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Abstract. The estimating function approach unifies two dominant method-
ologies in statistical inferences: Gauss’s least square and Fisher’s maximum
likelihood. However, a parallel likelihood inference is lacking because estimat-
ing functions are in general not integrable, or nonconservative. In this paper,
nonconservative estimating functions are studied from vector analysis perspec-
tive. We derive a generalized version of the Helmholtz decomposition theorem
for estimating functions of any dimension. Based on this theorem we propose
locally quadratic potentials as approximate quasi-likelihoods. Quasi-likelihood
ratio tests are studied. The ideas are illustrated by two examples: (a) logis-
tic regression with measurement error model and (b) probability estimation
conditional on marginal frequencies.
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1. Introduction

An estimating function
(1.1) u(6;Y) = Zu,(e Y)d

is a differential 1-form defined on ©, where © is a parameter space. The estimating
function u(6;Y) defines a random vector field on ©. This view of estimating
functions emphasizes the important fact that the components u;(#;Y) of u(6;Y)
are ordered in the sense of (1.1), thus play an asymmetrical role in the theory of
estimating functions. It is this asymmetry of the components that we set out to
study in this paper. Note that it is essential for us to assume that u(6;Y) and 8
have the same dimension. We assume throughout that dimu(#;Y) = diméf =p >
2, since asymmetrical problem does not arise in the case p = 1.
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Construction of u(f;Y) is usually based on assumptions about lower order
moments of the underlying distribution. A typical example is the quasi-score
(Wedderburn (1974); McCullagh (1983))

(1.2) u(6;Y) = D'(O)VH(O)(Y — u(0)),

where x(6) and V() are mean and covariance matrix of random vector ¥ =
(Y1,...,Y,) and D(f) = (9/08)u(d). McCullagh and Nelder ((1989), Section
9.4) call Y — u(f) elementary estimating functions and argue that the weight
D'(8)V~1(8) is optimal in combining these elementary estimating functions. We
shall tacitly assume that our estimating function w(6;Y") of (1.1) is optimized in
the sense of McCullagh and Nelder ((1989), Section 9.5).

The estimating function approach (Godambe (1960)) unifies two dominant
methodologies in statistical inferences: Gauss’s least square and Fisher’s maximum
likelihood. Substantial theories have been developed in this area (e.g. Godambe
(1991)); see also a new and interesting theory fundamental to both probability
and statistics recently proposed by Small and McLeish (1994).

In the maximum likelihood theory, u(#;Y) corresponds to score functions.
Scores are symmetrical in the sense that the observed Fisher information matrix
is symmetrical, due to the fact that scores are the gradient of a log-likelihood.
Scores thus form a gradient (or potential) field, where the log-likelihood plays the
role of a potential. By definition, an estimating function needs not be a gradient
field. That is, there may exist no scalar function ¢(6) such that

(1.3) u(6) = dg(0)

where d denotes the exterior differentiation operator. We dropped the dependence
of u(6;Y) on Y in (1.3) and will do so when we wish to stress that u(6;Y) is
a vector field of §. When (1.3) holds for no ¢(f), we say that estimating func-
tion u(f) is nonconservative or non-integrable. Two examples will be studied in
Section 4. Note that an equivalent condition for u(6) being conservative is that
du(6) = 0. This condition says that, in matrix terminology, the Hessian of u(f) is
symmetrical. We note in passing that while the expected Hessian of quasi-score
(1.2), D'(6)V~1(8)D(8), is symmetrical, the observed Hessian needs not be so.
Thus quasi-scores are in general nonconservative. The voter transition probability
problem studied in Section 4 provides such an example. Note that a noncon-
servative estimating function u() may be transformed into a conservative one
v(6) = T(9)u(d) by a nonsingular matrix T'(f). While the estimating functions
u(8) and v(8) = T(0)u(h) do provide the same estimators, they might play quite
different roles as more general inference functions. This can be appreciated by
considering a vector field obtained by permuting a gradient field such as the score
function.

Inferences based on estimating functions for which there exists no potential
function deviate from theories based on likelihood. A Baysian viewpoint is diffi-
cult in the absence of a potential. There are also practical difficulties associated
with nonconservativeness: constructing goodness-of-fit statistics; distinguishing
consistent root from among multiple roots; constructing confidence intervals when
multiple roots exist, etc.
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Nonconservativeness of estimating functions has been studied by a number of
authors. McCullagh and Nelder ((1989), pp. 334-336) study conditions on V(-) of
(1.2), under which quasi-score is integrable; Li and McCullagh (1994) study con-
ditions under which a linear and unbiased estimating function is integrable. Their
ideas are based on restricting either the choice of variance functions or the class of
estimating functions. Unlike these authors we begin with nonconservative estimat-
ing functions and proceed to develop a theory for choosing approximate potentials,
or quasi-likelihoods. We shall derive a generalized version of the Helmholtz de-
composition theorem for estimating functions of any dimension p > 2. This is
studied in Section 2. The generalized Helmholtz decomposition theorem says that
any vector field can be decomposed into the sum of a gradient vector field and a
divergence-free vector field. We note that relevance of the Helmholtz decomposi-
tion theorem has been pointed out by McCullagh ((1991), pp. 284-285).

