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Abstract. The number of modes of a density f can be estimated by counting
the number of 0-downcrossings of an estimate of the derivative f’, but this often
results in an overestimate because random fluctuations of the estimate in the
neighbourhood of points where f is nearly constant will induce spurious counts.
Instead of counting the number of 0-downcrossings, we count the number of
“significant” modes by counting the number of downcrossings of an interval
[—¢, €]. We obtain consistent estimates and confidence intervals for the number
of “significant” modes. By letting ¢ converge slowly to zero, we get consistent
estimates of the number of modes. The same approach can be used to estimate
the number of critical points of any derivative of a density function, and in
particular the number of inflection points.

Key words and phrases: Significant bumps, density estimation, downcross-
ings, confidence intervals, bandwidth selection.

0. Introduction

In this paper, we consider the problem of estimating the number of modes
of a density in a nonparametric framework. This problem has been considered
by several authors, including Cox (1966), Good and Gaskins (1980), Silverman
(1980, 1981, 1983, 1986) and Hartigan and Hartigan (1985). See also Wong (1982)
and Wong and Lane (1983) where density estimation is used for identifying high
density clusters. More recently, Donoho (1988) has discussed this problem in the
general setting of inference about functionals of an unknown density.

Throughout the text, D(Z) is used to denote the set of all densities on the
interval Z, C(Z) the set of all bounded and continuous functions on 7 and CD(Z)
the set of all bounded and continuous densities on Z. We say that a mode of f is
a maximal closed interval I such that, for all z € I, x is a local maximum of f.
(Of course z is said to be a local maximum of f when there exists a neigbourhood
U = U(z) such that f(z) < f(z) for all z € U.) The number of modes p* = p*(f)
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of a density is the cardinality of the set of its modes. A flat is a positive length
interval on which f is constant.

According to our definition, the uniform density has only one mode and the
approach we take allows for such densities with flat parts. This is highly desirable
since, as will be shown in Section 1, one cannot determine empirically whether or
not a density has such flat parts. This negative result, as well as others we prove
in Section 1, are due to the fact that the shape of a density is a discontinuous
functional on the space of all densities. However, as shown by Donoho (1988),
p* is a lower semi-continuous functional and thus, one-sided inference about p* is
possible.

The usual estimate of the number of modes of an unknown density f is the
number of modes of some estimate of the density. However, the results obtained
by Mammen et al. (1992) suggest that such an attempt based on kernel density
estimates will fail. Our approach deals directly with that problem.

Donoho (1988) introduced a general method, the neighbourhood procedure,
for estimating functionals such as p*. His estimate is the number of modes of
the distribution with fewest modes in an e-neighbourhood (in the Kolmogorov
distance) of the empirical distribution. By letting e converge to zero slowly while
n goes to infinity, this method provides a universally consistent estimate of p*.

Our approach is somewhat related to Donoho’s. Instead of looking at the
0-downcrossings of an estimate of f’, we look at the e-downcrossings, that is the
downcrossings of the interval [—e¢, €]. In other words, we only count the number of
“substantial” modes p(S(f,€)) of a density estimate. Although it will be formally
defined in Section 2, one can think of p(S(f,€)) as the number of modes that can
be detected by a computer with a precision of €. This interpretation is useful
since, in practice, one is interested in p(S(f,€))—for some fixed and small value
of e—rather than in p*. Indeed, when p(S(f,0.001)) # p*, the missing modes are
not likely to be of any interest. By letting ¢ converge slowly to zero, we get, like
Donoho, consistent estimates of p*.

In Section 1, we will show that the existence of a flat part and that the
finiteness of the number of modes cannot be empirically verified. Such results
are obtained by using the LeCam and Schwartz (1960) necessary and sufficient
condition for the existence of consistent estimates. In Section 2, some general
consistency results on a method to estimate the number of modes p* based on the
number of substantial modes p(S(f,€)) are given. A conservative confidence band
for the number of substantial modes p(S(f, €)) is also obtained. Recall that Donoho
(1988) has shown that one cannot give a nonparametric confidence band for p*(f).
However, in practice, we are mostly interested in the number of substantial modes.
In Section 3, we apply the general results of Section 2 to histogram and kernel based
estimates of the derivative f’. The results are given for the i.i.d. case and under
the assumption that f is smooth mainly for the sake of simplicity. The results of
Section 2 can be applied to any consistent estimate of f’; all we need is a bound
on the bias £f' — f' and a good exponential inequality for the empirical process.
Section 4 is devoted to examples and practical considerations. Finally, Section 5
takes a closer look at the question of bandwidth selection.
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1. Estimability

In this section we will show that the functionals

1 if f has a flat part,
o(f) = .
0 otherwise,
and
1 if f has finitely many modes,
B(f) = .
0 otherwise,

cannot be consistently estimated from a sequence of i.i.d. observations. LeCam
and Schwartz (1960) gave a necessary and sufficient condition for the existence of
consistent estimates. Roughly speaking, their results imply that if the functional
7 has a consistent estimate, 7 must be continuous in a dense subset with respect
to the topology induced by the £! norm

1l = / " f(oya.

