1) < P{Y* + Z*¢l,q"" > pn}
1
< P{Y* > 5pna} +P {Z*qfnq'1 > %pn:;}
1 1/7
<2m(pny) 'P(N =m) + P{U(m) > (Zp) 0
< O(nWPPm) + P{U(m) - 0] > €},

in view of Lemma, 2.1, with € = 6{(1p)!/” — 1} which is positive. Using (2.2) and
(A.11), we then get for all s > 0,

(A.12) P{N > png + 1} < O(n"/PPm) + O(m™*),

which implies (A.10) when we plug in s > 2. That is, E{Q¢"2I(N > png)} =
o(1). Now, the proof of (A.8) is complete. O
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