Two difficulties arise here. First, the decomposition is not unique. There
exists a class of potential functions for a given estimating function. Second, it
is usually impossible to express potentials in closed forms even for very simple
estimating functions. These issues are settled in Section 3 by linearizing estimating
function u(6) properly. We therefore propose a locally quadratic potential as a
(log) quasi-likelihood (cf. (3.6)), based on which we study quasi-likelihood ratio
test and so forth. Two examples are studied in Section 4. The first concerns
the so-called Neyman-Scott paradox (Neyman and Scott (1948)), the second on
probability estimation based on marginal frequencies.

For related works on approximate quasi-likelihoods, see also McLeish and
Small (1992), Li (1993, 1996), Barndorff-Nielsen (1995) and Hanfelt and Liang
(1995, 1997), etc. '

2. Nonconservative estimating functions and Helmholtz-type potentials

2.1 Nonconservative estimating functions

Let Y = (Y1,...,Y,) be a random vector with possibly dependent compo-
nents. For a parameter of interest § € © C RP, consider estimating function
u(6;Y) of form (1.1), which is assumed optimal in the sense of McCullagh and
Nelder ((1989), Section 9.5). Parameter 6 often is a structure parameter relat-
ing the mean of Y with the linear predictor via a link function, such as in the
generalized linear model (Nelder and Wedderburn (1972); McCullagh and Nelder
(1989)). With dim(f) = p = 1, we can always integrate u(€) back to get a potential
function, which, when normalized, serves as a quasi-likelihood.

By definition, an estimating function u(f) is conservative, or integrable, if
there exists a scalar function ¢(6) such that u(f) = d¢(8); or equivalently, by
Poincaré’s Lemma, du(f) = 0. Otherwise u(6) is said nonconservative, or non-
integrable. Score functions are conservative estimating functions, while quasi-
scores are generally not. Note that a theory for conservative quasi-scores can
essentially be reduced to a theory for exponential families.

Definition of conservativeness applied to linear estimating function, u(f) =
A0 + b, say, is simply the requirement that A is symmetrical; where A and b are
constant matrix and column vector not depending on #. We shall express estimat-
ing functions in usual matrix notations and in differential 1-forms interchangeably,
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Fig. 1. Helmholtz-type decompositions for a two-dimensional linear vector field u(f) =
A6 + b; where A = (a;;), b = (1.5,3) and a11 = 5, agz2 = 3, a12 = —a21 = 10. The
left panel corresponds to quadratic potential %6’ A6 + b6; the right panel corresponds to
potential 6’ B8 + bd, where B = (b;;), bi; = a4i/2 and by; = a;; for i # j; cf. Section 3
for details.

whenever we feel convenient and where no confusion is anticipated. Top of Fig. 1
displays an artificial linear nonconservative vector field, for p = 2, A = (ai;) and
b = (1.5,3)"; where a;; = 5, az2 = 3, a12 = —ap = 10. More complicated noncon-
servative vector fields are shown in top of Fig. 2, which are studied in Section 4.
For a general estimating function u(6), conservativeness is equivalent to symmetry
of the Hessian, which is convenient for checking.

2.2 Preliminaries on vector analysis

Let © C RP be a parameter space of dimension p. We may alternatively
regard parameter § = (01, ...,0,) as a local coordinate in ©. A differential k-form
(k=0,1,...,p) on © is a formal sum of terms f(6)d6;, A --- A db;,, where f(6)
is a scalar function on © and {i1,...,ix} C {1,...,p}. Differential 0- and p-forms
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Fig. 2. Helmholtz-type decompositions for non-conservative estimating functions (4.1)
and (4.2) studied in Section 4. The left panel corresponds to logistic regression with
measurement error; the right panel corresponds to voter transition probability estimation
problem. In both cases, the gradient fields correspond to quadratic potentials (3.6); these
vector fields are plotted for the same fixed observations in each case; cf. Section 4 for
details.

correspond to scalars; differential 1-forms correspond to vectors. An elegant and
formal treatment of differential forms would involve alternating tensor fields or the
Grassmann algebra.