It may be surprising that 7 need not actually be continuous but even the mean
u(f) = [zf(z)dz does not have this property. The following lemma puts the
argument in a context appropriate to our discussion and is proved for the sake of
completeness.

LEMMA 1.1. Let B be a subset of densities equipped with some norm || - ||
that makes (B, || - ||) a complete metric space. Assume that || f|l1 < c||f|| for some
constant ¢ and all f € B. Let

¢ B [—Ka K]
be any bounded characteristic of the densities in B. If ¢ is consistently estimable
on B, then there exists a dense subset of points in B at which ¢ is continuous with

respect to the topology induced by the || - || norm. Therefore, if ¢ is discontinuous
at every point in B, it is not consistently estimable on B.

PrOOF. If ¢ is consistently estimable on B, there exists a sequence of statis-
tics T}, : R™ — R such that for all f € B, if X1, X3, ... are independent random
variables with common density f,

T (X1,..., Xn) = o(f).
Since |¢| is bounded by K,

Sn =Tnlir, 1<k + 89(Tn) K11, > K
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is also a consistent estimate of ¢ on B, where I4 stands for the indicator function
of the set A and sg(-) for the sign function. Indeed, for all f € B,

PiilSn = ¢(f) > €} = Pe{ISn — ¢(f)] > & |Tn| < K}
+ Pi{lSn — ¢(f)| > & |Tn| > K}
SPH{|Tn — (5l > e} + Pr{IK - $(f)] > ¢ |Tn| > K}
S 2PH{|Tn — ¢(f)] > €}

Define ¢, : B+— [—K, K| by the equation
On(f) = ErSn( X1, ..., Xn).
Because of the boundedness of S,, for all f € B
lim gn(f) = 6(9).
In addition, the inequalities

|¢n(f) - ¢n(g)| = lgfsn(Xla cee 7Xn) - ggSn(XI, .- aXn)I
+oo +o00
= ‘/ dzn---/ dz1Sn(z1,...,Zn)

Af(@1) - f(@n) — g(21) - 9(zn)}

+o0 +oo
<K / di, - / doy|f(z1) - f(2n) — 9(31) - - - 9(En)|

— 00

+o0 +o00
SK/ dazn/ dzy f(zy)
-0

hade o}

N F(@2) - f(@n) — 9(o2) - glan)]
+00 00
LK / dzy / dz1| f(z1) — g(z1)]g(z2) - g(an)

— 00

+00 +oo
=K/_ dxn---/ dzo|f(z2) - - - f(Tn) — g(z2) - - - g(2n)|

+ K| f - gl
<nK|f -4l
< neK||f -4l

holding for all f,g € B, we conclude that, for each n, ¢, is uniformly continuous
with respect to the topology induced by the norm || - || on B.

According to the Baire category theorem, since (B, || -||) is a complete metric
space, and since ¢ is the limit of a sequence of continuous functions, it must be
continuous on a dense subset of B.

When proving that a parameter is not consistently estimable, it is often easier
to restrict attention to a conveniently chosen subset of densities and to work with
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a continuous transformation of the parameter. The following trivial lemma can be
useful.

LEMMA 1.2. Assume ¢ — [—K, K] is not consistently estimable on B. If

H is a continuous transformation and if ¢ = H o ¢ then ¢ is not consistently
estimable on any set containing B.

LEMMA 1.3. (CD([0,1]),]| - lloo) % @ complete metric space.

Proor. Since (C([0,1]),]|‘]lco) is a complete metric space, it suffices to show
that CD([0, 1]) is a closed subset of C([0, 1]). This follows from Scheffe’s Theorem.

Since Vf € CD([0,1]) |Iflli < |Iflleo, it follows from Lemma 1.1 that if a
bounded functional 7 is consistently estimable, it must be continuous with respect
to the topology induced by the norm ||-|| at a dense subset of points in CD([0, 1]).

However,

LEMMA 1.4. The functionals o and 8 are discontinuous with respect to the
topology induced by the norm || - || at every point in CD([0,1]).