The collection of all differential k-forms, QF (say), is a linear space of dimen-
sion (). The set {db;; A---Adb;, ;i1 < --- < ix} forms a basis of QF (it is in fact
an orthonormal basis in the Riemannian sense (Kobayashi (1990), p. 121)). Note
that QP~* has the same dimension (z) Hodge’s star operator is an isomorphic
linear mapping

x:QF 5Pk
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satisfying
wAxw=dy A---Ndbp

for any element of the orthonormal basis w = df;, A --- A db;, (i1 < --- < ig).

Or, equivalently, x(df;, A --- A d;,) = nd0; ., A--- ANdb;,, where 13 < --- <

Gk < cor < p,{t1,...,%} = {1,...,p} and 7 is the sign of the permutation
from (1,...,p) to (¢1,...,1ip).

For example, if p = 2, then *(df;) = df,, *(df2) = —dby; if p = 3, then
*(dﬁl) = df,Ndb3, *(d02) = df3Ndby, *(d03) = d#, Ndf,. For details on differential
forms and dynamic systems see Abraham and Marsden (1978), Kobayashi (1990,
Section 3.7), Siegel and Moser (1991) and Fukaya (1996).

We list some basic properties of the star operator, proofs of which are straight-
forward, and hence omitted.

PROPOSITION 2.1. Denote by *q« the star operator from QF to QP~% (k =
0,1,...,p). The following properties hold.
(i) Operator xqo-+ is the inverse of *qx, except for k odd and p even for
which the inverse is (—1)*xqp-x. That is

(*qp-+ 0 *qk )w = (-1 w e QF.

(ii) Let dy = *d*. Then d, od, =0.

(iii) Let A be the Laplacian operator, and ¢(6) € Q°. We have d. o d¢(6) =
Ap(6).

(iv) Let w(f) € Q. We have dyw = div(w), where div is the divergence
operator, i.e. div(w(8)) = Y-F_,(8/86;)w;(8) for w() = 3-7_; wi(6)db;.

(v) [Poincaré’s Lemma] For any w € Q*(k < p), there ezists ¢ € Q**! such
that

w=ds ifand onlyif d.w=0.

2.3 Generalized Helmholtz decomposition

Gradient, or potential, vector fields and divergence-free vector fields are two
kinds of most important vector fields in physics. Many natural fields turn out to
be potential fields. The gravitational field and electric field of particles at rest are
well-known examples (Fukaya (1995), p. 111). On the other hand, divergence-free
vector fields can be used to model, for example, an incompressible flow of gas.
Divergence can be visualized in terms of source and sink of a vector field (Irwin
(1980)). Gauss’s law is one of the facts which makes the concept of divergence
important in physics (Fukaya (1995), p. 105). While bottoms of Figs. 1 and 2
display examples of divergence-free vector fields, plots at the center show four
gradient fields. )

Now we give a generalized version of the Helmholtz decomposition theorem.

THEOREM 2.1. For any given u(6) € Q1, there exist ¢(6) € Q° and P(0) €
Q2 such that

(2.1) u(8) = dg(6) + d.P(6).
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Or equivalently, for any u(0) € Q', there exist $(9) € Q° and Q) € QP2 such
that

(2.2) u(8) = dg(6) + *dQ(6).

PRrROOF. Equivalence of (2.1) and (2.2) follows immediately from definition
of star operator, thus we shall only prove (2.1). Since u(8) € Q!, d.u(f) is a
scalar function. By the fact that Poission equation A¢(#) = d.u() admits a
solution ¢(@) for any given u(6), we conclude that d,(u(f) — dp(6)) = 0. The
last equation, by Poincaré’s lemma, implies the existence of P(8) € Q2 such that
u(6) — d¢(0) = d.P(6), or equivalently u(d) = dp(6) + d,P(8), as was claimed.

For estimating equation u(¢), we shall call ¢(6) a scalar potential, or simply
a potential, of u(6), and P() a vector potential. Note that divergence of d,P(#)
vanishes because div(d,P(6)) = d. o d.P(#) = 0, by (iii) and (iv) of Proposition
2.1. For p = 3, Theorem 2.1 says that any vector field can be decomposed as
the sum of an irrotational and a solenoidal vector field, which is the well-known
Helmholtz decomposition theorem. We state this as a corollary together with the
case p = 2.

COROLLARY 2.1. Let u(6) be an estimating function.
(i) If dim@ = 2, then there exist scalar functions ¢(6) and ¥(0) satisfying

(2.3) u(f) = (5%,8%),¢(9) —~ (‘a’%"a%),'/’(a)'

(i) If dim@ = 3, then there ezist a scalar function ¢(0) and a vector Q(9)
such that

(2.4) u(8) = grad ¢(6) + Curl Q(9).

Remark. In case (i) when p = 2, the divergence-free vector field forms a
Hamilton vector field, where —(6) plays the role of a Hamiltonian.

Helmholtz-type decomposition is not unique. There exist a class of potentials
generated by the class of harmonic functions, exact meaning of which is summa-
rized in the following theorem. We omit the proof.

THEOREM 2.2. Let u(f) be an estimating function.

(i) If uw(8) = d¢(0) + d.P(6), then for any harmonic function h(8), we also
have u(6) = d¢’(0) + d.P'(0), where ¢'(8) = ¢(0) + h(6) and d.P'(9) = d.P(6) —
dh(6).

(ii) Conversely, if

w(6) = dp(6) + d,P(6) and  w(6) = d¢'(6) + d.P'(8),
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then (a) h(8) = ¢'(8) — ¢(8) is harmonic and (b) d.P'(8) = d.P(8) — dh(6).

Thus, if u(8) = dp(6) + d.P(8), then any member in the class {¢(6) + h(6) |
h(6) : harmonic function}, serves as a potential for u(f). A theory of quasi-
likelihoods therefore intrinsically depends first on (i) statistical informativeness of
estimating function u(6) and then on (ii) the choice of a statistically meaningful
harmonic function k(). The first requirement, viz. statistical informativeness, is
guarded by the theory on optimal estimating functions. Next, choosing a sta-
tistically meaningful harmonic function is, equivalently, the requirement that the
divergence-free vector field should contain as less as possible statistical information
contained in the original estimating function. This is because scalar and vector
potentials are paired according to (2.1) or (2.2). In Section 3 we shall focus our
attention on the choice of a vector potential for a particular kind of vector fields.
There arises a third difficulty. It is usually impossible to obtain in a closed form a
potential function for even very simple estimating functions. These considerations
coerce us into compensation for an approximate theory.

3. Approximate quasi-likelihoods

3.1 Quadratic potential functions

We have seen that choosing a proper scalar potential is the same as choosing
a proper vector potential. Now we study vector potentials for linear vector fields
u(@) = A0 + b, where A and b are p x p matrix and p x 1 vector not depending
on #. For linear vector fields we are able to identify a particular kind of vector
potentials.

THEOREM 3.1. For any linear vector field u(0) = A0+b, there ezists a scalar
function 1(8) such that the generalized Helmholtz vector potential Q(8) € P=2 can
be written Q(0) = ¥(6) * du(f), namely

(3.1) u(0) = dg(8) + xd{1(8)  du(6)}.

PRrOOF. Decomposition (3.1) can be proved by taking
(3.2) w(8) = (-1)@}1-9'9.
We omit the details.

Decomposition (3.1) enjoys a good property that u(f) is integrable if and
only if the divergence-free part vanishes. This means that if u(f) happens to be

conservative, then scalar potential chosen according to (3.1) coincides with the
original estimating function (up to a constant).

COROLLARY 3.1. When p = 3, decomposition (3.1) can be rewritten, using
notations of classical vector analysis, as

(3.3) w(8) = do(6) + %(Curl u(0)) x 6,
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where X denotes the outer product of two vectors.

Decomposition (3.3) has a simple physical interpretation. Let u(#) represent
a velocity field, and € a location vector. Decomposition (3.3) says that any linear
velocity field can be ‘orthogonally’ decomposed as the sum of a potential field and
its maximum circulation. If, further, u(#) happens to be generated by a constant
angular velocity field w, i.e. u(f) = w x 0, then the gradient part of (3.3) vanishes.

For decomposition (3.1) with vector potential determined by (3.2), the scalar
potential is uniquely (up to a constant) given by

(3.4) $(0) = -;-9',40 + b8,

This is the potential function we shall use for our purpose of statistical inferences.
Note that since A is asymmetrical, the first term reduces to the quadratic form
6'(A+ A’)8/4. With quadratic potential (3.4), the divergence-free vector field has
the form %(A — A’)8. This divergence-free vector field defines a dynamic system
with only periodic orbits; cf. Fig. 1 (left panel) for an artificial example. The right
panel of Fig. 1 displays an alternative decomposition with potential §’B8 + b4,
where A = (a;j), B = (bi;), bis = a;i/2 and b;; = a;; for ¢ # j. The potential and
divergence-free vector fields are given by (A + Ag)é + b and — Ajf, respectively,
where Ag is A with diagonal elements replaced by zeros.