PRrOOF. First consider the functional a. Take any f € CD([0,1]) with
a(f) = 0 and define

( 1
f(ﬁ) ) 1
T I - , if < —;
fo={at (5> thyn
1 lf(x) ,  otherwise.
1
[ () B

On one hand we have

la(fn) —a(f)l =1 Vn

while

[fa = flloo = 0,

showing that « is discontinuous at f. Take now any f € CD([0,1]) with a(f) =1

and put
f *M/n
fo= sl
fo f *T/n
where 7, is the normal density with mean zero and variance 02. Because the
location family of the normal densities is complete (Lehmann (1959), Theorem
4.3.1, p. 132), it follows that f, has no flat part. On one hand we have

la(fn) —a()l =1 Vn
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while, since f is uniformly continuous on [0, 1],

lfn = Flico = 0,

showing that « is discontinuous at f.

Next, consider the functional 3. Take any f € CD([0,1]) with B(f) =
and define f, to be the linear interpolation of f with knots at 0, %, ...,1 and
renormalized so that it integrates to one. The density f, has a finite number of
bumps. On one hand we have

1B8(fn) —B(f)l=1 Vn

while, since f is uniformly continuous on [0, 1],

lfn = flleo =0,

showing that §3 is discontinuous at f. Take now any f € CD([0,1]) with 8(f) =
and let g € CD([0, 1]) be any density with 8(g) = 0. Define

fn=<1——)f+lg

18(fn) = B(f)I=1 Vn

On one hand we have

while

”fn - f“oo — 0,

showing that 3 is discontinuous at f. This proves that ( is discontinuous at every
point f € CD([0,1]).

THEOREM 1.5. IfCD(Z) C B, there exist no estimate T, = Tp(X1, ..., Xn)
such that
T.2a(f) VfeB

and no estimate T, = Tn(Xl, ..., Xn) such that

7. %8(f) VfeB.

2. General results

In this section, f and g are differentiable functions. Although our argument
can be extended to functions with left and right sided derivatives, the exposition is
clearer if the unknown functions and their estimates are presumed to be smooth.
We use the notation fn to represent an arbitrary differentiable estimate of f, so
that fn is used to estimate f’. The results in this Section can be applied to
estimate the number of modes of an unknown density as well as to the number
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of local maxima of a regression function. In the next section, we will apply the
results to kernel based and histogram based estimates of the derivative f'.

To estimate the number of modes of an unknown density f, it is a reasonable
idea to use the number of modes of some estimate of the density. The problem with
that approach is that in the neighbourhood of points where f is non-zero and nearly
constant, the density estimate will typically have many modes. This phenomenon
is observed, for example, for uniformly distributed data. The approach we take
is to count only the “substantial” modes of the estimate. Formally, instead of
counting the number of 0-downcrossings of the derivative f,’t, we count the number
of downcrossings of the interval [—¢,€]. To formalize this approach, we propose
the following definitions.

Given any differentiable function f, define

-1, if f'(z) < —¢
S(fe)(z)=40, if |f(@)<e
1, if f(z)>e.

It looks very much like the sign function except zero has been replaced by the
whole interval [—¢,¢€]. Given any function s with values in {-1,0,1} we say that
the interval [a,d] is a 0-downcrossing of s if

s(a)=1 and s(b)=-L

Obviously, 0-downcrossings can overlap and we define p(s) as the maximum num-
ber of disjoint 0-downcrossings of s. Furthermore, if 51 and s3 are two functions
with values in {—1,0,1}, we write s; < s whenever each 0-downcrossing of s;
contains a 0-downcrossing of sg. Finally, we will use the sup norm:

1flloo = sup | £(z)]

With these notations, we have

LEMMA 2.1.
i) If s; < s2 then p(s1) < p(s2).
ii) 81 < s2 follows from the conditions

81(.’1,‘) =+1= Sz(.’E) = +1.
iii) If0 < e < € then

S(f.€) < S(f,€)
and

p(S(f,€)) < p(S(f,€))-
) If|f' — gl < § then

s (f, %) <509 <5 (f.5)

and
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e €
i < -1},
p (S (f, 3 )) < p(S(g,€)) <p (S (f, 2))

ProOF. The first statement follows directly from the definition of p as the
number of disjoint 0-downcrossings. For the second, observe that if so(a) =1 and
s2(b) = —1, the interval [a, b] contains at least one 0-downcrossing of s3. The third
follows from the first two statements, the implications

S(f,€)(@)=1= f(z) > € = f'(z) > e = S(f,6)(2) =1,

and similar ones for —1. Finally, the fourth statement follows from the first two
statements, the implications

3e

s (f%) @ =1 f(z)> 5 = g() > 5.6 =1
= g(@>e= f@)>2=>8(fi5) @ =1,
and similar ones for —1.

It is useful to have a clear idea of what the quantity p(S(f,€)) represents. It
is the number of e-downcrossings of the derivative f’. It will coincide with the
number of modes p*(f) of f if and only if for each mode [a,b] of f there exists an
interval [c,d] D [a,b] such that f'(c) > €, f'(d) < —e and [c, d] contains no other
mode than [a, b].

LEMMA 2.2. Foralle >0

p(S(f,€)) < p*(f).

ProOF. With each disjoint 0-downcrossing of S(f,¢) we will associate a
distinct mode of f. Assume [a, c| is such a 0-downcrossing of S(f,¢€). Since

fl(a)>€¢ and f'(c) < —¢,
there exist a point b € (a, c) such that

f(b) > max{f(a), f(c)}.

Let d be any point in (a,c) at which f attains its maximum. The largest closed
interval containing d and on which f is constant is a mode and is included in (a, ¢).

LEMMA 2.3. If p*(f) < oo then there exists an eo(f) > 0 such that for all

€ < eo(f)
’ D(S(F,6) = 0*(F).
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PrOOF. With each distinct mode of f we will associate disjoint 0-down-
crossings of S(f,€). Let [a;,b;] 1 < i < p* be the modes of f and take disjoint
open intervals around them:

[ai,b;]] C (ai —€,b; +€) 1<i<ph.

For 1 < i < p*, there exist points ¢; € (a; — €,a;) and d; € (b;, b; + €) such that
f'(¢;) > 0 and f'(d;) <0. Put
eo(f) = min {f'(c;),—f'(d)}-

1<i<p*

For all € < €o(f), each of the disjoint intervals [c;, d;] are 0-downcrossings of S(f, €).
The result follows from the inequality of Lemma 2.2.

THEOREM 2.4. If p*(f) < 00, and ||’ — fi|lec < 0
3 7 / 4 1
P{o(s(+%)) <nstnn <o} 2P {15 - fillo < )
and for all € sufficiently small

PLo(S () = 0" (1)} 2 P{IS — Fall < 5 }-

PROOF. Using the lemmas,

P{If = fulloo < 5}
P {s (f, %) < S(fe) < S (£, §)}
P{o(s(r%)) ustiman<e(s (1)}

<{o(s(1%)) <otstnen < (0}

The second inequality follows from Lemma 2.3.

IA

IA

Theorem 2.4 implies that as long as
! Pl €n
P{If = fil > S} =0,

p(S(fn,€n)) is a consistent estimate of p*(f). Furthermore, if € is small enough
that p(S(f,3)) = p*(f), p(S(fn,€)) is a consistent estimate of p*(f). Note that
in this case, the estimate is based on a fixed e. As stated in Lemma 2.3, for any
given density f, there is such a value for e.



550 RICARDO FRAIMAN AND JEAN MELOCHE

THEOREM 2.5. If p*(f) < 00, and ||f’ — f!|lco < 00
P {p(S(f,e)) ¢ [p (S (fn, %)) 2 (8 (for g))}} >P{If - fullo < 5}
Proor. Using the lemmas,
P{IF - fallow < £}
sP{S(ﬂﬁ§><Sux)<S(ﬁ§)}

<P {p (8 (fn, %)) < p(S(f.€) <p (S (fn, g))} :

Theorem 2.5 gives a conservative confidence band for p(S(f,€)) rather than
for p*(f). As discussed earlier, p(S(f,€)) is in a sense, the number of “substan-
tial” modes of f. Donoho (1988) proves that one cannot give a non-parametric
confidence band for p*(f). Theorem 2.4 gives a lower confidence bound for p*(f),
which is possible as shown by Donoho.

The locations of the modes can also be useful. Although we did not look
carefully into this matter, the 0O-downcrossings of S(f,, €) can be used as confidence
intervals for them.

The same approach can be used to estimate the number of critical points of
any derivative, and in particular, the number of inflection points. Cuevas and
Gonzalez Manteiga (1991) proposed a bandwidth selection method based on a
known number of inflection points. With our approach, instead of looking at the
number of 0-crossings of an estimate of f”, we look at the number of “substantial
inflections” or e-crossings. Our arguments can be modified by replacing f’ by f”
and one easily verifies that Theorems 2.4 and 2.5 can be proved for the number of
inflections points.