3.2 Approximate quasi-likelihoods

To apply previous results to the theory of estimating functions, we first
consider linearization of () in a neighborhood ©¢ of 6y. Let £ € O, A¢ =
(0/00)u(6;Y) |p=¢ and b = u(§;Y). One term Taylor expansion of u(;Y) at
0 = ¢ yields

(3.5) W0,6Y) = Ac(0—€) + be.

For this linear vector field we apply Theorem 3.1 with scalar potential (3.4) to
obtain the potential

(36) BO,6Y) = 5(0— ) A0 — ) + B0~ &)

depending on £ at which u(f) is linearized. In a specific problem £ has to be
chosen by data or the specific statistical problem at hand. For instance, we may
choose £ to be a consistent root to u(f) = 0; or choose £ = 6y for testing a
null hypothesis and so on. Our simulation studies (see Section 4) show however
asymptotic distributions of quasi-likelihood ratio statistics based on (3.6) are quite
robust against the choice of &, as long as it belongs to a neighborhood of the null
0 = 6y.

We call potential ¢(6;Y) of (3.6) an approximate (log) quasi-likelihood of
estimating function u(#;Y). Center of Fig. 2 shows quadratic gradient fields for
the examples studied in Section 4.
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So far our theory is general for arbitrary estimating functions. Now we apply
(3.6) to the most important special case of quasi-score (1.2). First note that

be = D'(E)VHENY — u(8)),
Ae = =D' (V1 (€)D(8),
u(6) — () = D(E)(0 — &)

So by (3.6) we have approximation

(3.7 $O.EY) = 30—/ Acl0 — &) + 50— )

- %(0 — &) DV ED(E)O - €)
+ (Y — @)V HEDE) (O - &)

- _ %(u(ﬁ’) — u(©))VHE (L) — n(®)
+ (u(8) — (O VHEY — p(£))-

Quasi-likelihood (3.7) is invariant under reparameterization and enjoys (local)
likelihood properties. Denote ug(Y) = 8¢(0,£;Y)/00 [o=¢ and ueer(Y) =
8%4(0,£;Y) /308" |g=¢. First we have (local) zero-unbiasedness since expectation
of

ug(Y) = D'V — p(§))

vanishes at 6 = £. Information-unbiasedness follows by noting that identities

Eelue(V)ug(Y)] = D'(§)V 1) D(E)
and
Egluge (Y)] = =D'(§)V(£)D(8)-

Note that the form of quasi-likelihood (3.7) closely resembles the deviance
function of Li ((1993), equation (3))..

3.3  Quasi-likelihood ratio tests

Based on a general nonconservative estimating function u(6; Y) we now con-
sider the problem of hypothesis testing with null hypothesis Hp : # = 6. One
obvious choice of ¢ on which our quadratic potential $(#,£,Y’) depends is 0. Let
0(8) = argmax ¢(8, 60; Y') be the maximizer of approximate (log) quasi-likelihood.
Since ¢(6o, 60;Y) = 0, definition of the usual likelihood ratio suggests the definition
of quasi-likelihood ratio statistic

(3.8) v = 2¢(6(60),60; Y ).

Let @(8, 6o; Y) be the linearized version defined by (3.5) in the previous section
for a general estimating function u(6;Y). Assume that ¥ = —Eq, (0/06)u(8,00;Y)
and T' = Ey, @' (6,60;Y)a(8,600;Y) exist and be positive definite. Note that since
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quasi-scores are information-unbiased we have ¥ = I'. Under the null hypothe-
sis 9(00) will be consistent for 6y and normally distributed with covariance ma-
trix ©~1I'S~!. Standard arguments for quadratic forms of normal variables (e-g.
Johnson and Kotz (1970), Chapter 29) therefore lead to the asymptotic result

4
(3.9) v 53 Nz?

where the Z’s are independent unit normal variables and \’s eigenvalues of 1T
The above arguments are similar to that in Li and McCullagh (1994). Figure 4
compares asymptotic distributions (3.9) with simulated true distributions of v for
the two examples studied in Section 4.

Since ¥ =T for quasi-score, ¥7!T" is identity and the X’s are all unity. So
quasi-likelihood ratio statistics asymptotically follow X%p) under null hypothesis.
If 4(6;Y) is approximately information—unbia.sed, the asymptotic distribution of
quasi-likelihood ratio will be approximately x2 with p d.f. The asymptotic dis-
tributions shown in Fig. 4 are only slightly different from X( X cf. Section 4 for
details.