3. Histogram and kernel based estimate of f’

We now apply the theorems of the preceding section to histogram and kernel
based estimates of the derivative f’. In order to apply our results, all we need is
to bound

P{Ifa - Flo < 5}

We first bound the bias and then use the DKW inequality (see for example Shorack
and Wellner (1986), pp. 354-356) on the empirical process. As usual with the
estimation of f’, the bias

Efulz) ~ f'(2)
depends heavily on the degree of smoothness of the unknown derivative f’. To
show how smoothness can be handled, we consider two cases:
(3.1) f has two derivatives and || f'||oo < 00,

and
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(3.2) f has three derivatives and || f"]|o < 00.

For the histogram based estimate, in order to keep the notation simple, we
will work on the interval [0, 1]. Divide [0,1] in ¢, equal pieces and define

1 141
An,i:<“—7 ki :I *1_<_iSCn7
Cn  Cn

pn,i(F)=/ dF —].SZ'SCn,
An,i

dni(F) = C?L(Pn,i(F) —pni-1(F)) 0<i<e,
and

fn <Z+t) (1_t)dnz( )+tdnz+1(F) OStSI,

n

where F, is the empirical cumulative distribution function based on the observa-
tions. With these definitions, f; is an appropriate estimate of the derivative f’
and the quantity c,; ! plays the role of a bandwidth.

LeMMA 3.1. If (3.1) holds,

13 " oo
€7~ £llo < M Neo
and if (3.2) holds,
£l ’ 5 ”fIHHOO
- < = .
lefs - £l < 35155

PRrROOF. By definition, for all t € [0, 1],

1 1 .
Edni(Fn) = c2 / dF-/ dF =/ udu/ dof’ (Hm’)
Ani Ani-1 0 -1 Cn

so, by substitution,

ef, ( i t) (1= )Edni(Ey) + tEdm i (Fr)

1 1 , [ 1+ uv 1 +14+uv
:/0 udu[ldv{(l—t)f (—Cn >+tf (——__Cn )}

If (3.1) holds, we can perform a one term Taylor expansion and write

o () (2)
() (2

<(1—t/udu/ dvf
+t/ udu/ (Z“:"”)—f’(icint)'

||f“||00/0 du/_l dv{(1 — t)juv — t| + tjuv + 1 — t|}

Cn

17 13
- e, 24
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since
1+ 2t — 43 4+ 2t4

1 1
/ udu/ dv{(1 —t)juv — t| + tuw +1—-t|} = 3
0 -1

is maximized at ;
If (3.2) holds, we can perform a two term Taylor expansion and write

gfn<z+t) f<i+t) |
l—t)/ udu/ dv|f (sz) _f’<zlc+nt>l
o Lo [l () (L)

< 17 / du/ dv{(1 - t)(uv — £)2 + t(uww + 1 — £)?}
0 -1

22

< 1f"leo 5
c2 2%°

LEMMA 3.2. Let

"
€ _ Bl i (3.1 holds,
4 24 ¢,
(3'3) Tn = € 5 “fm”oo
iu 2 if  (3.2) holds,

with € and c, chosen so that v, is positive. Then
2
fro_o <« 8ls _ In )
P{lfa-Fflle< )21 mexp{ 2"(4(,%) }

PrRoOOF. First observe that

i (z+t> £f (z+t)‘
Cn Cn
(1 = )(dn,i(Fn) — dni(F)) + tdn,is1(Fn) — dn i1 (F))|
< sup |dni(Fn) — dn,i(F)|

0<i<cn

< 2ch sup |Pn,i(ﬁ’n) — Pn,i(F)]

<i<cn

< 4c2||Fy ~ Flloo

so that, using Lemma 3.1 we have

P{If = £l < 3} = PLIF — Efalloo < 1}
> P{If -~ Pl < 25|
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The result follows from the DKW inequality.
Thus, as a corollary of Theorems 2.4 and 2.5, we obtain

THEOREM 3.3. Assume that p*(f) < oo and define v, as in Equation (3.3).
Then

P{p(S(ﬂ%>>Spﬁmﬂ&DSPWﬁ}21—4¢5ﬂp{4n(%EY},
P {p(S(f,e)) e [p (s (fn, %)) 2 (8 (o, %))] }
>1—4v2exp {—2n (%)2}

and for all € sufficiently small

P{p(S(far€) = " ()} 21 = 4v2exp {_2n (%) } .

Notice that the lower bound on the confidence of all these statements is max-
imized if ¢, is set according to e€:

4 €
—_—— if (3.1) holds,
L | B 3.1)
(34) enle) 3
n € .
———— if (3.2) holds.
T

This concludes our analysis of histogram based estimates. Now we consider
kernel density estimates. Our kernel K is a symmetric density, has a integrable
second derivative and [ u?K (u)du < oo. The kernel estimate of f’ is given by

o -1 _,(z-X;
=-N"—K .

LEMMA 3.4 If (3.1) holds,

Mﬁ—ﬂuﬁmwwm/Mme
and if (3.2) holds,

IEFs~ Floe < 215" oo [ 42K ()
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Proor. Using a Taylor expansion we write either

€ fnl@) - f(2)] = t/K(U){f'(w — hnu) — f'(z)}du

< "o / Jul K (u)du

if (3.1) holds, or

£72(2) - 1'()] = ] [ K@@ b - 7@

h2
< 21w [ 2K ()
if (3.2) holds.

LEMMA 3.5. Let
i—hnu oo / [ulK(w)du if (3.1) holds,

(3'5) Tn = €

1 — 21" oo / w?K(u)du if (3.2) holds,

with € and hy, chosen so that vy, is positive. Then

{||f — flloo < = }>1—4\/§exp{ <||};?’7|7l11>2}’

PROOF. First observe that

@) - eatal = |z [ & (5 b~ P

-l o (2]

“Fn_FHOO/l " r—t
<lin "W f _ g (Z22
ST hn )|

IIF Flloo
hZ

K" |12
so that, using Lemma 3.4 we have
A~ € N N
P{Ifa=Flleo < 3} 2 PAIFL— Efl <)

- h27n }
Z’P{ Fp = Flloo < m2In {
15 = Flloo < e
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The result follows from the DKW inequality.

Singh (1979) used a similar argument to prove that the uniform continuity
and the boundedness of f’ are a necessary and sufficient condition for the strong
uniform consistency of the kernel density estimate. As a corollary of Theorems 2.4
and 2.5, we obtain

THEOREM 3.6. Assume that p*(f) < oo and define v, as in equation (3.5).
Then

’P{p (s (f, 5’;—)) < p(S(fure)) < p*(f>} >1- 4VZexp {—2n ("”ﬁ}’ﬁl)?},
P {p(S(f,e)) € [p (s (fn, %)) 2(8 (Fu -;—))J }

\/— hz’Y 2
>1—4vV2exp{ —2n nn
= P (||K~n1)

and for all € sufficiently small

-~ 2 2
P{p(S(fn,€)) = p*(f)} 2 1 — 4v2exp {—2" <“hK"Zﬁ1> } :

Notice that the lower bound on the confidence of all these statements is max-
imized if h,, is set according to e:

1 €
6 if (3.1) holds,
61| |loo [ |u|K (u)du (3.1)
(3.6) By (€) = : 6
\/g ”fm”oo fUQK(U)du if (32) holds.

4. Remarks and simulations

Remark 0. All our statements can be made in terms of a different notion
of “substantial” mode. Donoho (1988), for example, introduces such an alternate
notion based on a Kolmogorov distance from the empirical cumulative distribution
function. Our notion of a “substantial” mode has a simple interpretation and
the computations required to provide estimates or confidence intervals are very
easy. Furthermore, its mathematical analysis is elementary. In the context of
nonparametric regression, Heckman (1992) defines a “substantial” bump if the
regression function increases and decreases on long enough contiguous intervals.

Remark 1. Although p*(f) > 1 for any density f, it may be the case that
p(S(f,€)) = 0. Indeed, p(S(f,€)) is the number of modes that can be bracketed
in disjoint intervals [a,b] such that f’'(a) > € and f'(b) < —e¢, so that

p(S(f, 1 llee)) =0
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always holds. The leftmost and rightmost modes can be handled a little differently
by requiring only that f’(b) < —e for the leftmost and f'(a) > € for the rightmost.
Although this modification can be used in practice to make sure that p(S(f,€)) >

1, we did not follow this approach because it complicates the presentation.

Remark 2. The confidence interval
o(s(fn X o (S (fn )
h 2 I b 2
does not behave as an “ordinary” confidence interval. As n grows to infinity, it
converges to
3e €
which may or may not collapse. It will reduce to a single point only if
(s (1)) =5 (5(:)
T2 2
For example (Fig. 0), with ¢ = 0.05 and
2 5 3
fo(z) = Eﬂ(iﬂ +5) + 1677(18) + En(ﬂc -5)
where 77 is the standard normal density, we have
3e
(<(3))
p(S(f,€) =2,
€
(5(:) ==