4. Examples

4.1 Logistic regression with measurement error

Estimating function approach is an effective way for eliminating nuisance
parameters. In measurement error model the number of nuisance parameters
increases with the number of observations, a situation known as the Neyman-
Scott paradox, where the maximum likelihood estimators fail. Our first example
concerns logistic regression with measurement error; we wish to fit the model
logit(m) = a + f'z, where 7 is the mean of a binary response Y and z the co-
variate. Suppose that we can not observe x but observe instead Z = z + ¢, where
measurement error € ~ Np,_1(0,¥) is independent of Y and ¥ a known covari-
ance matrix. Conditioning on the complete sufficient statistic A = z + y¥g for
the nuisance parameter z, Stefanski and Carroll (1987) derived the conditional
score > (1, ;) (y: — uf), where puf = (1 + exp{—(a + (4; — 2TB)TB)})~! is the
conditional mean. Hanfelt and Liang (1995) suggest that z be eliminated in the
conditional score by forming estimating function

(4.1) u(6) =Y (1,d:) (% — 55),
=1

where § = (o, ) and d; = A; + (u¢ — 1)¥B. It can be verified that du(f) #
0, thus u(f) is not conservative. Stefanski and Carroll (1987) also reported the
multiple roots problem, which is studied by Hanfelt and Liang (1995, 1997) by
path-dependent integration approach. In general, when an estimating function
has multiple roots, confidence intervals based on estimating functions tend to
have separate regions (McCullagh (1991), p. 278), thus are not useful.
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We shall consider the case p = 2 in following discussions. Figure 2, top left,
depicts vector field (4.1) for a particular sample of size 10. The black dot shows one
solution to the estimating equation u(f) = 0; the vector field sinks (cf. Section 2)
into this point.

Now we consider testing the hypothesis Hp : 8 = (—1.4,1.4), a value reported
in a large cohort study by Stefanski and Carroll (1985). In this and next example
we have done our simulation studies by linearizing estimating functions at null
hypothesis and also at other points which slightly deviate from the null. Note that
if linearization is not carried out at null, definition of quasi-likelihood ratio statistic
should be adjusted accordingly as v = —2[#(6o,&;Y) — ¢(6(§),&,Y)], where 6(¢) =
argmax ¢(6,£;Y). The general asymptotic result (3.9) is still applicable where
both ¥ and T should also be adjusted properly. We first linearize u(8) at £ =
(=0.9,0.9) and obtain its quadratic quasi-likelihood (3.6). Figure 2, center and
bottom left, shows the gradient and the divergence-free vector fields corresponding
to this quasi-likelihood for the same sample used to display the top figure. Figure 3,
left panel, compares the true conditional log-likelihood surface with the quadratic
quasi-likelihood for a sample of size 200.

To study quasi-likelihood ratio test, we set the variance of measurement error
¥ = (0.1/3)2, a value used by Hanfelt and Liang (1995) in their simulation. In
our simulation the unobservable measurements z’s are taken as pseudo-random
numbers generated from N(0, (0.1)2). Bottom of Fig. 4 compares the asymptotic
distribution of the quasi-likelihood ratio statistic, A1 Z? + AoZ2, A = (1.24,0.84),
with the true distribution for sample size 200 by 1000 simulations. We have
tried various values of ¢ (including £ = ) and similar satisfactory fits have been
observed.

4.2 Probability estimation conditional on marginal frequencies

In the voter transition probability problem (Firth (1982)), as described
by McCullagh and Nelder ((1989), pp. 336-339) and studied further by Li and
McCullagh (1994), we are interested in estimating the transition probabilities 6;
of voting for Party P, by electorate previously voted for Party P;(i = 1,...,p). We
extended the original 2-party model to include p parties. Conditional on number
of voters m; for Party P; in a previous election, numbers of voters for Party P in
the next election X; are assumed independent binomial variables with index m;
and transition probability 8;(i = 1,...,p); cf. Table 1. The difficulty of the prob-
lem lies in the fact that the X’s are hidden and we must estimate § = (61,...,6p)
based on the total Y = Y 7_, X.

We assume that there are available records for n previous elections. That is,
we have data {y:;m1,...,mip}r;. To estimate § based on quasi-score (1.2), we
compute the mean and variance of Y; as

/,l,z(e) = mi101 + -+ m,-pﬁp,
‘/1(0) = mi101(1 - 01) + -+ mi,ﬂp(l - 0,,)

The quasi-score

(4.2) ug(0) = Zmik(yi - pi(0)/Vi(0), (k=1,...,p)
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Logistic Regression with Measurement Error Voter Transition Probability Problem

Log Likelihwood Surface Likelihood Surface

theta_1 0.8

Log Quasi-likelihood Surface Quasi-likelihood Surface

0.8

.8
5.4 theta 2

theta_1 °-%

Fig. 3. True (conditional) likelihood surfaces vs. quadratic quasi-likelihood surfaces
(3.6). The left and right panels correspond to logistic regression with measurement
error and voter transition probability estimation problem respectively; cf. Section 4 for
details.

is not conservative, because d(uq(8)d0; + - - - + up(6)do,) # 0.