A confidence interval with “ordinary” behaviour can be given at the expense
of the introduction of an extra parameter. Indeed, the arguments of Lemma 2.1
and Theorem 2.5 can easily be modified into

and

THEOREM 4.1. If p*(f) < 00 and |[f' — filleo < 00

PLo(S(f,€)) € [p(S(Fare + 1)), (S (Fure = N} 2 P{IF = Falloo < 3}

Theorem 2.5 is the particular case where v = €/2. If =y, converges to zero
slowly enough that

P{If = fallo < 3} =1,
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Derivative of the true density f
rho(0,050)=2
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the confidence interval

[p(s(fna €+ Tn)), p(S(fm €= "n))]

will collapse to the single point p(S(f,€)). We chose not to follow this line because
it requires a better understanding of the behaviour of

PUIS — falloo < a}.

Remark 3. Notice that Theorems 2.4, 2.5 and 4.1 depend in no way on the
stochastic structure of the observations. All they do is provide lower bounds on
the confidence of various statements in terms of

P{IF = frlloo < @}
Furthermore, in Section 3, in order to reduce this bound to one depending on
P{||Fn — Flloo < B},

the only assumption made is that the observations are identically distributed. To
this point, nothing is said about the dependence structure of the observations, so
that our results can be extended without too much effort to any case for which

Remark 4. The Lemmas of Section 3 provide a bound on
! £ €
P{ilf - falloo < 5}

that is required to apply Theorems 2.4 and 2.5. The bounds we use show that
the probability of coverage converges to 1 exponentially fast as n grows to infinity.
Unfortunately, the approach we chose is not tight enough and the conservative
level we get from our bounds is close to zero, even for large sample sizes. For
example, assume that (3.2) holds and that the kernel is the standard normal
density. Substituting the bandwidth that maximizes our lower bound, this lower

bound becomes . )
€

and in order to get a bound of 100(1 — )%, n must be quite large:
"2
n > 1914“f 4”°° log (4\/5) .
€ o

Table 1 shows the right hand side of the last inequality for different values of
e and levels with || f"’||cc = 1. In practice, however, we had very good results with
100 observations and we believe that a direct evaluation of

Plostrneo(s (i) (s(fs)]}
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Table 1.

50%  80% 90%
e=15 918 1,264 7,723
e=10 4,644 6,398 7,723
€e=0.5 74,294 102,355 123,581

or a better bound than the one we have used, would provide useful estimates of
the confidence level of our intervals. Research in that direction is under way.

Remark 5. Even if our bounds have little practical value, it should be noted
that equations (3.4) and (3.6) suggest that a fixed amount of smoothing be made,
irrespective of the sample size. This is not really surprising since for that band-
width and all smaller ones, f and € f] (z) have the same number of “substantial”
modes (see the next section). In order to select the bandwidth by using estimates
of || f"]leo and |||l together with equations (3.4) and (3.6), the smoothness of
the unknown density would have to be known. In our experience, the bandwidths
selected by ordinary least squares cross-validation are appropriate for use with the
kernel based estimate of f’. In fact, our estimates do not seem to be too sensitive
to the bandwidth; this results from eliminating the spurious 0-downcrossings of
f,, by using a positive €. Various automatic bandwidth selection procedures lead
to more or less the same intervals.

Remark 6. The choice of € is left to the analyst. A very large value for €
will restrict the attention to very “substantial” modes. Naturally, one expects
that for small values of € more observations will be required to identify the modes
and this is reflected in the exponential bounds we have provided. One difficulty
with the choice of € is that the notion of “substantial” depends on the scale of the
underlying density. Indeed, the modes counted in p(S(f;,€)) correspond to those
counted in p(S(f,,a%¢)) where f,(z) = af(ax). For that reason, we recommend
using values of € around 1 once the data has been rescaled to the interval [0,1].
The analyst can get a better idea of what ¢ = 1 corresponds to in terms of the size
of the modes by experimenting with known densities on the interval [0, 1].

Remark 7. The next three figures are typical of simulation results. The first
two graphs display the underlying true density and its derivative. The bottom two
graphs display kernel based estimates of f and f’ respectively, using the bandwidth
selected by ordinary least squares cross-validation for a sample of size n = 100.
The horizontal lines are

y=—-€=-005 y=0 y=€¢=0.05

used to count the number of downcrossings. The true densities are

1 -5
hi) =337 (552) + ) + 10 (552
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Derivative of the true density f
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Derivative of the true density f
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0.122

0,091

0.061

0,030

0,000

True density f

~12.000

T T Y 1

-4,500 3.000 10,500 18,000

0,126

0.095

0,063

0.032

0.000

Kernel estimate of f (n=100, h=0,450)

T T T 1

-12,000 -4,500 3,000 10.500 18,000

Fig. 3.