Figure 2, top right, displays the nonconservative vector field (4.2) for p = 2,
for a particular sample of size 10 and the true value of 4 is assumed (0.6,0.4). The
m;;’s are taken as certain pseudo-random integers. As in the previous example,
figures at center and bottom right are Helmholtz potential and divergence-free
vector fields corresponding to the quadratic potential (3.6); linearization has been
made at £ = (0.4,0.6). Figure 3, right panel, displays the discrete true likelihood
surface (McCullagh and Nelder (1989), p. 338) and the quadratic quasi-likelihood
surface.

Now we turn to quasi-likelihood ratio tests. Simulations are carried out in two
cases: (a) 2-party model with null hypothesis Ho : § = (0.6,0.4) and (b) 3-party
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Distributions of Quasi-likelihood Ratios

2-Party Model: n=10

0.6

0.4
——e———,
wmeemennse  Asymptotic |

0.2
Simulated

o8
0 5 10 15 20

y 3-Party Model: n=10

0.6
0.4
wmsasnans  Asymptotic
0.2
Simulated
oL
0 5 10 15 20

Logistic Regression: n=200

0.6
0.4
mewss  Asymptotic
0.2
Simulated
old
0 S 10 15 20

Fig. 4. Asymptotic null distributions of quasi-likelihood ratio statistics (3.8) vs. simu-
lated true distributions. Top and center plots correspond to voter transition probability
estimation problem with two and three parties respectively, the bottom plot is logis-
tic regression with measurement error; n is sample size. In each plot the simulated
distribution is based on 1000 replications; cf. Section 4 for details.

model with null hypothesis Hy : § = (0.6,0.4,0.3). Quasi-score are linearized in
(a) at (0.4,0.6), and in (b) at (0.4,0.6,0.4). In both cases, sample size is taken
as 10. Figure 4, top and center, compares the asymptotic null distributions with
simulated true distributions of the quasi-likelihood ratio statistics. The asymptotic
null distributions are in case (a) A\1Z% + A2Z7 with A = (1.67,0.77), and (b)
MZE 4+ XNoZ2 + X322 with X = (1.38,0.98,0.82). As in the first example, we also
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Table 1. Voter transition probability model for p-parties. Conditional on number of
voters m; for Party P; in a previous election, numbers of voters for Party P; in the next
election X; are assumed independent binomial variables with index m; and transition
probability 8;(i = 1,...,p).

Party Py P; +---+ P, Previous Votes
Py X1~ B(my,01) my — X1 mi
Py  Xp~ B(myp,6p) mp — Xp mp
Total Y=X. m. — X. m.

tried several values of ¢ for linearization and again similar satisfactory fits have
been observed.

5. Discussion

For general nonconservative estimating functions we proposed locally quad-
ratic (log) quasi-likelihood functions. The quasi-likelihoods admit the interpreta-
tion as a particular type of potential function of the original (linearized) estimating
functions. Quadratic fits instead of the original highly non-linear estimating func-
tions or even the (true) likelihood in general statistical inference problem may
have their own merits (Le Cam (1975)). The approximate quadratic-likelihoods
and the quasi-likelihood ratio statistics applied to quasi-scores share a number
of likelihood properties: parameter-invariance, zero-unbiasedness, information-
unbiasedness, etc.

Literatures on nonconservative estimating functions have been mainly on
studies of constrains or choice of integrable estimating functions (e.g. McCullagh
and Nelder (1989), pp. 334-336; Li and McCullagh (1994)). The approach amounts
to restricting to conservative estimating functions, with the possibility of exclud-
ing nonconservative but statistically informative ones. Some other papers (e.g.
Hanfelt and Liang (1995, 1997)) study path-dependent integration. We have taken
the approach of constructing quasi-likelihood for any nonconservative estimating
functions. Although interpretation of our proposed solution invoked quite involved
theories, the recipe is simple: (1) linearize your nonlinear nonconservative estimat-
ing function and (2) form the quadratic (approximate) quasi-likelihoods.

Among the difficulties with present approach are choice of £ at which estimat-
ing functions are linearized, loss of higher-order information due to linearization,
etc. The latter problem may be solved by considering a second-order approxi-
mation. The choice of £ may be simple in certain problems such as hypothesis
testing while less obvious in other situations, where one may linearize at a proper
consistent root to the original equations.

We have not discussed multiple root problem in this paper. One referee
pointed out the possibility of using the quasi-likelihood (3.7) for distinguishing
consistent root from inconsistent roots. We have seen that if £ = 6*, the true
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parameter value, then 2¢(é(§),§;Y) has an asymptotic chi-square distribution.
Moreover, it can be shown that if £ # 6, then 2¢(é(§),£;Y) is of order Op(n)
with a positive value. Hence the different behaviors of this statistic reveal whether
¢ is near the truth. We shall leave this as our future problem and conclude this
paper by noting some recent references on multiple roots; Li (1993, 1996), Hanfelt
and Liang (1995, 1997), Small and Yang (1999).

Acknowledgements

The author thanks Professors Takemi Yanagimoto and Shinto Eguchi for help-
ful discussions which sparked his interests in estimating functions; Hideki Tane-
mura and Ken'ichi Sugiyama for many technical advices. He is particularly in-
debted to Dr. Sugiyama for the proof of Theorem 2.1. Grateful thanks are also
due to an associate editor and a referee for pointing out a mistake in a previous
version and for constructive comments.

REFERENCES

Abraham, R. and Marsden, J. E. (1978). Foundations of Mechanics, 2nd ed., Benjamin/
Cummings, Reading, Massachusetts.

Barndorff-Nielsen, O. E. (1995). Quasi profile and directed likelihoods from estimating functions,
Ann. Inst. Statist. Math., 47, 461-464.

Firth, D. (1982). Estimation of voter transition matrices, MSc Thesis, University of London.

Fukaya, K. (1995). Electric Field and Vector Analysis, Iwanami Shoten, Tokyo (in Japanese).

Fukaya, K. (1996). Analytical Mechanics and Differential Forms, Iwanami Shoten, Tokyo (in
Japanese).

Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation, Ann.
Math. Statist., 31, 1208-1211.

Godambe, V. P. (ed.) (1991). Estimating Functions, Clarendon Press, Oxford.

Hanfelt, J. J. and Liang, K.-Y. (1995). Approximate likelihood ratios for general estimating
functions, Biometrika, 82(3), 461-477.

Hanfelt, J. J. and Liang, K.-Y. (1997). Approximate likelihood for generalized linear errors-in-
variables models, J. Roy. Statist. Soc. Ser. B, 59(3), 627-637.

Irwin, M. C. (1980). Smooth Dynamical Systems, Academic Press, London.

Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distributions 2, Wiley, New York.

Kobayashi, S. (1990). Differential Geometry of Connections and Gauge Theory, 3rd ed.,
Shokabo, Tokyo (in Japanese).

Le Cam, L. (1975), Discussion on Efron (1975), Ann. Statist., 3(11), 1223-1224.

Li, B. (1993). A deviance function for the quasi-likelihood method, Biometrika, 80(4), 741-753.

Li, B. (1996). A minimax approach to consistency and efficiency for estimating equations, Ann.
Statist., 24(3), 1283-1297.

Li, B. and McCullagh, P. (1994). Potential functions and conservative estimating functions, Ann.
Statist., 22(1), 340-356.

McCullagh, P. (1983). Quasi-likelihood function, Ann. Statist., 11, 59-67.

McCullagh, P. (1991). Quasi-likelihood and estimating functions, Statistical Theory and Mod-
elling: In Honour of Sir David Cox (eds. D. V. Hinkley, N. Reid and E. J. Snell), 265-268,
Chapman & Hall, London.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed., Chapman & Hall,
London.

McLeish, D. L. and Small, C. G. (1992). A projected likelihood function for semiparametric
models, Biometrika, 79, 93-102.



APPROXIMATE QUASI-LIKELIHOODS 619

Nelder, J. A. and Wedderburn, W. M. (1972). Generalized linear models, J. Roy. Statist. Soc.
Ser. A, 135(3), 370-384.

Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observa-
tions, Econometrika, 16, 1-32.

Siegel, C. L. and Moser, J. (1991). Lectures on Celestial Mechanics, Springer, New York.

Small, C. G. and McLeish, D. L. (1994). Hilbert Space Methods in Probability and Statistical
Inference, Wiley, New York.

Small, C. G. and Yang, Z. (1999). Multiple roots of estimating functions, Canad. J. Statist., 27,
(to appear).

Stefanski, L. A. and Carroll, R. J. (1985). Covariate measurement error in logistic regression,
Ann. Statist., 13(4), 1335-1351.

Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores for generalized
linear measurement-error models, Biometrika, T4(4), 703-716.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the
Gauss-Newton method, Biometrika, 61(3), 439-447.