COUNTING BUMPS

Derivative of the true density f
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for Fig. 1, . .
fa(z) = 5n(z) + 5 (1 — |z ~ 5)1{|z — 5] <1}

for Fig. 2 and

fa(@) = Sy ¢ 1Ly (2228, L1, (z-16) 31 27\, Loty
ML) =5MBT 7T\ "7 05\ 5 1027\ 2 5"

for Fig. 3, where 7 is the standard normal density. Although the graphs of the
true densities show strongly delineated modes, the large difference between the
horizontal and vertical scales of all the figures should be taken into account.

Remark 8. To better assess the performance of our confidence intervals, we
performed three simulations where the true underlying density of the observations
was f1, fo and fa respectively. In both cases, the bandwidth was selected by ordi-
nary least squares cross-validation and we used 100 samples of size n = 50, 100, 200.
The observed coverage probabilities are reported in Tables 2 and 3.

Table 2.

€= 0.01
i fa f3
n=>50 083 035 0.24
n=100 0.84 0.31 041
n=200 0.85 0.28 0.54

Table 3.

e = 0.05
i fo f3
n=50 091 0.67 0.57
n =100 0.94 0.67 0.80
n=200 095 0.65 0.92

It is not surprising to see the observed coverage probabilities increase with e:
identifying large bumps is an easier task than identifying small ones. The observed
coverage probabilities increase more or less with n as expected. Comparing the
result for f; and f3 shows that a large number of modes makes the problem more
difficult. Inspection of the results has shown that the poor results with f, are due
to the poor performance of cross-validation in selecting a proper bandwidth for
not so smooth densities. In many cases, the selected bandwidth was from 2 to 5
times smaller than the actual optimal bandwidth.
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In other words, in order to count the number of bumps, there is no reason to
select a bandwidth smaller than

Co(f)

he = Mo Tl K (a)ls

Although this critical value is of no practical value as it depends on the un-
known quantities €o(f) and || f”||o it follows that bias is not the main problem.
This is a nice feature of the problem of bump counting and, more generally, of
the problem of identifying the shape: the bandwidth does not need to converge to
zero, it suffices that it be small enough.

To take one more step in that direction, consider the quantity p(S(€ fi, €)) to
be the parameter of interest. Theorem 2.5 can be applied to the functions fn and
Ef, and by using the argument we used in Lemma 3.5, we get

THEOREM 5.2. If p*(f) < oo,

Plaseinone o(s(fn)) (s (ins)]}

> P{IEfh ~ Falloo < 5}
h2e 2
>1 —4\/§exp{—2n (M) }

This inequality provides a better explanation of the results of our simulations
than the one provided by the previous inequalities. Since in practice, one always
uses a specific value for h—though a random one—it can be argued that Theorem
5.2 is of real practical value. In addition, the bound is good enough to be practically
useful. For a fixed bandwidth A, the interval

p(5(3 %)) (s ()

is an interval for p(S(& fu,€)) more that it is one for p(S(f,€)) or for p*(f). Using
it as an interval for the latter parameters is justified only in view of the comments
we have made in this section.
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5. Bandwidth selection

Bandwidth selection is one of the most difficult and important questions in
density estimation. The bandwidth must constitute a compromise to the opposing
goals of making the bias small, which requires a small bandwidth, and making the
variation small, which requires a large one. Although many automatic procedures
are discussed in the literature, there does not appear to be a general consensus on
how one should proceed. In fact, many authors have already pointed out that the
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to fulfil.
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data analyst often seeks. With that in mind, we argue that it is not necessary
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the same number of modes. We write £ f;, instead of £ fn to emphasize that this
expectation depends on h and not on n. For the normal kernel,

p(S(E fn,€))

is a non increasing function of h that converges to p(S(f, €)) as h converges to zero.
This is shown in Silverman (1981). In fact, for any kernel, assume that p*(f) < oo
and that equation (3.1) holds so that

€55 = Fleo < hol "l [ TulE ()
According to Lemmas 2.1, 2.2 and 2.3, if %e < eo(f),
7t ’ * 3 £ *
lefi-ri< s == (s(15)) <as€ine) <o(s(r5)) <)
so that for 3¢ < o(f) we have
IEFs = £l < 5 = p*(f) = p(S(Efn,€))-

Therefore,

THEOREM 5.1. Assume that p*(f) < 0o and that 3¢ < €o(f). If

€

hn <
= A7 J WK (w)du

then X
p*(f) = p(S(Efr,€))-
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